LCOV - code coverage report
Current view: top level - llvm/Support - MathExtras.h (source / functions) Hit Total Coverage
Test: clang.info Lines: 1 6 16.7 %
Date: 2016-01-31 12:01:00 Functions: 1 4 25.0 %

          Line data    Source code
       1             : //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file contains some functions that are useful for math stuff.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_SUPPORT_MATHEXTRAS_H
      15             : #define LLVM_SUPPORT_MATHEXTRAS_H
      16             : 
      17             : #include "llvm/Support/Compiler.h"
      18             : #include "llvm/Support/SwapByteOrder.h"
      19             : #include <cassert>
      20             : #include <cstring>
      21             : #include <type_traits>
      22             : 
      23             : #ifdef _MSC_VER
      24             : #include <intrin.h>
      25             : #endif
      26             : 
      27             : #ifdef __ANDROID_NDK__
      28             : #include <android/api-level.h>
      29             : #endif
      30             : 
      31             : namespace llvm {
      32             : /// \brief The behavior an operation has on an input of 0.
      33             : enum ZeroBehavior {
      34             :   /// \brief The returned value is undefined.
      35             :   ZB_Undefined,
      36             :   /// \brief The returned value is numeric_limits<T>::max()
      37             :   ZB_Max,
      38             :   /// \brief The returned value is numeric_limits<T>::digits
      39             :   ZB_Width
      40             : };
      41             : 
      42             : namespace detail {
      43             : template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
      44             :   static std::size_t count(T Val, ZeroBehavior) {
      45             :     if (!Val)
      46             :       return std::numeric_limits<T>::digits;
      47             :     if (Val & 0x1)
      48             :       return 0;
      49             : 
      50             :     // Bisection method.
      51             :     std::size_t ZeroBits = 0;
      52             :     T Shift = std::numeric_limits<T>::digits >> 1;
      53             :     T Mask = std::numeric_limits<T>::max() >> Shift;
      54             :     while (Shift) {
      55             :       if ((Val & Mask) == 0) {
      56             :         Val >>= Shift;
      57             :         ZeroBits |= Shift;
      58             :       }
      59             :       Shift >>= 1;
      60             :       Mask >>= Shift;
      61             :     }
      62             :     return ZeroBits;
      63             :   }
      64             : };
      65             : 
      66             : #if __GNUC__ >= 4 || _MSC_VER
      67             : template <typename T> struct TrailingZerosCounter<T, 4> {
      68             :   static std::size_t count(T Val, ZeroBehavior ZB) {
      69             :     if (ZB != ZB_Undefined && Val == 0)
      70             :       return 32;
      71             : 
      72             : #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
      73             :     return __builtin_ctz(Val);
      74             : #elif _MSC_VER
      75             :     unsigned long Index;
      76             :     _BitScanForward(&Index, Val);
      77             :     return Index;
      78             : #endif
      79             :   }
      80             : };
      81             : 
      82             : #if !defined(_MSC_VER) || defined(_M_X64)
      83             : template <typename T> struct TrailingZerosCounter<T, 8> {
      84             :   static std::size_t count(T Val, ZeroBehavior ZB) {
      85             :     if (ZB != ZB_Undefined && Val == 0)
      86             :       return 64;
      87             : 
      88             : #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
      89             :     return __builtin_ctzll(Val);
      90             : #elif _MSC_VER
      91             :     unsigned long Index;
      92             :     _BitScanForward64(&Index, Val);
      93             :     return Index;
      94             : #endif
      95             :   }
      96             : };
      97             : #endif
      98             : #endif
      99             : } // namespace detail
     100             : 
     101             : /// \brief Count number of 0's from the least significant bit to the most
     102             : ///   stopping at the first 1.
     103             : ///
     104             : /// Only unsigned integral types are allowed.
     105             : ///
     106             : /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
     107             : ///   valid arguments.
     108             : template <typename T>
     109             : std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
     110             :   static_assert(std::numeric_limits<T>::is_integer &&
     111             :                     !std::numeric_limits<T>::is_signed,
     112             :                 "Only unsigned integral types are allowed.");
     113             :   return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
     114             : }
     115             : 
     116             : namespace detail {
     117             : template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
     118             :   static std::size_t count(T Val, ZeroBehavior) {
     119             :     if (!Val)
     120             :       return std::numeric_limits<T>::digits;
     121             : 
     122             :     // Bisection method.
