LCOV - code coverage report
Current view: top level - llvm/Support - Allocator.h (source / functions) Hit Total Coverage
Test: clang.info Lines: 2 33 6.1 %
Date: 2016-01-31 12:01:00 Functions: 1 5 20.0 %

          Line data    Source code
       1             : //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : /// \file
      10             : ///
      11             : /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
      12             : /// of these conform to an LLVM "Allocator" concept which consists of an
      13             : /// Allocate method accepting a size and alignment, and a Deallocate accepting
      14             : /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
      15             : /// Allocate and Deallocate for setting size and alignment based on the final
      16             : /// type. These overloads are typically provided by a base class template \c
      17             : /// AllocatorBase.
      18             : ///
      19             : //===----------------------------------------------------------------------===//
      20             : 
      21             : #ifndef LLVM_SUPPORT_ALLOCATOR_H
      22             : #define LLVM_SUPPORT_ALLOCATOR_H
      23             : 
      24             : #include "llvm/ADT/SmallVector.h"
      25             : #include "llvm/Support/AlignOf.h"
      26             : #include "llvm/Support/DataTypes.h"
      27             : #include "llvm/Support/MathExtras.h"
      28             : #include "llvm/Support/Memory.h"
      29             : #include <algorithm>
      30             : #include <cassert>
      31             : #include <cstddef>
      32             : #include <cstdlib>
      33             : 
      34             : namespace llvm {
      35             : 
      36             : /// \brief CRTP base class providing obvious overloads for the core \c
      37             : /// Allocate() methods of LLVM-style allocators.
      38             : ///
      39             : /// This base class both documents the full public interface exposed by all
      40             : /// LLVM-style allocators, and redirects all of the overloads to a single core
      41             : /// set of methods which the derived class must define.
      42             : template <typename DerivedT> class AllocatorBase {
      43             : public:
      44             :   /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
      45             :   /// must be implemented by \c DerivedT.
      46             :   void *Allocate(size_t Size, size_t Alignment) {
      47             : #ifdef __clang__
      48             :     static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
      49             :                       &AllocatorBase::Allocate) !=
      50             :                       static_cast<void *(DerivedT::*)(size_t, size_t)>(
      51             :                           &DerivedT::Allocate),
      52             :                   "Class derives from AllocatorBase without implementing the "
      53             :                   "core Allocate(size_t, size_t) overload!");
      54             : #endif
      55             :     return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
      56             :   }
      57             : 
      58             :   /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
      59             :   /// allocator.
      60             :   void Deallocate(const void *Ptr, size_t Size) {
      61             : #ifdef __clang__
      62             :     static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
      63             :                       &AllocatorBase::Deallocate) !=
      64             :                       static_cast<void (DerivedT::*)(const void *, size_t)>(
      65             :                           &DerivedT::Deallocate),
      66             :                   "Class derives from AllocatorBase without implementing the "
      67             :                   "core Deallocate(void *) overload!");
      68             : #endif
      69             :     return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
      70             :   }
      71             : 
      72             :   // The rest of these methods are helpers that redirect to one of the above
      73             :   // core methods.
      74             : 
      75             :   /// \brief Allocate space for a sequence of objects without constructing them.
      76             :   template <typename T> T *Allocate(size_t Num = 1) {
      77             :     return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
      78             :   }
      79             : 
      80             :   /// \brief Deallocate space for a sequence of objects without constructing them.
      81             :   template <typename T>
      82             :   typename std::enable_if<
      83             :       !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
      84             :   Deallocate(T *Ptr, size_t Num = 1) {
      85             :     Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
      86             :   }
      87             : };
      88             : 
      89             : class MallocAllocator : public AllocatorBase<MallocAllocator> {
      90             : public:
      91             :   void Reset() {}
      92             : 
      93             :   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
      94             :                                                 size_t /*Alignment*/) {
      95           0 :     return malloc(Size);
      96             :   }
      97             : 
      98             :   // Pull in base class overloads.
      99             :   using AllocatorBase<MallocAllocator>::Allocate;
     100             : 
     101             :   void Deallocate(const void *Ptr, size_t /*Size*/) {
     102          24 :     free(const_cast<void *>(Ptr));
     103          24 :   }
     104             : 
     105             :   // Pull in base class overloads.
