Line data Source code
1 : //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file defines the Expr interface and subclasses.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #ifndef LLVM_CLANG_AST_EXPR_H
15 : #define LLVM_CLANG_AST_EXPR_H
16 :
17 : #include "clang/AST/APValue.h"
18 : #include "clang/AST/ASTVector.h"
19 : #include "clang/AST/Decl.h"
20 : #include "clang/AST/DeclAccessPair.h"
21 : #include "clang/AST/OperationKinds.h"
22 : #include "clang/AST/Stmt.h"
23 : #include "clang/AST/TemplateBase.h"
24 : #include "clang/AST/Type.h"
25 : #include "clang/Basic/CharInfo.h"
26 : #include "clang/Basic/TypeTraits.h"
27 : #include "llvm/ADT/APFloat.h"
28 : #include "llvm/ADT/APSInt.h"
29 : #include "llvm/ADT/SmallVector.h"
30 : #include "llvm/ADT/StringRef.h"
31 : #include "llvm/Support/Compiler.h"
32 :
33 : namespace clang {
34 : class APValue;
35 : class ASTContext;
36 : class BlockDecl;
37 : class CXXBaseSpecifier;
38 : class CXXMemberCallExpr;
39 : class CXXOperatorCallExpr;
40 : class CastExpr;
41 : class Decl;
42 : class IdentifierInfo;
43 : class MaterializeTemporaryExpr;
44 : class NamedDecl;
45 : class ObjCPropertyRefExpr;
46 : class OpaqueValueExpr;
47 : class ParmVarDecl;
48 : class StringLiteral;
49 : class TargetInfo;
50 : class ValueDecl;
51 :
52 : /// \brief A simple array of base specifiers.
53 : typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
54 :
55 : /// \brief An adjustment to be made to the temporary created when emitting a
56 : /// reference binding, which accesses a particular subobject of that temporary.
57 : struct SubobjectAdjustment {
58 : enum {
59 : DerivedToBaseAdjustment,
60 : FieldAdjustment,
61 : MemberPointerAdjustment
62 : } Kind;
63 :
64 :
65 : struct DTB {
66 : const CastExpr *BasePath;
67 : const CXXRecordDecl *DerivedClass;
68 : };
69 :
70 : struct P {
71 : const MemberPointerType *MPT;
72 : Expr *RHS;
73 : };
74 :
75 : union {
76 : struct DTB DerivedToBase;
77 : FieldDecl *Field;
78 : struct P Ptr;
79 : };
80 :
81 : SubobjectAdjustment(const CastExpr *BasePath,
82 : const CXXRecordDecl *DerivedClass)
83 : : Kind(DerivedToBaseAdjustment) {
84 : DerivedToBase.BasePath = BasePath;
85 : DerivedToBase.DerivedClass = DerivedClass;
86 : }
87 :
88 : SubobjectAdjustment(FieldDecl *Field)
89 : : Kind(FieldAdjustment) {
90 : this->Field = Field;
91 : }
92 :
93 : SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
94 : : Kind(MemberPointerAdjustment) {
95 : this->Ptr.MPT = MPT;
96 : this->Ptr.RHS = RHS;
97 : }
98 : };
99 :
100 : /// Expr - This represents one expression. Note that Expr's are subclasses of
101 : /// Stmt. This allows an expression to be transparently used any place a Stmt
102 : /// is required.
103 : ///
104 : class Expr : public Stmt {
105 : QualType TR;
106 :
107 : protected:
108 : Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
109 : bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
110 : : Stmt(SC)
111 : {
112 : ExprBits.TypeDependent = TD;
113 : ExprBits.ValueDependent = VD;
114 : ExprBits.InstantiationDependent = ID;
115 : ExprBits.ValueKind = VK;
116 : ExprBits.ObjectKind = OK;
117 : ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
118 : setType(T);
119 : }
120 :
121 : /// \brief Construct an empty expression.
122 : explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
123 :
124 : public:
125 2 : QualType getType() const { return TR; }
126 : void setType(QualType t) {
127 : // In C++, the type of an expression is always adjusted so that it
128 : // will not have reference type (C++ [expr]p6). Use
129 : // QualType::getNonReferenceType() to retrieve the non-reference
130 : // type. Additionally, inspect Expr::isLvalue to determine whether
131 : // an expression that is adjusted in this manner should be
132 : // considered an lvalue.
133 : assert((t.isNull() || !t->isReferenceType()) &&
134 : "Expressions can't have reference type");
135 :
136 : TR = t;
137 : }
138 :
139 : /// isValueDependent - Determines whether this expression is
140 : /// value-dependent (C++ [temp.dep.constexpr]). For example, the
141 : /// array bound of "Chars" in the following example is
142 : /// value-dependent.
143 : /// @code
144 : /// template<int Size, char (&Chars)[Size]> struct meta_string;
145 : /// @endcode
146 : bool isValueDependent() const { return ExprBits.ValueDependent; }
147 :
148 : /// \brief Set whether this expression is value-dependent or not.
149 : void setValueDependent(bool VD) {
150 : ExprBits.ValueDependent = VD;
151 : if (VD)
152 : ExprBits.InstantiationDependent = true;
153 : }
154 :
155 : /// isTypeDependent - Determines whether this expression is
156 : /// type-dependent (C++ [temp.dep.expr]), which means that its type
157 : /// could change from one template instantiation to the next. For
158 : /// example, the expressions "x" and "x + y" are type-dependent in
159 : /// the following code, but "y" is not type-dependent:
160 : /// @code
161 : /// template<typename T>
162 : /// void add(T x, int y) {
163 : /// x + y;
164 : /// }
165 : /// @endcode
166 : bool isTypeDependent() const { return ExprBits.TypeDependent; }
167 :
168 : /// \brief Set whether this expression is type-dependent or not.
169 : void setTypeDependent(bool TD) {
170 : ExprBits.TypeDependent = TD;
171 : if (TD)
172 : ExprBits.InstantiationDependent = true;
173 : }
174 :
175 : /// \brief Whether this expression is instantiation-dependent, meaning that
176 : /// it depends in some way on a template parameter, even if neither its type
177 : /// nor (constant) value can change due to the template instantiation.
178 : ///
179 : /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
180 : /// instantiation-dependent (since it involves a template parameter \c T), but
181 : /// is neither type- nor value-dependent, since the type of the inner
182 : /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
183 : /// \c sizeof is known.
184 : ///
185 : /// \code
186 : /// template<typename T>
187 : /// void f(T x, T y) {
188 : /// sizeof(sizeof(T() + T());
189 : /// }
190 : /// \endcode
191 : ///
192 : bool isInstantiationDependent() const {
193 : return ExprBits.InstantiationDependent;
194 : }
195 :
196 : /// \brief Set whether this expression is instantiation-dependent or not.
197 : void setInstantiationDependent(bool ID) {
198 : ExprBits.InstantiationDependent = ID;
199 : }
200 :
201 : /// \brief Whether this expression contains an unexpanded parameter
202 : /// pack (for C++11 variadic templates).
203 : ///
204 : /// Given the following function template:
205 : ///
206 : /// \code
207 : /// template<typename F, typename ...Types>
208 : /// void forward(const F &f, Types &&...args) {
209 : /// f(static_cast<Types&&>(args)...);
210 : /// }
211 : /// \endcode
212 : ///
213 : /// The expressions \c args and \c static_cast<Types&&>(args) both
214 : /// contain parameter packs.
215 : bool containsUnexpandedParameterPack() const {
216 : return ExprBits.ContainsUnexpandedParameterPack;
217 : }
218 :
219 : /// \brief Set the bit that describes whether this expression
220 : /// contains an unexpanded parameter pack.
221 : void setContainsUnexpandedParameterPack(bool PP = true) {
222 : ExprBits.ContainsUnexpandedParameterPack = PP;
223 : }
224 :
225 : /// getExprLoc - Return the preferred location for the arrow when diagnosing
226 : /// a problem with a generic expression.
227 : SourceLocation getExprLoc() const LLVM_READONLY;
228 :
229 : /// isUnusedResultAWarning - Return true if this immediate expression should
230 : /// be warned about if the result is unused. If so, fill in expr, location,
231 : /// and ranges with expr to warn on and source locations/ranges appropriate
232 : /// for a warning.