     123             :     std::size_t ZeroBits = 0;
     124             :     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
     125             :       T Tmp = Val >> Shift;
     126             :       if (Tmp)
     127             :         Val = Tmp;
     128             :       else
     129             :         ZeroBits |= Shift;
     130             :     }
     131             :     return ZeroBits;
     132             :   }
     133             : };
     134             : 
     135             : #if __GNUC__ >= 4 || _MSC_VER
     136             : template <typename T> struct LeadingZerosCounter<T, 4> {
     137             :   static std::size_t count(T Val, ZeroBehavior ZB) {
     138             :     if (ZB != ZB_Undefined && Val == 0)
     139             :       return 32;
     140             : 
     141             : #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
     142             :     return __builtin_clz(Val);
     143             : #elif _MSC_VER
     144             :     unsigned long Index;
     145             :     _BitScanReverse(&Index, Val);
     146             :     return Index ^ 31;
     147             : #endif
     148             :   }
     149             : };
     150             : 
     151             : #if !defined(_MSC_VER) || defined(_M_X64)
     152             : template <typename T> struct LeadingZerosCounter<T, 8> {
     153             :   static std::size_t count(T Val, ZeroBehavior ZB) {
     154             :     if (ZB != ZB_Undefined && Val == 0)
     155             :       return 64;
     156             : 
     157             : #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
     158             :     return __builtin_clzll(Val);
     159             : #elif _MSC_VER
     160             :     unsigned long Index;
     161             :     _BitScanReverse64(&Index, Val);
     162             :     return Index ^ 63;
     163             : #endif
     164             :   }
     165             : };
     166             : #endif
     167             : #endif
     168             : } // namespace detail
     169             : 
     170             : /// \brief Count number of 0's from the most significant bit to the least
     171             : ///   stopping at the first 1.
     172             : ///
     173             : /// Only unsigned integral types are allowed.
     174             : ///
     175             : /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
     176             : ///   valid arguments.
     177             : template <typename T>
     178             : std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
     179             :   static_assert(std::numeric_limits<T>::is_integer &&
     180             :                     !std::numeric_limits<T>::is_signed,
     181             :                 "Only unsigned integral types are allowed.");
     182             :   return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
     183             : }
     184             : 
     185             : /// \brief Get the index of the first set bit starting from the least
     186             : ///   significant bit.
     187             : ///
     188             : /// Only unsigned integral types are allowed.
     189             : ///
     190             : /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
     191             : ///   valid arguments.
     192             : template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
     193             :   if (ZB == ZB_Max && Val == 0)
     194             :     return std::numeric_limits<T>::max();
     195             : 
     196             :   return countTrailingZeros(Val, ZB_Undefined);
     197             : }
     198             : 
     199             : /// \brief Get the index of the last set bit starting from the least
     200             : ///   significant bit.
     201             : ///
     202             : /// Only unsigned integral types are allowed.
     203             : ///
     204             : /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
     205             : ///   valid arguments.
     206             : template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
     207             :   if (ZB == ZB_Max && Val == 0)
     208             :     return std::numeric_limits<T>::max();
     209             : 
     210             :   // Use ^ instead of - because both gcc and llvm can remove the associated ^
     211             :   // in the __builtin_clz intrinsic on x86.
     212             :   return countLeadingZeros(Val, ZB_Undefined) ^
     213             :          (std::numeric_limits<T>::digits - 1);
     214             : }
     215             : 
     216             : /// \brief Macro compressed bit reversal table for 256 bits.
     217             : ///
     218             : /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
     219             : static const unsigned char BitReverseTable256[256] = {
     220             : #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
     221             : #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
     222             : #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
     223             :   R6(0), R6(2), R6(1), R6(3)
     224             : #undef R2
     225             : #undef R4
     226             : #undef R6
     227             : };
     228             : 
     229             : /// \brief Reverse the bits in \p Val.