     106             :   using AllocatorBase<MallocAllocator>::Deallocate;
     107             : 
     108             :   void PrintStats() const {}
     109             : };
     110             : 
     111             : namespace detail {
     112             : 
     113             : // We call out to an external function to actually print the message as the
     114             : // printing code uses Allocator.h in its implementation.
     115             : void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
     116             :                                 size_t TotalMemory);
     117             : } // End namespace detail.
     118             : 
     119             : /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
     120             : ///
     121             : /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
     122             : /// memory rather than relying on a boundless contiguous heap. However, it has
     123             : /// bump-pointer semantics in that it is a monotonically growing pool of memory
     124             : /// where every allocation is found by merely allocating the next N bytes in
     125             : /// the slab, or the next N bytes in the next slab.
     126             : ///
     127             : /// Note that this also has a threshold for forcing allocations above a certain
     128             : /// size into their own slab.
     129             : ///
     130             : /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
     131             : /// object, which wraps malloc, to allocate memory, but it can be changed to
     132             : /// use a custom allocator.
     133             : template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
     134             :           size_t SizeThreshold = SlabSize>
     135             : class BumpPtrAllocatorImpl
     136             :     : public AllocatorBase<
     137             :           BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
     138             : public:
     139             :   static_assert(SizeThreshold <= SlabSize,
     140             :                 "The SizeThreshold must be at most the SlabSize to ensure "
     141             :                 "that objects larger than a slab go into their own memory "
     142             :                 "allocation.");
     143             : 
     144             :   BumpPtrAllocatorImpl()
     145             :       : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
     146             :   template <typename T>
     147             :   BumpPtrAllocatorImpl(T &&Allocator)
     148             :       : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
     149             :         Allocator(std::forward<T &&>(Allocator)) {}
     150             : 
     151             :   // Manually implement a move constructor as we must clear the old allocator's
     152             :   // slabs as a matter of correctness.
     153             :   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
     154             :       : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
     155             :         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
     156             :         BytesAllocated(Old.BytesAllocated),
     157             :         Allocator(std::move(Old.Allocator)) {
     158             :     Old.CurPtr = Old.End = nullptr;
     159             :     Old.BytesAllocated = 0;
     160             :     Old.Slabs.clear();
     161             :     Old.CustomSizedSlabs.clear();
     162             :   }
     163             : 
     164             :   ~BumpPtrAllocatorImpl() {
     165             :     DeallocateSlabs(Slabs.begin(), Slabs.end());
     166             :     DeallocateCustomSizedSlabs();
     167             :   }
     168             : 
     169             :   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
     170             :     DeallocateSlabs(Slabs.begin(), Slabs.end());
     171             :     DeallocateCustomSizedSlabs();
     172             : 
     173             :     CurPtr = RHS.CurPtr;
     174             :     End = RHS.End;
     175             :     BytesAllocated = RHS.BytesAllocated;
     176             :     Slabs = std::move(RHS.Slabs);
     177             :     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
     178             :     Allocator = std::move(RHS.Allocator);
     179             : 
     180             :     RHS.CurPtr = RHS.End = nullptr;
     181             :     RHS.BytesAllocated = 0;
     182             :     RHS.Slabs.clear();
     183             :     RHS.CustomSizedSlabs.clear();
     184             :     return *this;
     185             :   }
     186             : 
     187             :   /// \brief Deallocate all but the current slab and reset the current pointer
     188             :   /// to the beginning of it, freeing all memory allocated so far.
     189             :   void Reset() {
     190             :     DeallocateCustomSizedSlabs();
     191             :     CustomSizedSlabs.clear();
     192             : 
     193             :     if (Slabs.empty())
     194             :       return;
     195             : 
     196             :     // Reset the state.
     197             :     BytesAllocated = 0;
     198             :     CurPtr = (char *)Slabs.front();
     199             :     End = CurPtr + SlabSize;
     200             : 
     201             :     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
     202             :     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
     203             :     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
     204             :   }
     205             : 
     206             :   /// \brief Allocate space at the specified alignment.