233 : bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
234 : SourceRange &R1, SourceRange &R2,
235 : ASTContext &Ctx) const;
236 :
237 : /// isLValue - True if this expression is an "l-value" according to
238 : /// the rules of the current language. C and C++ give somewhat
239 : /// different rules for this concept, but in general, the result of
240 : /// an l-value expression identifies a specific object whereas the
241 : /// result of an r-value expression is a value detached from any
242 : /// specific storage.
243 : ///
244 : /// C++11 divides the concept of "r-value" into pure r-values
245 : /// ("pr-values") and so-called expiring values ("x-values"), which
246 : /// identify specific objects that can be safely cannibalized for
247 : /// their resources. This is an unfortunate abuse of terminology on
248 : /// the part of the C++ committee. In Clang, when we say "r-value",
249 : /// we generally mean a pr-value.
250 : bool isLValue() const { return getValueKind() == VK_LValue; }
251 : bool isRValue() const { return getValueKind() == VK_RValue; }
252 : bool isXValue() const { return getValueKind() == VK_XValue; }
253 : bool isGLValue() const { return getValueKind() != VK_RValue; }
254 :
255 : enum LValueClassification {
256 : LV_Valid,
257 : LV_NotObjectType,
258 : LV_IncompleteVoidType,
259 : LV_DuplicateVectorComponents,
260 : LV_InvalidExpression,
261 : LV_InvalidMessageExpression,
262 : LV_MemberFunction,
263 : LV_SubObjCPropertySetting,
264 : LV_ClassTemporary,
265 : LV_ArrayTemporary
266 : };
267 : /// Reasons why an expression might not be an l-value.
268 : LValueClassification ClassifyLValue(ASTContext &Ctx) const;
269 :
270 : enum isModifiableLvalueResult {
271 : MLV_Valid,
272 : MLV_NotObjectType,
273 : MLV_IncompleteVoidType,
274 : MLV_DuplicateVectorComponents,
275 : MLV_InvalidExpression,
276 : MLV_LValueCast, // Specialized form of MLV_InvalidExpression.
277 : MLV_IncompleteType,
278 : MLV_ConstQualified,
279 : MLV_ConstAddrSpace,
280 : MLV_ArrayType,
281 : MLV_NoSetterProperty,
282 : MLV_MemberFunction,
283 : MLV_SubObjCPropertySetting,
284 : MLV_InvalidMessageExpression,
285 : MLV_ClassTemporary,
286 : MLV_ArrayTemporary
287 : };
288 : /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
289 : /// does not have an incomplete type, does not have a const-qualified type,
290 : /// and if it is a structure or union, does not have any member (including,
291 : /// recursively, any member or element of all contained aggregates or unions)
292 : /// with a const-qualified type.
293 : ///
294 : /// \param Loc [in,out] - A source location which *may* be filled
295 : /// in with the location of the expression making this a
296 : /// non-modifiable lvalue, if specified.
297 : isModifiableLvalueResult
298 : isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
299 :
300 : /// \brief The return type of classify(). Represents the C++11 expression
301 : /// taxonomy.
302 : class Classification {
303 : public:
304 : /// \brief The various classification results. Most of these mean prvalue.
305 : enum Kinds {
306 : CL_LValue,
307 : CL_XValue,
308 : CL_Function, // Functions cannot be lvalues in C.
309 : CL_Void, // Void cannot be an lvalue in C.
310 : CL_AddressableVoid, // Void expression whose address can be taken in C.
311 : CL_DuplicateVectorComponents, // A vector shuffle with dupes.
312 : CL_MemberFunction, // An expression referring to a member function
313 : CL_SubObjCPropertySetting,
314 : CL_ClassTemporary, // A temporary of class type, or subobject thereof.
315 : CL_ArrayTemporary, // A temporary of array type.
316 : CL_ObjCMessageRValue, // ObjC message is an rvalue
317 : CL_PRValue // A prvalue for any other reason, of any other type
318 : };
319 : /// \brief The results of modification testing.
320 : enum ModifiableType {
321 : CM_Untested, // testModifiable was false.
322 : CM_Modifiable,
323 : CM_RValue, // Not modifiable because it's an rvalue
324 : CM_Function, // Not modifiable because it's a function; C++ only
325 : CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
326 : CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
327 : CM_ConstQualified,
328 : CM_ConstAddrSpace,
329 : CM_ArrayType,
330 : CM_IncompleteType
331 : };
332 :
333 : private:
334 : friend class Expr;
335 :
336 : unsigned short Kind;
337 : unsigned short Modifiable;
338 :
339 : explicit Classification(Kinds k, ModifiableType m)
340 : : Kind(k), Modifiable(m)
341 : {}
342 :
343 : public:
344 : Classification() {}
345 :
346 : Kinds getKind() const { return static_cast<Kinds>(Kind); }
347 : ModifiableType getModifiable() const {
348 : assert(Modifiable != CM_Untested && "Did not test for modifiability.");
349 : return static_cast<ModifiableType>(Modifiable);
350 : }
351 : bool isLValue() const { return Kind == CL_LValue; }
352 : bool isXValue() const { return Kind == CL_XValue; }
353 : bool isGLValue() const { return Kind <= CL_XValue; }
354 : bool isPRValue() const { return Kind >= CL_Function; }
355 : bool isRValue() const { return Kind >= CL_XValue; }
356 : bool isModifiable() const { return getModifiable() == CM_Modifiable; }
357 :
358 : /// \brief Create a simple, modifiably lvalue
359 : static Classification makeSimpleLValue() {
360 : return Classification(CL_LValue, CM_Modifiable);
361 : }
362 :
363 : };
364 : /// \brief Classify - Classify this expression according to the C++11
365 : /// expression taxonomy.
366 : ///
367 : /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
368 : /// old lvalue vs rvalue. This function determines the type of expression this
369 : /// is. There are three expression types:
370 : /// - lvalues are classical lvalues as in C++03.
371 : /// - prvalues are equivalent to rvalues in C++03.
372 : /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
373 : /// function returning an rvalue reference.
374 : /// lvalues and xvalues are collectively referred to as glvalues, while
375 : /// prvalues and xvalues together form rvalues.
376 : Classification Classify(ASTContext &Ctx) const {
377 : return ClassifyImpl(Ctx, nullptr);
378 : }
379 :
380 : /// \brief ClassifyModifiable - Classify this expression according to the
381 : /// C++11 expression taxonomy, and see if it is valid on the left side
382 : /// of an assignment.
383 : ///
384 : /// This function extends classify in that it also tests whether the
385 : /// expression is modifiable (C99 6.3.2.1p1).
386 : /// \param Loc A source location that might be filled with a relevant location
387 : /// if the expression is not modifiable.
388 : Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
389 : return ClassifyImpl(Ctx, &Loc);
390 : }
391 :
392 : /// getValueKindForType - Given a formal return or parameter type,
393 : /// give its value kind.
394 : static ExprValueKind getValueKindForType(QualType T) {
395 : if (const ReferenceType *RT = T->getAs<ReferenceType>())
396 : return (isa<LValueReferenceType>(RT)
397 : ? VK_LValue
398 : : (RT->getPointeeType()->isFunctionType()
399 : ? VK_LValue : VK_XValue));
400 : return VK_RValue;
401 : }
402 :
403 : /// getValueKind - The value kind that this expression produces.
404 : ExprValueKind getValueKind() const {
405 : return static_cast<ExprValueKind>(ExprBits.ValueKind);
406 : }
407 :
408 : /// getObjectKind - The object kind that this expression produces.
409 : /// Object kinds are meaningful only for expressions that yield an
410 : /// l-value or x-value.
411 : ExprObjectKind getObjectKind() const {
412 : return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
413 : }
414 :
415 : bool isOrdinaryOrBitFieldObject() const {
416 : ExprObjectKind OK = getObjectKind();
417 : return (OK == OK_Ordinary || OK == OK_BitField);
418 : }
419 :
420 : /// setValueKind - Set the value kind produced by this expression.
421 : void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
422 :
423 : /// setObjectKind - Set the object kind produced by this expression.