     230             : template <typename T>
     231             : T reverseBits(T Val) {
     232             :   unsigned char in[sizeof(Val)];
     233             :   unsigned char out[sizeof(Val)];
     234             :   std::memcpy(in, &Val, sizeof(Val));
     235             :   for (unsigned i = 0; i < sizeof(Val); ++i)
     236             :     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
     237             :   std::memcpy(&Val, out, sizeof(Val));
     238             :   return Val;
     239             : }
     240             : 
     241             : // NOTE: The following support functions use the _32/_64 extensions instead of
     242             : // type overloading so that signed and unsigned integers can be used without
     243             : // ambiguity.
     244             : 
     245             : /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
     246             : inline uint32_t Hi_32(uint64_t Value) {
     247             :   return static_cast<uint32_t>(Value >> 32);
     248             : }
     249             : 
     250             : /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
     251             : inline uint32_t Lo_32(uint64_t Value) {
     252             :   return static_cast<uint32_t>(Value);
     253             : }
     254             : 
     255             : /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
     256             : ///           32-bit integers.
     257             : inline uint64_t Make_64(uint32_t High, uint32_t Low) {
     258             :   return ((uint64_t)High << 32) | (uint64_t)Low;
     259             : }
     260             : 
     261             : /// isInt - Checks if an integer fits into the given bit width.
     262             : template<unsigned N>
     263             : inline bool isInt(int64_t x) {
     264             :   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
     265             : }
     266             : // Template specializations to get better code for common cases.
     267             : template<>
     268             : inline bool isInt<8>(int64_t x) {
     269             :   return static_cast<int8_t>(x) == x;
     270             : }
     271             : template<>
     272             : inline bool isInt<16>(int64_t x) {
     273             :   return static_cast<int16_t>(x) == x;
     274             : }
     275             : template<>
     276             : inline bool isInt<32>(int64_t x) {
     277             :   return static_cast<int32_t>(x) == x;
     278             : }
     279             : 
     280             : /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
     281             : ///                     left by S.
     282             : template<unsigned N, unsigned S>
     283             : inline bool isShiftedInt(int64_t x) {
     284             :   return isInt<N+S>(x) && (x % (1<<S) == 0);
     285             : }
     286             : 
     287             : /// isUInt - Checks if an unsigned integer fits into the given bit width.
     288             : template<unsigned N>
     289             : inline bool isUInt(uint64_t x) {
     290             :   return N >= 64 || x < (UINT64_C(1)<<(N));
     291             : }
     292             : // Template specializations to get better code for common cases.
     293             : template<>
     294             : inline bool isUInt<8>(uint64_t x) {
     295             :   return static_cast<uint8_t>(x) == x;
     296             : }
     297             : template<>
     298             : inline bool isUInt<16>(uint64_t x) {
     299             :   return static_cast<uint16_t>(x) == x;
     300             : }
     301             : template<>
     302             : inline bool isUInt<32>(uint64_t x) {
     303             :   return static_cast<uint32_t>(x) == x;
     304             : }
     305             : 
     306             : /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
     307             : ///                     left by S.
     308             : template<unsigned N, unsigned S>
     309             : inline bool isShiftedUInt(uint64_t x) {
     310             :   return isUInt<N+S>(x) && (x % (1<<S) == 0);
     311             : }
     312             : 
     313             : /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
     314             : /// bit width.
     315             : inline bool isUIntN(unsigned N, uint64_t x) {
     316             :   return x == (x & (~0ULL >> (64 - N)));
     317             : }
     318             : 
     319             : /// isIntN - Checks if an signed integer fits into the given (dynamic)
     320             : /// bit width.
     321             : inline bool isIntN(unsigned N, int64_t x) {
     322             :   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
     323             : }
     324             : 
     325             : /// isMask_32 - This function returns true if the argument is a non-empty
     326             : /// sequence of ones starting at the least significant bit with the remainder
     327             : /// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true.
     328             : inline bool isMask_32(uint32_t Value) {
     329             :   return Value && ((Value + 1) & Value) == 0;
     330             : }
     331             : 
     332             : /// isMask_64 - This function returns true if the argument is a non-empty
     333             : /// sequence of ones starting at the least significant bit with the remainder
     334             : /// zero (64 bit version).