     207             :   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
     208             :   Allocate(size_t Size, size_t Alignment) {
     209           0 :     assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
     210             : 
     211             :     // Keep track of how many bytes we've allocated.
     212           0 :     BytesAllocated += Size;
     213             : 
     214           0 :     size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
     215           0 :     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
     216             : 
     217             :     // Check if we have enough space.
     218           0 :     if (Adjustment + Size <= size_t(End - CurPtr)) {
     219           0 :       char *AlignedPtr = CurPtr + Adjustment;
     220           0 :       CurPtr = AlignedPtr + Size;
     221             :       // Update the allocation point of this memory block in MemorySanitizer.
     222             :       // Without this, MemorySanitizer messages for values originated from here
     223             :       // will point to the allocation of the entire slab.
     224             :       __msan_allocated_memory(AlignedPtr, Size);
     225           0 :       return AlignedPtr;
     226             :     }
     227             : 
     228             :     // If Size is really big, allocate a separate slab for it.
     229           0 :     size_t PaddedSize = Size + Alignment - 1;
     230           0 :     if (PaddedSize > SizeThreshold) {
     231           0 :       void *NewSlab = Allocator.Allocate(PaddedSize, 0);
     232           0 :       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
     233             : 
     234           0 :       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
     235           0 :       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
     236           0 :       char *AlignedPtr = (char*)AlignedAddr;
     237             :       __msan_allocated_memory(AlignedPtr, Size);
     238           0 :       return AlignedPtr;
     239             :     }
     240             : 
     241             :     // Otherwise, start a new slab and try again.
     242           0 :     StartNewSlab();
     243           0 :     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
     244           0 :     assert(AlignedAddr + Size <= (uintptr_t)End &&
     245             :            "Unable to allocate memory!");
     246           0 :     char *AlignedPtr = (char*)AlignedAddr;
     247           0 :     CurPtr = AlignedPtr + Size;
     248             :     __msan_allocated_memory(AlignedPtr, Size);
     249           0 :     return AlignedPtr;
     250           0 :   }
     251             : 
     252             :   // Pull in base class overloads.
     253             :   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
     254             : 
     255             :   void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {}
     256             : 
     257             :   // Pull in base class overloads.
     258             :   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
     259             : 
     260             :   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
     261             : 
     262             :   size_t getTotalMemory() const {
     263             :     size_t TotalMemory = 0;
     264             :     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
     265             :       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
     266             :     for (auto &PtrAndSize : CustomSizedSlabs)
     267             :       TotalMemory += PtrAndSize.second;
     268             :     return TotalMemory;
     269             :   }
     270             : 
     271             :   void PrintStats() const {
     272             :     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
     273             :                                        getTotalMemory());
     274             :   }
     275             : 
     276             : private:
     277             :   /// \brief The current pointer into the current slab.
     278             :   ///
     279             :   /// This points to the next free byte in the slab.
     280             :   char *CurPtr;
     281             : 
     282             :   /// \brief The end of the current slab.
     283             :   char *End;
     284             : 
     285             :   /// \brief The slabs allocated so far.
     286             :   SmallVector<void *, 4> Slabs;
     287             : 
     288             :   /// \brief Custom-sized slabs allocated for too-large allocation requests.
     289             :   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
     290             : 
     291             :   /// \brief How many bytes we've allocated.
     292             :   ///
     293             :   /// Used so that we can compute how much space was wasted.
     294             :   size_t BytesAllocated;
     295             : 
     296             :   /// \brief The allocator instance we use to get slabs of memory.
     297             :   AllocatorT Allocator;
     298             : 
     299             :   static size_t computeSlabSize(unsigned SlabIdx) {
     300             :     // Scale the actual allocated slab size based on the number of slabs
     301             :     // allocated. Every 128 slabs allocated, we double the allocated size to
     302             :     // reduce allocation frequency, but saturate at multiplying the slab size by
     303             :     // 2^30.
     304           0 :     return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
     305             :   }
     306             : 
     307             :   /// \brief Allocate a new slab and move the bump pointers over into the new
     308             :   /// slab, modifying CurPtr and End.