424 : void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
425 :
426 : private:
427 : Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
428 :
429 : public:
430 :
431 : /// \brief Returns true if this expression is a gl-value that
432 : /// potentially refers to a bit-field.
433 : ///
434 : /// In C++, whether a gl-value refers to a bitfield is essentially
435 : /// an aspect of the value-kind type system.
436 : bool refersToBitField() const { return getObjectKind() == OK_BitField; }
437 :
438 : /// \brief If this expression refers to a bit-field, retrieve the
439 : /// declaration of that bit-field.
440 : ///
441 : /// Note that this returns a non-null pointer in subtly different
442 : /// places than refersToBitField returns true. In particular, this can
443 : /// return a non-null pointer even for r-values loaded from
444 : /// bit-fields, but it will return null for a conditional bit-field.
445 : FieldDecl *getSourceBitField();
446 :
447 : const FieldDecl *getSourceBitField() const {
448 : return const_cast<Expr*>(this)->getSourceBitField();
449 : }
450 :
451 : /// \brief If this expression is an l-value for an Objective C
452 : /// property, find the underlying property reference expression.
453 : const ObjCPropertyRefExpr *getObjCProperty() const;
454 :
455 : /// \brief Check if this expression is the ObjC 'self' implicit parameter.
456 : bool isObjCSelfExpr() const;
457 :
458 : /// \brief Returns whether this expression refers to a vector element.
459 : bool refersToVectorElement() const;
460 :
461 : /// \brief Returns whether this expression has a placeholder type.
462 : bool hasPlaceholderType() const {
463 : return getType()->isPlaceholderType();
464 : }
465 :
466 : /// \brief Returns whether this expression has a specific placeholder type.
467 : bool hasPlaceholderType(BuiltinType::Kind K) const {
468 : assert(BuiltinType::isPlaceholderTypeKind(K));
469 : if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
470 : return BT->getKind() == K;
471 : return false;
472 : }
473 :
474 : /// isKnownToHaveBooleanValue - Return true if this is an integer expression
475 : /// that is known to return 0 or 1. This happens for _Bool/bool expressions
476 : /// but also int expressions which are produced by things like comparisons in
477 : /// C.
478 : bool isKnownToHaveBooleanValue() const;
479 :
480 : /// isIntegerConstantExpr - Return true if this expression is a valid integer
481 : /// constant expression, and, if so, return its value in Result. If not a
482 : /// valid i-c-e, return false and fill in Loc (if specified) with the location
483 : /// of the invalid expression.
484 : ///
485 : /// Note: This does not perform the implicit conversions required by C++11
486 : /// [expr.const]p5.
487 : bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
488 : SourceLocation *Loc = nullptr,
489 : bool isEvaluated = true) const;
490 : bool isIntegerConstantExpr(const ASTContext &Ctx,
491 : SourceLocation *Loc = nullptr) const;
492 :
493 : /// isCXX98IntegralConstantExpr - Return true if this expression is an
494 : /// integral constant expression in C++98. Can only be used in C++.
495 : bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
496 :
497 : /// isCXX11ConstantExpr - Return true if this expression is a constant
498 : /// expression in C++11. Can only be used in C++.
499 : ///
500 : /// Note: This does not perform the implicit conversions required by C++11
501 : /// [expr.const]p5.
502 : bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
503 : SourceLocation *Loc = nullptr) const;
504 :
505 : /// isPotentialConstantExpr - Return true if this function's definition
506 : /// might be usable in a constant expression in C++11, if it were marked
507 : /// constexpr. Return false if the function can never produce a constant
508 : /// expression, along with diagnostics describing why not.
509 : static bool isPotentialConstantExpr(const FunctionDecl *FD,
510 : SmallVectorImpl<
511 : PartialDiagnosticAt> &Diags);
512 :
513 : /// isPotentialConstantExprUnevaluted - Return true if this expression might
514 : /// be usable in a constant expression in C++11 in an unevaluated context, if
515 : /// it were in function FD marked constexpr. Return false if the function can
516 : /// never produce a constant expression, along with diagnostics describing
517 : /// why not.
518 : static bool isPotentialConstantExprUnevaluated(Expr *E,
519 : const FunctionDecl *FD,
520 : SmallVectorImpl<
521 : PartialDiagnosticAt> &Diags);
522 :
523 : /// isConstantInitializer - Returns true if this expression can be emitted to
524 : /// IR as a constant, and thus can be used as a constant initializer in C.
525 : /// If this expression is not constant and Culprit is non-null,
526 : /// it is used to store the address of first non constant expr.
527 : bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
528 : const Expr **Culprit = nullptr) const;
529 :
530 : /// EvalStatus is a struct with detailed info about an evaluation in progress.
531 : struct EvalStatus {
532 : /// HasSideEffects - Whether the evaluated expression has side effects.
533 : /// For example, (f() && 0) can be folded, but it still has side effects.
534 : bool HasSideEffects;
535 :
536 : /// Diag - If this is non-null, it will be filled in with a stack of notes
537 : /// indicating why evaluation failed (or why it failed to produce a constant
538 : /// expression).
539 : /// If the expression is unfoldable, the notes will indicate why it's not
540 : /// foldable. If the expression is foldable, but not a constant expression,
541 : /// the notes will describes why it isn't a constant expression. If the
542 : /// expression *is* a constant expression, no notes will be produced.
543 : SmallVectorImpl<PartialDiagnosticAt> *Diag;
544 :
545 : EvalStatus() : HasSideEffects(false), Diag(nullptr) {}
546 :
547 : // hasSideEffects - Return true if the evaluated expression has
548 : // side effects.
549 : bool hasSideEffects() const {
550 : return HasSideEffects;
551 : }
552 : };
553 :
554 : /// EvalResult is a struct with detailed info about an evaluated expression.
555 : struct EvalResult : EvalStatus {
556 : /// Val - This is the value the expression can be folded to.
557 : APValue Val;
558 :
559 : // isGlobalLValue - Return true if the evaluated lvalue expression
560 : // is global.
561 : bool isGlobalLValue() const;
562 : };
563 :
564 : /// EvaluateAsRValue - Return true if this is a constant which we can fold to
565 : /// an rvalue using any crazy technique (that has nothing to do with language
566 : /// standards) that we want to, even if the expression has side-effects. If
567 : /// this function returns true, it returns the folded constant in Result. If
568 : /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
569 : /// applied.
570 : bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
571 :
572 : /// EvaluateAsBooleanCondition - Return true if this is a constant
573 : /// which we we can fold and convert to a boolean condition using
574 : /// any crazy technique that we want to, even if the expression has
575 : /// side-effects.
576 : bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
577 :
578 : enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
579 :
580 : /// EvaluateAsInt - Return true if this is a constant which we can fold and
581 : /// convert to an integer, using any crazy technique that we want to.
582 : bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
583 : SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
584 :
585 : /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
586 : /// constant folded without side-effects, but discard the result.
587 : bool isEvaluatable(const ASTContext &Ctx) const;
588 :
589 : /// HasSideEffects - This routine returns true for all those expressions
590 : /// which have any effect other than producing a value. Example is a function
591 : /// call, volatile variable read, or throwing an exception. If
592 : /// IncludePossibleEffects is false, this call treats certain expressions with
593 : /// potential side effects (such as function call-like expressions,
594 : /// instantiation-dependent expressions, or invocations from a macro) as not
595 : /// having side effects.
596 : bool HasSideEffects(const ASTContext &Ctx,
597 : bool IncludePossibleEffects = true) const;
598 :
599 : /// \brief Determine whether this expression involves a call to any function
600 : /// that is not trivial.
601 : bool hasNonTrivialCall(const ASTContext &Ctx) const;
602 :
603 : /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
604 : /// integer. This must be called on an expression that constant folds to an
605 : /// integer.
606 : llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
607 : SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
608 :
609 : void EvaluateForOverflow(const ASTContext &Ctx) const;
610 :
611 : /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
612 : /// lvalue with link time known address, with no side-effects.
613 : bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
614 :
615 : /// EvaluateAsInitializer - Evaluate an expression as if it were the
616 : /// initializer of the given declaration. Returns true if the initializer
617 : /// can be folded to a constant, and produces any relevant notes. In C++11,
618 : /// notes will be produced if the expression is not a constant expression.