     335             : inline bool isMask_64(uint64_t Value) {
     336             :   return Value && ((Value + 1) & Value) == 0;
     337             : }
     338             : 
     339             : /// isShiftedMask_32 - This function returns true if the argument contains a
     340             : /// non-empty sequence of ones with the remainder zero (32 bit version.)
     341             : /// Ex. isShiftedMask_32(0x0000FF00U) == true.
     342             : inline bool isShiftedMask_32(uint32_t Value) {
     343             :   return Value && isMask_32((Value - 1) | Value);
     344             : }
     345             : 
     346             : /// isShiftedMask_64 - This function returns true if the argument contains a
     347             : /// non-empty sequence of ones with the remainder zero (64 bit version.)
     348             : inline bool isShiftedMask_64(uint64_t Value) {
     349             :   return Value && isMask_64((Value - 1) | Value);
     350             : }
     351             : 
     352             : /// isPowerOf2_32 - This function returns true if the argument is a power of
     353             : /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
     354             : inline bool isPowerOf2_32(uint32_t Value) {
     355             :   return Value && !(Value & (Value - 1));
     356             : }
     357             : 
     358             : /// isPowerOf2_64 - This function returns true if the argument is a power of two
     359             : /// > 0 (64 bit edition.)
     360             : inline bool isPowerOf2_64(uint64_t Value) {
     361           0 :   return Value && !(Value & (Value - int64_t(1L)));
     362             : }
     363             : 
     364             : /// ByteSwap_16 - This function returns a byte-swapped representation of the
     365             : /// 16-bit argument, Value.
     366             : inline uint16_t ByteSwap_16(uint16_t Value) {
     367             :   return sys::SwapByteOrder_16(Value);
     368             : }
     369             : 
     370             : /// ByteSwap_32 - This function returns a byte-swapped representation of the
     371             : /// 32-bit argument, Value.
     372             : inline uint32_t ByteSwap_32(uint32_t Value) {
     373             :   return sys::SwapByteOrder_32(Value);
     374             : }
     375             : 
     376             : /// ByteSwap_64 - This function returns a byte-swapped representation of the
     377             : /// 64-bit argument, Value.
     378             : inline uint64_t ByteSwap_64(uint64_t Value) {
     379             :   return sys::SwapByteOrder_64(Value);
     380             : }
     381             : 
     382             : /// \brief Count the number of ones from the most significant bit to the first
     383             : /// zero bit.
     384             : ///
     385             : /// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
     386             : /// Only unsigned integral types are allowed.
     387             : ///
     388             : /// \param ZB the behavior on an input of all ones. Only ZB_Width and
     389             : /// ZB_Undefined are valid arguments.
     390             : template <typename T>
     391             : std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
     392             :   static_assert(std::numeric_limits<T>::is_integer &&
     393             :                     !std::numeric_limits<T>::is_signed,
     394             :                 "Only unsigned integral types are allowed.");
     395             :   return countLeadingZeros(~Value, ZB);
     396             : }
     397             : 
     398             : /// \brief Count the number of ones from the least significant bit to the first
     399             : /// zero bit.
     400             : ///
     401             : /// Ex. countTrailingOnes(0x00FF00FF) == 8.
     402             : /// Only unsigned integral types are allowed.
     403             : ///
     404             : /// \param ZB the behavior on an input of all ones. Only ZB_Width and
     405             : /// ZB_Undefined are valid arguments.
     406             : template <typename T>
     407             : std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
     408             :   static_assert(std::numeric_limits<T>::is_integer &&
     409             :                     !std::numeric_limits<T>::is_signed,
     410             :                 "Only unsigned integral types are allowed.");
     411             :   return countTrailingZeros(~Value, ZB);
     412             : }
     413             : 
     414             : namespace detail {
     415             : template <typename T, std::size_t SizeOfT> struct PopulationCounter {
     416             :   static unsigned count(T Value) {
     417             :     // Generic version, forward to 32 bits.