     309             :   void StartNewSlab() {
     310           0 :     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
     311             : 
     312           0 :     void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
     313           0 :     Slabs.push_back(NewSlab);
     314           0 :     CurPtr = (char *)(NewSlab);
     315           0 :     End = ((char *)NewSlab) + AllocatedSlabSize;
     316           0 :   }
     317             : 
     318             :   /// \brief Deallocate a sequence of slabs.
     319             :   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
     320             :                        SmallVectorImpl<void *>::iterator E) {
     321             :     for (; I != E; ++I) {
     322             :       size_t AllocatedSlabSize =
     323             :           computeSlabSize(std::distance(Slabs.begin(), I));
     324             :       Allocator.Deallocate(*I, AllocatedSlabSize);
     325             :     }
     326             :   }
     327             : 
     328             :   /// \brief Deallocate all memory for custom sized slabs.
     329             :   void DeallocateCustomSizedSlabs() {
     330             :     for (auto &PtrAndSize : CustomSizedSlabs) {
     331             :       void *Ptr = PtrAndSize.first;
     332             :       size_t Size = PtrAndSize.second;
     333             :       Allocator.Deallocate(Ptr, Size);
     334             :     }
     335             :   }
     336             : 
     337             :   template <typename T> friend class SpecificBumpPtrAllocator;
     338             : };
     339             : 
     340             : /// \brief The standard BumpPtrAllocator which just uses the default template
     341             : /// paramaters.
     342             : typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
     343             : 
     344             : /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
     345             : /// allocated.
     346             : ///
     347             : /// This allows calling the destructor in DestroyAll() and when the allocator is
     348             : /// destroyed.
     349             : template <typename T> class SpecificBumpPtrAllocator {
     350             :   BumpPtrAllocator Allocator;
     351             : 
     352             : public:
     353             :   SpecificBumpPtrAllocator() : Allocator() {}
     354             :   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
     355             :       : Allocator(std::move(Old.Allocator)) {}
     356             :   ~SpecificBumpPtrAllocator() { DestroyAll(); }
     357             : 
     358             :   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
     359             :     Allocator = std::move(RHS.Allocator);
     360             :     return *this;
     361             :   }
     362             : 
     363             :   /// Call the destructor of each allocated object and deallocate all but the
     364             :   /// current slab and reset the current pointer to the beginning of it, freeing
     365             :   /// all memory allocated so far.
     366             :   void DestroyAll() {
     367             :     auto DestroyElements = [](char *Begin, char *End) {
     368             :       assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
     369             :       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
     370             :         reinterpret_cast<T *>(Ptr)->~T();
     371             :     };
     372             : 
     373             :     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
     374             :          ++I) {
     375             :       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
     376             :           std::distance(Allocator.Slabs.begin(), I));
     377             :       char *Begin = (char*)alignAddr(*I, alignOf<T>());
     378             :       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
     379             :                                                : (char *)*I + AllocatedSlabSize;
     380             : 
     381             :       DestroyElements(Begin, End);
     382             :     }
     383             : 
     384             :     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
     385             :       void *Ptr = PtrAndSize.first;
     386             :       size_t Size = PtrAndSize.second;
     387             :       DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
     388             :     }
     389             : 
     390             :     Allocator.Reset();
     391             :   }
     392             : 
     393             :   /// \brief Allocate space for an array of objects without constructing them.
     394             :   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
     395             : };
     396             : 
     397             : }  // end namespace llvm
     398             : 
     399             : template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
     400             : void *operator new(size_t Size,
     401             :                    llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
     402             :                                               SizeThreshold> &Allocator) {
     403             :   struct S {
     404             :     char c;
     405             :     union {
     406             :       double D;
     407             :       long double LD;
     408             :       long long L;
     409             :       void *P;
     410             :     } x;
     411             :   };
     412             :   return Allocator.Allocate(
     413             :       Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
     414             : }
     415             : 
     416             : template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
     417             : void operator delete(
     418             :     void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
     419             : }
     420             : 
     421             : #endif // LLVM_SUPPORT_ALLOCATOR_H

Generated by: LCOV version 1.11