619 : bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
620 : const VarDecl *VD,
621 : SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
622 :
623 : /// EvaluateWithSubstitution - Evaluate an expression as if from the context
624 : /// of a call to the given function with the given arguments, inside an
625 : /// unevaluated context. Returns true if the expression could be folded to a
626 : /// constant.
627 : bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
628 : const FunctionDecl *Callee,
629 : ArrayRef<const Expr*> Args) const;
630 :
631 : /// \brief Enumeration used to describe the kind of Null pointer constant
632 : /// returned from \c isNullPointerConstant().
633 : enum NullPointerConstantKind {
634 : /// \brief Expression is not a Null pointer constant.
635 : NPCK_NotNull = 0,
636 :
637 : /// \brief Expression is a Null pointer constant built from a zero integer
638 : /// expression that is not a simple, possibly parenthesized, zero literal.
639 : /// C++ Core Issue 903 will classify these expressions as "not pointers"
640 : /// once it is adopted.
641 : /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
642 : NPCK_ZeroExpression,
643 :
644 : /// \brief Expression is a Null pointer constant built from a literal zero.
645 : NPCK_ZeroLiteral,
646 :
647 : /// \brief Expression is a C++11 nullptr.
648 : NPCK_CXX11_nullptr,
649 :
650 : /// \brief Expression is a GNU-style __null constant.
651 : NPCK_GNUNull
652 : };
653 :
654 : /// \brief Enumeration used to describe how \c isNullPointerConstant()
655 : /// should cope with value-dependent expressions.
656 : enum NullPointerConstantValueDependence {
657 : /// \brief Specifies that the expression should never be value-dependent.
658 : NPC_NeverValueDependent = 0,
659 :
660 : /// \brief Specifies that a value-dependent expression of integral or
661 : /// dependent type should be considered a null pointer constant.
662 : NPC_ValueDependentIsNull,
663 :
664 : /// \brief Specifies that a value-dependent expression should be considered
665 : /// to never be a null pointer constant.
666 : NPC_ValueDependentIsNotNull
667 : };
668 :
669 : /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
670 : /// a Null pointer constant. The return value can further distinguish the
671 : /// kind of NULL pointer constant that was detected.
672 : NullPointerConstantKind isNullPointerConstant(
673 : ASTContext &Ctx,
674 : NullPointerConstantValueDependence NPC) const;
675 :
676 : /// isOBJCGCCandidate - Return true if this expression may be used in a read/
677 : /// write barrier.
678 : bool isOBJCGCCandidate(ASTContext &Ctx) const;
679 :
680 : /// \brief Returns true if this expression is a bound member function.
681 : bool isBoundMemberFunction(ASTContext &Ctx) const;
682 :
683 : /// \brief Given an expression of bound-member type, find the type
684 : /// of the member. Returns null if this is an *overloaded* bound
685 : /// member expression.
686 : static QualType findBoundMemberType(const Expr *expr);
687 :
688 : /// IgnoreImpCasts - Skip past any implicit casts which might
689 : /// surround this expression. Only skips ImplicitCastExprs.
690 : Expr *IgnoreImpCasts() LLVM_READONLY;
691 :
692 : /// IgnoreImplicit - Skip past any implicit AST nodes which might
693 : /// surround this expression.
694 : Expr *IgnoreImplicit() LLVM_READONLY {
695 : return cast<Expr>(Stmt::IgnoreImplicit());
696 : }
697 :
698 : const Expr *IgnoreImplicit() const LLVM_READONLY {
699 : return const_cast<Expr*>(this)->IgnoreImplicit();
700 : }
701 :
702 : /// IgnoreParens - Ignore parentheses. If this Expr is a ParenExpr, return
703 : /// its subexpression. If that subexpression is also a ParenExpr,
704 : /// then this method recursively returns its subexpression, and so forth.
705 : /// Otherwise, the method returns the current Expr.
706 : Expr *IgnoreParens() LLVM_READONLY;
707 :
708 : /// IgnoreParenCasts - Ignore parentheses and casts. Strip off any ParenExpr
709 : /// or CastExprs, returning their operand.
710 : Expr *IgnoreParenCasts() LLVM_READONLY;
711 :
712 : /// Ignore casts. Strip off any CastExprs, returning their operand.
713 : Expr *IgnoreCasts() LLVM_READONLY;
714 :
715 : /// IgnoreParenImpCasts - Ignore parentheses and implicit casts. Strip off
716 : /// any ParenExpr or ImplicitCastExprs, returning their operand.
717 : Expr *IgnoreParenImpCasts() LLVM_READONLY;
718 :
719 : /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
720 : /// call to a conversion operator, return the argument.
721 : Expr *IgnoreConversionOperator() LLVM_READONLY;
722 :
723 : const Expr *IgnoreConversionOperator() const LLVM_READONLY {
724 : return const_cast<Expr*>(this)->IgnoreConversionOperator();
725 : }
726 :
727 : const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
728 : return const_cast<Expr*>(this)->IgnoreParenImpCasts();
729 : }
730 :
731 : /// Ignore parentheses and lvalue casts. Strip off any ParenExpr and
732 : /// CastExprs that represent lvalue casts, returning their operand.
733 : Expr *IgnoreParenLValueCasts() LLVM_READONLY;
734 :
735 : const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
736 : return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
737 : }
738 :
739 : /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
740 : /// value (including ptr->int casts of the same size). Strip off any
741 : /// ParenExpr or CastExprs, returning their operand.
742 : Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
743 :
744 : /// Ignore parentheses and derived-to-base casts.
745 : Expr *ignoreParenBaseCasts() LLVM_READONLY;
746 :
747 : const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
748 : return const_cast<Expr*>(this)->ignoreParenBaseCasts();
749 : }
750 :
751 : /// \brief Determine whether this expression is a default function argument.
752 : ///
753 : /// Default arguments are implicitly generated in the abstract syntax tree
754 : /// by semantic analysis for function calls, object constructions, etc. in
755 : /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
756 : /// this routine also looks through any implicit casts to determine whether
757 : /// the expression is a default argument.
758 : bool isDefaultArgument() const;
759 :
760 : /// \brief Determine whether the result of this expression is a
761 : /// temporary object of the given class type.
762 : bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
763 :
764 : /// \brief Whether this expression is an implicit reference to 'this' in C++.
765 : bool isImplicitCXXThis() const;
766 :
767 : const Expr *IgnoreImpCasts() const LLVM_READONLY {
768 : return const_cast<Expr*>(this)->IgnoreImpCasts();
769 : }
770 : const Expr *IgnoreParens() const LLVM_READONLY {
771 : return const_cast<Expr*>(this)->IgnoreParens();
772 : }
773 : const Expr *IgnoreParenCasts() const LLVM_READONLY {
774 : return const_cast<Expr*>(this)->IgnoreParenCasts();
775 : }
776 : /// Strip off casts, but keep parentheses.
777 : const Expr *IgnoreCasts() const LLVM_READONLY {
778 : return const_cast<Expr*>(this)->IgnoreCasts();
779 : }
780 :
781 : const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
782 : return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
783 : }
784 :
785 : static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
786 :
787 : /// \brief For an expression of class type or pointer to class type,
788 : /// return the most derived class decl the expression is known to refer to.
789 : ///
790 : /// If this expression is a cast, this method looks through it to find the
791 : /// most derived decl that can be inferred from the expression.
792 : /// This is valid because derived-to-base conversions have undefined
793 : /// behavior if the object isn't dynamically of the derived type.
794 : const CXXRecordDecl *getBestDynamicClassType() const;
795 :
796 : /// Walk outwards from an expression we want to bind a reference to and
797 : /// find the expression whose lifetime needs to be extended. Record
798 : /// the LHSs of comma expressions and adjustments needed along the path.
799 : const Expr *skipRValueSubobjectAdjustments(
800 : SmallVectorImpl<const Expr *> &CommaLHS,
801 : SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
802 :
803 : static bool classof(const Stmt *T) {
804 0 : return T->getStmtClass() >= firstExprConstant &&
805 0 : T->getStmtClass() <= lastExprConstant;
806 : }
807 : };
808 :
809 :
810 : //===----------------------------------------------------------------------===//
811 : // Primary Expressions.