     418             :     static_assert(SizeOfT <= 4, "Not implemented!");
     419             : #if __GNUC__ >= 4
     420             :     return __builtin_popcount(Value);
     421             : #else
     422             :     uint32_t v = Value;
     423             :     v = v - ((v >> 1) & 0x55555555);
     424             :     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
     425             :     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
     426             : #endif
     427             :   }
     428             : };
     429             : 
     430             : template <typename T> struct PopulationCounter<T, 8> {
     431             :   static unsigned count(T Value) {
     432             : #if __GNUC__ >= 4
     433             :     return __builtin_popcountll(Value);
     434             : #else
     435             :     uint64_t v = Value;
     436             :     v = v - ((v >> 1) & 0x5555555555555555ULL);
     437             :     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
     438             :     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
     439             :     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
     440             : #endif
     441             :   }
     442             : };
     443             : } // namespace detail
     444             : 
     445             : /// \brief Count the number of set bits in a value.
     446             : /// Ex. countPopulation(0xF000F000) = 8
     447             : /// Returns 0 if the word is zero.
     448             : template <typename T>
     449             : inline unsigned countPopulation(T Value) {
     450             :   static_assert(std::numeric_limits<T>::is_integer &&
     451             :                     !std::numeric_limits<T>::is_signed,
     452             :                 "Only unsigned integral types are allowed.");
     453             :   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
     454             : }
     455             : 
     456             : /// Log2 - This function returns the log base 2 of the specified value
     457             : inline double Log2(double Value) {
     458             : #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
     459             :   return __builtin_log(Value) / __builtin_log(2.0);
     460             : #else
     461             :   return log2(Value);
     462             : #endif
     463             : }
     464             : 
     465             : /// Log2_32 - This function returns the floor log base 2 of the specified value,
     466             : /// -1 if the value is zero. (32 bit edition.)
     467             : /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
     468             : inline unsigned Log2_32(uint32_t Value) {
     469             :   return 31 - countLeadingZeros(Value);
     470             : }
     471             : 
     472             : /// Log2_64 - This function returns the floor log base 2 of the specified value,
     473             : /// -1 if the value is zero. (64 bit edition.)
     474             : inline unsigned Log2_64(uint64_t Value) {
     475             :   return 63 - countLeadingZeros(Value);
     476             : }
     477             : 
     478             : /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
     479             : /// value, 32 if the value is zero. (32 bit edition).
     480             : /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
     481             : inline unsigned Log2_32_Ceil(uint32_t Value) {
     482             :   return 32 - countLeadingZeros(Value - 1);
     483             : }
     484             : 
     485             : /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
     486             : /// value, 64 if the value is zero. (64 bit edition.)
     487             : inline unsigned Log2_64_Ceil(uint64_t Value) {
     488             :   return 64 - countLeadingZeros(Value - 1);
     489             : }
     490             : 
     491             : /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
     492             : /// values using Euclid's algorithm.
     493             : inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
     494             :   while (B) {
     495             :     uint64_t T = B;
     496             :     B = A % B;
     497             :     A = T;
     498             :   }
     499             :   return A;
     500             : }
     501             : 
     502             : /// BitsToDouble - This function takes a 64-bit integer and returns the bit
     503             : /// equivalent double.
     504             : inline double BitsToDouble(uint64_t Bits) {
     505             :   union {
     506             :     uint64_t L;
     507             :     double D;
     508             :   } T;
     509             :   T.L = Bits;
     510             :   return T.D;
     511             : }
     512             : 
     513             : /// BitsToFloat - This function takes a 32-bit integer and returns the bit
     514             : /// equivalent float.
     515             : inline float BitsToFloat(uint32_t Bits) {
     516             :   union {
     517             :     uint32_t I;
     518             :     float F;
     519             :   } T;
     520             :   T.I = Bits;
     521             :   return T.F;
     522             : }
     523             : 
     524             : /// DoubleToBits - This function takes a double and returns the bit
     525             : /// equivalent 64-bit integer.  Note that copying doubles around
     526             : /// changes the bits of NaNs on some hosts, notably x86, so this
     527             : /// routine cannot be used if these bits are needed.
     528             : inline uint64_t DoubleToBits(double Double) {
     529             :   union {
     530             :     uint64_t L;
     531             :     double D;
     532             :   } T;
     533             :   T.D = Double;
     534             :   return T.L;
     535             : }
     536             : 
     537             : /// FloatToBits - This function takes a float and returns the bit
     538             : /// equivalent 32-bit integer.  Note that copying floats around
     539             : /// changes the bits of NaNs on some hosts, notably x86, so this
     540             : /// routine cannot be used if these bits are needed.