812 : //===----------------------------------------------------------------------===//
813 :
814 : /// OpaqueValueExpr - An expression referring to an opaque object of a
815 : /// fixed type and value class. These don't correspond to concrete
816 : /// syntax; instead they're used to express operations (usually copy
817 : /// operations) on values whose source is generally obvious from
818 : /// context.
819 : class OpaqueValueExpr : public Expr {
820 : friend class ASTStmtReader;
821 : Expr *SourceExpr;
822 : SourceLocation Loc;
823 :
824 : public:
825 : OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
826 : ExprObjectKind OK = OK_Ordinary,
827 : Expr *SourceExpr = nullptr)
828 : : Expr(OpaqueValueExprClass, T, VK, OK,
829 : T->isDependentType(),
830 : T->isDependentType() ||
831 : (SourceExpr && SourceExpr->isValueDependent()),
832 : T->isInstantiationDependentType(),
833 : false),
834 : SourceExpr(SourceExpr), Loc(Loc) {
835 : }
836 :
837 : /// Given an expression which invokes a copy constructor --- i.e. a
838 : /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
839 : /// find the OpaqueValueExpr that's the source of the construction.
840 : static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
841 :
842 : explicit OpaqueValueExpr(EmptyShell Empty)
843 : : Expr(OpaqueValueExprClass, Empty) { }
844 :
845 : /// \brief Retrieve the location of this expression.
846 : SourceLocation getLocation() const { return Loc; }
847 :
848 : SourceLocation getLocStart() const LLVM_READONLY {
849 : return SourceExpr ? SourceExpr->getLocStart() : Loc;
850 : }
851 : SourceLocation getLocEnd() const LLVM_READONLY {
852 : return SourceExpr ? SourceExpr->getLocEnd() : Loc;
853 : }
854 : SourceLocation getExprLoc() const LLVM_READONLY {
855 : if (SourceExpr) return SourceExpr->getExprLoc();
856 : return Loc;
857 : }
858 :
859 0 : child_range children() { return child_range(); }
860 :
861 : /// The source expression of an opaque value expression is the
862 : /// expression which originally generated the value. This is
863 : /// provided as a convenience for analyses that don't wish to
864 : /// precisely model the execution behavior of the program.
865 : ///
866 : /// The source expression is typically set when building the
867 : /// expression which binds the opaque value expression in the first
868 : /// place.
869 0 : Expr *getSourceExpr() const { return SourceExpr; }
870 :
871 : static bool classof(const Stmt *T) {
872 0 : return T->getStmtClass() == OpaqueValueExprClass;
873 : }
874 : };
875 :
876 : /// \brief A reference to a declared variable, function, enum, etc.
877 : /// [C99 6.5.1p2]
878 : ///
879 : /// This encodes all the information about how a declaration is referenced
880 : /// within an expression.
881 : ///
882 : /// There are several optional constructs attached to DeclRefExprs only when
883 : /// they apply in order to conserve memory. These are laid out past the end of
884 : /// the object, and flags in the DeclRefExprBitfield track whether they exist:
885 : ///
886 : /// DeclRefExprBits.HasQualifier:
887 : /// Specifies when this declaration reference expression has a C++
888 : /// nested-name-specifier.
889 : /// DeclRefExprBits.HasFoundDecl:
890 : /// Specifies when this declaration reference expression has a record of
891 : /// a NamedDecl (different from the referenced ValueDecl) which was found
892 : /// during name lookup and/or overload resolution.
893 : /// DeclRefExprBits.HasTemplateKWAndArgsInfo:
894 : /// Specifies when this declaration reference expression has an explicit
895 : /// C++ template keyword and/or template argument list.
896 : /// DeclRefExprBits.RefersToEnclosingVariableOrCapture
897 : /// Specifies when this declaration reference expression (validly)
898 : /// refers to an enclosed local or a captured variable.
899 : class DeclRefExpr : public Expr {
900 : /// \brief The declaration that we are referencing.
901 : ValueDecl *D;
902 :
903 : /// \brief The location of the declaration name itself.
904 : SourceLocation Loc;
905 :
906 : /// \brief Provides source/type location info for the declaration name
907 : /// embedded in D.
908 : DeclarationNameLoc DNLoc;
909 :
910 : /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
911 : NestedNameSpecifierLoc &getInternalQualifierLoc() {
912 2 : assert(hasQualifier());
913 1 : return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
914 : }
915 :
916 : /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
917 : const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
918 1 : return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
919 : }
920 :
921 : /// \brief Test whether there is a distinct FoundDecl attached to the end of
922 : /// this DRE.
923 0 : bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
924 :
925 : /// \brief Helper to retrieve the optional NamedDecl through which this
926 : /// reference occurred.
927 : NamedDecl *&getInternalFoundDecl() {
928 0 : assert(hasFoundDecl());
929 0 : if (hasQualifier())
930 0 : return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
931 0 : return *reinterpret_cast<NamedDecl **>(this + 1);
932 0 : }
933 :
934 : /// \brief Helper to retrieve the optional NamedDecl through which this
935 : /// reference occurred.
936 : NamedDecl *getInternalFoundDecl() const {
937 : return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
938 : }
939 :
940 : DeclRefExpr(const ASTContext &Ctx,
941 : NestedNameSpecifierLoc QualifierLoc,
942 : SourceLocation TemplateKWLoc,
943 : ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
944 : const DeclarationNameInfo &NameInfo,
945 : NamedDecl *FoundD,
946 : const TemplateArgumentListInfo *TemplateArgs,
947 : QualType T, ExprValueKind VK);
948 :
949 : /// \brief Construct an empty declaration reference expression.
950 : explicit DeclRefExpr(EmptyShell Empty)
951 : : Expr(DeclRefExprClass, Empty) { }
952 :
953 : /// \brief Computes the type- and value-dependence flags for this
954 : /// declaration reference expression.
955 : void computeDependence(const ASTContext &C);
956 :
957 : public:
958 : DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
959 : ExprValueKind VK, SourceLocation L,
960 : const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
961 : : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
962 : D(D), Loc(L), DNLoc(LocInfo) {
963 : DeclRefExprBits.HasQualifier = 0;
964 : DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
965 : DeclRefExprBits.HasFoundDecl = 0;
966 : DeclRefExprBits.HadMultipleCandidates = 0;
967 : DeclRefExprBits.RefersToEnclosingVariableOrCapture =
968 : RefersToEnclosingVariableOrCapture;
969 : computeDependence(D->getASTContext());
970 : }
971 :
972 : static DeclRefExpr *
973 : Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
974 : SourceLocation TemplateKWLoc, ValueDecl *D,
975 : bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
976 : QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
977 : const TemplateArgumentListInfo *TemplateArgs = nullptr);
978 :
979 : static DeclRefExpr *
980 : Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
981 : SourceLocation TemplateKWLoc, ValueDecl *D,
982 : bool RefersToEnclosingVariableOrCapture,
983 : const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
984 : NamedDecl *FoundD = nullptr,
985 : const TemplateArgumentListInfo *TemplateArgs = nullptr);
986 :
987 : /// \brief Construct an empty declaration reference expression.
988 : static DeclRefExpr *CreateEmpty(const ASTContext &Context,
989 : bool HasQualifier,
990 : bool HasFoundDecl,
991 : bool HasTemplateKWAndArgsInfo,
992 : unsigned NumTemplateArgs);
993 :
994 9 : ValueDecl *getDecl() { return D; }
995 9 : const ValueDecl *getDecl() const { return D; }
996 : void setDecl(ValueDecl *NewD) { D = NewD; }
997 :
998 : DeclarationNameInfo getNameInfo() const {
999 9 : return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
1000 : }
1001 :
1002 2 : SourceLocation getLocation() const { return Loc; }
1003 : void setLocation(SourceLocation L) { Loc = L; }
1004 : SourceLocation getLocStart() const LLVM_READONLY;
1005 : SourceLocation getLocEnd() const LLVM_READONLY;
1006 :
1007 : /// \brief Determine whether this declaration reference was preceded by a
1008 : /// C++ nested-name-specifier, e.g., \c N::foo.
1009 10 : bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
1010 :
1011 : /// \brief If the name was qualified, retrieves the nested-name-specifier
1012 : /// that precedes the name. Otherwise, returns NULL.
1013 : NestedNameSpecifier *getQualifier() const {
1014 : if (!hasQualifier())
1015 : return nullptr;
1016 :
1017 : return getInternalQualifierLoc().getNestedNameSpecifier();
1018 : }
1019 :
1020 : /// \brief If the name was qualified, retrieves the nested-name-specifier
1021 : /// that precedes the name, with source-location information.
1022 : NestedNameSpecifierLoc getQualifierLoc() const {
1023 9 : if (!hasQualifier())
1024 8 : return NestedNameSpecifierLoc();
1025 :
1026 1 : return getInternalQualifierLoc();
1027 9 : }
1028 :
1029 : /// \brief Get the NamedDecl through which this reference occurred.
1030 : ///
1031 : /// This Decl may be different from the ValueDecl actually referred to in the
1032 : /// presence of using declarations, etc. It always returns non-NULL, and may
1033 : /// simple return the ValueDecl when appropriate.
1034 : NamedDecl *getFoundDecl() {
1035 : return hasFoundDecl() ? getInternalFoundDecl() : D;
1036 : }
1037 :
1038 : /// \brief Get the NamedDecl through which this reference occurred.
1039 : /// See non-const variant.
1040 : const NamedDecl *getFoundDecl() const {
1041 : return hasFoundDecl() ? getInternalFoundDecl() : D;
1042 : }
1043 :
1044 : bool hasTemplateKWAndArgsInfo() const {
1045 18 : return DeclRefExprBits.HasTemplateKWAndArgsInfo;
1046 : }
1047 :
1048 : /// \brief Return the optional template keyword and arguments info.
1049 : ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
1050 0 : if (!hasTemplateKWAndArgsInfo())
1051 0 : return nullptr;
1052 :
1053 0 : if (hasFoundDecl())
1054 0 : return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1055 0 : &getInternalFoundDecl() + 1);
1056 :
1057 0 : if (hasQualifier())
1058 0 : return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
1059 0 : &getInternalQualifierLoc() + 1);
1060 :
1061 0 : return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
1062 0 : }
1063 :
1064 : /// \brief Return the optional template keyword and arguments info.
1065 : const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
1066 0 : return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
1067 : }
1068 :
1069 : /// \brief Retrieve the location of the template keyword preceding
1070 : /// this name, if any.
1071 : SourceLocation getTemplateKeywordLoc() const {
1072 : if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1073 : return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
1074 : }
1075 :
1076 : /// \brief Retrieve the location of the left angle bracket starting the
1077 : /// explicit template argument list following the name, if any.
1078 : SourceLocation getLAngleLoc() const {
1079 36 : if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1080 0 : return getTemplateKWAndArgsInfo()->LAngleLoc;
1081 18 : }
1082 :
1083 : /// \brief Retrieve the location of the right angle bracket ending the
1084 : /// explicit template argument list following the name, if any.
1085 : SourceLocation getRAngleLoc() const {
1086 : if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
1087 : return getTemplateKWAndArgsInfo()->RAngleLoc;
1088 : }
1089 :
1090 : /// \brief Determines whether the name in this declaration reference
1091 : /// was preceded by the template keyword.
1092 : bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
1093 :
1094 : /// \brief Determines whether this declaration reference was followed by an
1095 : /// explicit template argument list.
1096 18 : bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
1097 :
1098 : /// \brief Retrieve the explicit template argument list that followed the
1099 : /// member template name.
1100 : ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
1101 0 : assert(hasExplicitTemplateArgs());
1102 0 : return *getTemplateKWAndArgsInfo();
1103 : }
1104 :
1105 : /// \brief Retrieve the explicit template argument list that followed the
1106 : /// member template name.
1107 : const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
1108 0 : return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
1109 : }
1110 :
1111 : /// \brief Retrieves the optional explicit template arguments.
1112 : /// This points to the same data as getExplicitTemplateArgs(), but
1113 : /// returns null if there are no explicit template arguments.
1114 : const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
1115 : if (!hasExplicitTemplateArgs()) return nullptr;
1116 : return &getExplicitTemplateArgs();
1117 : }
1118 :
1119 : /// \brief Copies the template arguments (if present) into the given
1120 : /// structure.
1121 : void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
1122 : if (hasExplicitTemplateArgs())
1123 : getExplicitTemplateArgs().copyInto(List);
1124 : }
1125 :
1126 : /// \brief Retrieve the template arguments provided as part of this
1127 : /// template-id.
1128 : const TemplateArgumentLoc *getTemplateArgs() const {
1129 9 : if (!hasExplicitTemplateArgs())
1130 9 : return nullptr;
1131 :
1132 0 : return getExplicitTemplateArgs().getTemplateArgs();
1133 9 : }
1134 :
1135 : /// \brief Retrieve the number of template arguments provided as part of this
1136 : /// template-id.
1137 : unsigned getNumTemplateArgs() const {
1138 9 : if (!hasExplicitTemplateArgs())
1139 9 : return 0;
1140 :
1141 0 : return getExplicitTemplateArgs().NumTemplateArgs;
1142 9 : }
1143 :
1144 : /// \brief Returns true if this expression refers to a function that
1145 : /// was resolved from an overloaded set having size greater than 1.
1146 : bool hadMultipleCandidates() const {
1147 : return DeclRefExprBits.HadMultipleCandidates;
1148 : }
1149 : /// \brief Sets the flag telling whether this expression refers to
1150 : /// a function that was resolved from an overloaded set having size
1151 : /// greater than 1.
1152 : void setHadMultipleCandidates(bool V = true) {
1153 : DeclRefExprBits.HadMultipleCandidates = V;
1154 : }
1155 :
1156 : /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
1157 : /// variable?
1158 : bool refersToEnclosingVariableOrCapture() const {
1159 : return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
1160 : }
1161 :
1162 : static bool classof(const Stmt *T) {
1163 : return T->getStmtClass() == DeclRefExprClass;
1164 : }
1165 :
1166 : // Iterators
1167 9 : child_range children() { return child_range(); }
1168 :
1169 : friend class ASTStmtReader;
1170 : friend class ASTStmtWriter;
1171 : };
1172 :
1173 : /// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
1174 : class PredefinedExpr : public Expr {
1175 : public:
1176 : enum IdentType {
1177 : Func,
1178 : Function,
1179 : LFunction, // Same as Function, but as wide string.
1180 : FuncDName,
1181 : FuncSig,
1182 : PrettyFunction,
1183 : /// \brief The same as PrettyFunction, except that the
1184 : /// 'virtual' keyword is omitted for virtual member functions.
1185 : PrettyFunctionNoVirtual
1186 : };
1187 :
1188 : private:
1189 : SourceLocation Loc;
1190 : IdentType Type;
1191 : Stmt *FnName;
1192 :
1193 : public:
1194 : PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
1195 : StringLiteral *SL);
1196 :
1197 : /// \brief Construct an empty predefined expression.
1198 : explicit PredefinedExpr(EmptyShell Empty)
1199 : : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
1200 :
1201 : IdentType getIdentType() const { return Type; }
1202 :
1203 : SourceLocation getLocation() const { return Loc; }
1204 : void setLocation(SourceLocation L) { Loc = L; }
1205 :
1206 : StringLiteral *getFunctionName();
1207 : const StringLiteral *getFunctionName() const {
1208 : return const_cast<PredefinedExpr *>(this)->getFunctionName();
1209 : }
1210 :
1211 : static StringRef getIdentTypeName(IdentType IT);
1212 : static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
1213 :
1214 : SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1215 : SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1216 :
1217 : static bool classof(const Stmt *T) {
1218 : return T->getStmtClass() == PredefinedExprClass;
1219 : }
1220 :
1221 : // Iterators
1222 0 : child_range children() { return child_range(&FnName, &FnName + 1); }
1223 :
1224 : friend class ASTStmtReader;
1225 : };
1226 :
1227 : /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
1228 : /// leaking memory.
1229 : ///
1230 : /// For large floats/integers, APFloat/APInt will allocate memory from the heap
1231 : /// to represent these numbers. Unfortunately, when we use a BumpPtrAllocator
1232 : /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
1233 : /// the APFloat/APInt values will never get freed. APNumericStorage uses
1234 : /// ASTContext's allocator for memory allocation.