     541             : inline uint32_t FloatToBits(float Float) {
     542             :   union {
     543             :     uint32_t I;
     544             :     float F;
     545             :   } T;
     546             :   T.F = Float;
     547             :   return T.I;
     548             : }
     549             : 
     550             : /// MinAlign - A and B are either alignments or offsets.  Return the minimum
     551             : /// alignment that may be assumed after adding the two together.
     552             : inline uint64_t MinAlign(uint64_t A, uint64_t B) {
     553             :   // The largest power of 2 that divides both A and B.
     554             :   //
     555             :   // Replace "-Value" by "1+~Value" in the following commented code to avoid 
     556             :   // MSVC warning C4146
     557             :   //    return (A | B) & -(A | B);
     558             :   return (A | B) & (1 + ~(A | B));
     559             : }
     560             : 
     561             : /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
     562             : ///
     563             : /// Alignment should be a power of two.  This method rounds up, so
     564             : /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
     565             : inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
     566           0 :   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
     567             :          "Alignment is not a power of two!");
     568             : 
     569           0 :   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
     570             : 
     571           0 :   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
     572             : }
     573             : 
     574             : /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
     575             : /// bytes, rounding up.
     576             : inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
     577           0 :   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
     578             : }
     579             : 
     580             : /// NextPowerOf2 - Returns the next power of two (in 64-bits)
     581             : /// that is strictly greater than A.  Returns zero on overflow.
     582             : inline uint64_t NextPowerOf2(uint64_t A) {
     583             :   A |= (A >> 1);
     584             :   A |= (A >> 2);
     585             :   A |= (A >> 4);
     586             :   A |= (A >> 8);
     587             :   A |= (A >> 16);
     588             :   A |= (A >> 32);
     589             :   return A + 1;
     590             : }
     591             : 
     592             : /// Returns the power of two which is less than or equal to the given value.
     593             : /// Essentially, it is a floor operation across the domain of powers of two.
     594             : inline uint64_t PowerOf2Floor(uint64_t A) {
     595             :   if (!A) return 0;
     596             :   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
     597             : }
     598             : 
     599             : /// Returns the next integer (mod 2**64) that is greater than or equal to
     600             : /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
     601             : ///
     602             : /// Examples:
     603             : /// \code
     604             : ///   RoundUpToAlignment(5, 8) = 8
     605             : ///   RoundUpToAlignment(17, 8) = 24
     606             : ///   RoundUpToAlignment(~0LL, 8) = 0
     607             : ///   RoundUpToAlignment(321, 255) = 510
     608             : /// \endcode
     609             : inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
     610          63 :   return (Value + Align - 1) / Align * Align;
     611             : }
     612             : 
     613             : /// Returns the offset to the next integer (mod 2**64) that is greater than
     614             : /// or equal to \p Value and is a multiple of \p Align. \p Align must be
     615             : /// non-zero.
     616             : inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
     617             :   return RoundUpToAlignment(Value, Align) - Value;
     618             : }
     619             : 
     620             : /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
     621             : /// Usage int32_t r = SignExtend32<5>(x);
     622             : template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
     623             :   return int32_t(x << (32 - B)) >> (32 - B);
     624             : }
     625             : 
     626             : /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
     627             : /// Requires 0 < B <= 32.
     628             : inline int32_t SignExtend32(uint32_t X, unsigned B) {
     629             :   return int32_t(X << (32 - B)) >> (32 - B);
     630             : }
     631             : 
     632             : /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
     633             : /// Usage int64_t r = SignExtend64<5>(x);
     634             : template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
     635             :   return int64_t(x << (64 - B)) >> (64 - B);
     636             : }
     637             : 
     638             : /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
     639             : /// Requires 0 < B <= 64.
     640             : inline int64_t SignExtend64(uint64_t X, unsigned B) {
     641             :   return int64_t(X << (64 - B)) >> (64 - B);
     642             : }
     643             : 
     644             : extern const float huge_valf;
     645             : } // End llvm namespace
     646             : 
     647             : #endif

Generated by: LCOV version 1.11