1235 : class APNumericStorage {
1236 : union {
1237 : uint64_t VAL; ///< Used to store the <= 64 bits integer value.
1238 : uint64_t *pVal; ///< Used to store the >64 bits integer value.
1239 : };
1240 : unsigned BitWidth;
1241 :
1242 : bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
1243 :
1244 : APNumericStorage(const APNumericStorage &) = delete;
1245 : void operator=(const APNumericStorage &) = delete;
1246 :
1247 : protected:
1248 : APNumericStorage() : VAL(0), BitWidth(0) { }
1249 :
1250 : llvm::APInt getIntValue() const {
1251 : unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
1252 : if (NumWords > 1)
1253 : return llvm::APInt(BitWidth, NumWords, pVal);
1254 : else
1255 : return llvm::APInt(BitWidth, VAL);
1256 : }
1257 : void setIntValue(const ASTContext &C, const llvm::APInt &Val);
1258 : };
1259 :
1260 : class APIntStorage : private APNumericStorage {
1261 : public:
1262 : llvm::APInt getValue() const { return getIntValue(); }
1263 : void setValue(const ASTContext &C, const llvm::APInt &Val) {
1264 : setIntValue(C, Val);
1265 : }
1266 : };
1267 :
1268 : class APFloatStorage : private APNumericStorage {
1269 : public:
1270 : llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
1271 : return llvm::APFloat(Semantics, getIntValue());
1272 : }
1273 : void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1274 : setIntValue(C, Val.bitcastToAPInt());
1275 : }
1276 : };
1277 :
1278 : class IntegerLiteral : public Expr, public APIntStorage {
1279 : SourceLocation Loc;
1280 :
1281 : /// \brief Construct an empty integer literal.
1282 : explicit IntegerLiteral(EmptyShell Empty)
1283 : : Expr(IntegerLiteralClass, Empty) { }
1284 :
1285 : public:
1286 : // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
1287 : // or UnsignedLongLongTy
1288 : IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
1289 : SourceLocation l);
1290 :
1291 : /// \brief Returns a new integer literal with value 'V' and type 'type'.
1292 : /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
1293 : /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
1294 : /// \param V - the value that the returned integer literal contains.
1295 : static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
1296 : QualType type, SourceLocation l);
1297 : /// \brief Returns a new empty integer literal.
1298 : static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
1299 :
1300 : SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1301 : SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1302 :
1303 : /// \brief Retrieve the location of the literal.
1304 : SourceLocation getLocation() const { return Loc; }
1305 :
1306 : void setLocation(SourceLocation Location) { Loc = Location; }
1307 :
1308 : static bool classof(const Stmt *T) {
1309 : return T->getStmtClass() == IntegerLiteralClass;
1310 : }
1311 :
1312 : // Iterators
1313 9 : child_range children() { return child_range(); }
1314 : };
1315 :
1316 : class CharacterLiteral : public Expr {
1317 : public:
1318 : enum CharacterKind {
1319 : Ascii,
1320 : Wide,
1321 : UTF16,
1322 : UTF32
1323 : };
1324 :
1325 : private:
1326 : unsigned Value;
1327 : SourceLocation Loc;
1328 : public:
1329 : // type should be IntTy
1330 : CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
1331 : SourceLocation l)
1332 : : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
1333 : false, false),
1334 : Value(value), Loc(l) {
1335 : CharacterLiteralBits.Kind = kind;
1336 : }
1337 :
1338 : /// \brief Construct an empty character literal.
1339 : CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
1340 :
1341 : SourceLocation getLocation() const { return Loc; }
1342 : CharacterKind getKind() const {
1343 : return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
1344 : }
1345 :
1346 : SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1347 : SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1348 :
1349 : unsigned getValue() const { return Value; }
1350 :
1351 : void setLocation(SourceLocation Location) { Loc = Location; }
1352 : void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
1353 : void setValue(unsigned Val) { Value = Val; }
1354 :
1355 : static bool classof(const Stmt *T) {
1356 : return T->getStmtClass() == CharacterLiteralClass;
1357 : }
1358 :
1359 : // Iterators
1360 0 : child_range children() { return child_range(); }
1361 : };
1362 :
1363 : class FloatingLiteral : public Expr, private APFloatStorage {
1364 : SourceLocation Loc;
1365 :
1366 : FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
1367 : QualType Type, SourceLocation L);
1368 :
1369 : /// \brief Construct an empty floating-point literal.
1370 : explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
1371 :
1372 : public:
1373 : static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
1374 : bool isexact, QualType Type, SourceLocation L);
1375 : static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
1376 :
1377 : llvm::APFloat getValue() const {
1378 : return APFloatStorage::getValue(getSemantics());
1379 : }
1380 : void setValue(const ASTContext &C, const llvm::APFloat &Val) {
1381 : assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
1382 : APFloatStorage::setValue(C, Val);
1383 : }
1384 :
1385 : /// Get a raw enumeration value representing the floating-point semantics of
1386 : /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1387 : APFloatSemantics getRawSemantics() const {
1388 : return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
1389 : }
1390 :
1391 : /// Set the raw enumeration value representing the floating-point semantics of
1392 : /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
1393 : void setRawSemantics(APFloatSemantics Sem) {
1394 : FloatingLiteralBits.Semantics = Sem;
1395 : }
1396 :
1397 : /// Return the APFloat semantics this literal uses.
1398 : const llvm::fltSemantics &getSemantics() const;
1399 :
1400 : /// Set the APFloat semantics this literal uses.
1401 : void setSemantics(const llvm::fltSemantics &Sem);
1402 :
1403 : bool isExact() const { return FloatingLiteralBits.IsExact; }
1404 : void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
1405 :
1406 : /// getValueAsApproximateDouble - This returns the value as an inaccurate
1407 : /// double. Note that this may cause loss of precision, but is useful for
1408 : /// debugging dumps, etc.
1409 : double getValueAsApproximateDouble() const;
1410 :
1411 : SourceLocation getLocation() const { return Loc; }
1412 : void setLocation(SourceLocation L) { Loc = L; }
1413 :
1414 : SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
1415 : SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
1416 :
1417 : static bool classof(const Stmt *T) {
1418 : return T->getStmtClass() == FloatingLiteralClass;
1419 : }
1420 :
1421 : // Iterators
1422 0 : child_range children() { return child_range(); }
1423 : };
1424 :
1425 : /// ImaginaryLiteral - We support imaginary integer and floating point literals,
1426 : /// like "1.0i". We represent these as a wrapper around FloatingLiteral and
1427 : /// IntegerLiteral classes. Instances of this class always have a Complex type
1428 : /// whose element type matches the subexpression.
1429 : ///
1430 : class ImaginaryLiteral : public Expr {
1431 : Stmt *Val;
1432 : public:
1433 : ImaginaryLiteral(Expr *val, QualType Ty)
1434 : : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
1435 : false, false),
1436 : Val(val) {}
1437 :
1438 : /// \brief Build an empty imaginary literal.
1439 : explicit ImaginaryLiteral(EmptyShell Empty)
1440 : : Expr(ImaginaryLiteralClass, Empty) { }
1441 :
1442 : const Expr *getSubExpr() const { return cast<Expr>(Val); }
1443 : Expr *getSubExpr() { return cast<Expr>(Val); }
1444 : void setSubExpr(Expr *E) { Val = E; }
1445 :
1446 : SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
1447 : SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
1448 :
1449 : static bool classof(const Stmt *T) {
1450 : return T->getStmtClass() == ImaginaryLiteralClass;
1451 : }
1452 :
1453 : // Iterators
1454 0 : child_range children() { return child_range(&Val, &Val+1); }
1455 : };
1456 :
1457 : /// StringLiteral - This represents a string literal expression, e.g. "foo"
1458 : /// or L"bar" (wide strings). The actual string is returned by getBytes()
1459 : /// is NOT null-terminated, and the length of the string is determined by
1460 : /// calling getByteLength(). The C type for a string is always a
1461 : /// ConstantArrayType. In C++, the char type is const qualified, in C it is
1462 : /// not.
1463 : ///
1464 : /// Note that strings in C can be formed by concatenation of multiple string
1465 : /// literal pptokens in translation phase #6. This keeps track of the locations
1466 : /// of each of these pieces.
1467 : ///
1468 : /// Strings in C can also be truncated and extended by assigning into arrays,
1469 : /// e.g. with constructs like:
1470 : /// char X[2] = "foobar";
1471 : /// In this case, getByteLength() will return 6, but the string literal will
1472 : /// have type "char[2]".
1473 : class StringLiteral : public Expr {
1474 : public:
1475 : enum StringKind {
1476 : Ascii,
1477 : Wide,
1478 : UTF8,
1479 : UTF16,
1480 : UTF32
1481 : };
1482 :
1483 : private:
1484 : friend class ASTStmtReader;
1485 :
1486 : union {
1487 : const char *asChar;
1488 : const uint16_t *asUInt16;
1489 : const uint32_t *asUInt32;
1490 : } StrData;
1491 : unsigned Length;
1492 : unsigned CharByteWidth : 4;
1493 : unsigned Kind : 3;
1494 : unsigned IsPascal : 1;
1495 : unsigned NumConcatenated;
1496 : SourceLocation TokLocs[1];
1497 :
1498 : StringLiteral(QualType Ty) :
1499 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
1500 : false) {}
1501 :
1502 : static int mapCharByteWidth(TargetInfo const &target,StringKind k);
1503 :
1504 : public:
1505 : /// This is the "fully general" constructor that allows representation of
1506 : /// strings formed from multiple concatenated tokens.
1507 : static StringLiteral *Create(const ASTContext &C, StringRef Str,
1508 : StringKind Kind, bool Pascal, QualType Ty,
1509 : const SourceLocation *Loc, unsigned NumStrs);
1510 :
1511 : /// Simple constructor for string literals made from one token.
1512 : static StringLiteral *Create(const ASTContext &C, StringRef Str,
1513 : StringKind Kind, bool Pascal, QualType Ty,
1514 : SourceLocation Loc) {
1515 : return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
1516 : }
1517 :
1518 : /// \brief Construct an empty string literal.
1519 : static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
1520 :
1521 : StringRef getString() const {
1522 : assert(CharByteWidth==1
1523 : && "This function is used in places that assume strings use char");
1524 : return StringRef(StrData.asChar, getByteLength());
1525 : }
1526 :
1527 : /// Allow access to clients that need the byte representation, such as
1528 : /// ASTWriterStmt::VisitStringLiteral().
1529 : StringRef getBytes() const {
1530 : // FIXME: StringRef may not be the right type to use as a result for this.
1531 : if (CharByteWidth == 1)
1532 : return StringRef(StrData.asChar, getByteLength());
1533 : if (CharByteWidth == 4)
1534 : return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
1535 : getByteLength());
1536 : assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1537 : return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
1538 : getByteLength());
1539 : }
1540 :
1541 : void outputString(raw_ostream &OS) const;
1542 :
1543 : uint32_t getCodeUnit(size_t i) const {
1544 : assert(i < Length && "out of bounds access");
1545 : if (CharByteWidth == 1)
1546 : return static_cast<unsigned char>(StrData.asChar[i]);
1547 : if (CharByteWidth == 4)
1548 : return StrData.asUInt32[i];
1549 : assert(CharByteWidth == 2 && "unsupported CharByteWidth");
1550 : return StrData.asUInt16[i];
1551 : }
1552 :
1553 : unsigned getByteLength() const { return CharByteWidth*Length; }
1554 : unsigned getLength() const { return Length; }
1555 : unsigned getCharByteWidth() const { return CharByteWidth; }
1556 :
1557 : /// \brief Sets the string data to the given string data.
1558 : void setString(const ASTContext &C, StringRef Str,
1559 : StringKind Kind, bool IsPascal);
1560 :
1561 : StringKind getKind() const { return static_cast<StringKind>(Kind); }
1562 :
1563 :
1564 : bool isAscii() const { return Kind == Ascii; }
1565 : bool isWide() const { return Kind == Wide; }
1566 : bool isUTF8() const { return Kind == UTF8; }
1567 : bool isUTF16() const { return Kind == UTF16; }
1568 : bool isUTF32() const { return Kind == UTF32; }
1569 : bool isPascal() const { return IsPascal; }
1570 :
1571 : bool containsNonAsciiOrNull() const {
1572 : StringRef Str = getString();
1573 : for (unsigned i = 0, e = Str.size(); i != e; ++i)
1574 : if (!isASCII(Str[i]) || !Str[i])
1575 : return true;
1576 : return false;
1577 : }
1578 :
1579 : /// getNumConcatenated - Get the number of string literal tokens that were
1580 : /// concatenated in translation phase #6 to form this string literal.
1581 : unsigned getNumConcatenated() const { return NumConcatenated; }
1582 :
1583 : SourceLocation getStrTokenLoc(unsigned TokNum) const {
1584 : assert(TokNum < NumConcatenated && "Invalid tok number");
1585 : return TokLocs[TokNum];
1586 : }
1587 : void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
1588 : assert(TokNum < NumConcatenated && "Invalid tok number");
1589 : TokLocs[TokNum] = L;
1590 : }
1591 :
1592 : /// getLocationOfByte - Return a source location that points to the specified
1593 : /// byte of this string literal.
1594 : ///
1595 : /// Strings are amazingly complex. They can be formed from multiple tokens
1596 : /// and can have escape sequences in them in addition to the usual trigraph
1597 : /// and escaped newline business. This routine handles this complexity.
1598 : ///
1599 : SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1600 : const LangOptions &Features,
1601 : const TargetInfo &Target) const;
1602 :
1603 : typedef const SourceLocation *tokloc_iterator;
1604 : tokloc_iterator tokloc_begin() const { return TokLocs; }
1605 : tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
1606 :
1607 : SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
1608 : SourceLocation getLocEnd() const LLVM_READONLY {
1609 : return TokLocs[NumConcatenated - 1];
1610 : }
1611 :
1612 : static bool classof(const Stmt *T) {
1613 : return T->getStmtClass() == StringLiteralClass;
1614 : }
1615 :
1616 : // Iterators
1617 0 : child_range children() { return child_range(); }
1618 : };
1619 :
1620 : /// ParenExpr - This represents a parethesized expression, e.g. "(1)". This
1621 : /// AST node is only formed if full location information is requested.
1622 : class ParenExpr : public Expr {
1623 : SourceLocation L, R;
1624 : Stmt *Val;
1625 : public:
1626 : ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
1627 : : Expr(ParenExprClass, val->getType(),
1628 : val->getValueKind(), val->getObjectKind(),
1629 : val->isTypeDependent(), val->isValueDependent(),
1630 : val->isInstantiationDependent(),
1631 : val->containsUnexpandedParameterPack()),
1632 : L(l), R(r), Val(val) {}
1633 :
1634 : /// \brief Construct an empty parenthesized expression.
1635 : explicit ParenExpr(EmptyShell Empty)
1636 : : Expr(ParenExprClass, Empty) { }
1637 :
1638 : const Expr *getSubExpr() const { return cast<Expr>(Val); }
1639 : Expr *getSubExpr() { return cast<Expr>(Val); }
1640 : void setSubExpr(Expr *E) { Val = E; }
1641 :
1642 : SourceLocation getLocStart() const LLVM_READONLY { return L; }
1643 : SourceLocation getLocEnd() const LLVM_READONLY { return R; }
1644 :
1645 : /// \brief Get the location of the left parentheses '('.
1646 : SourceLocation getLParen() const { return L; }
1647 : void setLParen(SourceLocation Loc) { L = Loc; }
1648 :
1649 : /// \brief Get the location of the right parentheses ')'.
1650 : SourceLocation getRParen() const { return R; }
1651 : void setRParen(SourceLocation Loc) { R = Loc; }
1652 :
1653 : static bool classof(const Stmt *T) {
1654 : return T->getStmtClass() == ParenExprClass;
1655 : }
1656 :
1657 : // Iterators
1658 0 : child_range children() { return child_range(&Val, &Val+1); }
1659 : };
1660 :
1661 :
1662 : /// UnaryOperator - This represents the unary-expression's (except sizeof and
1663 : /// alignof), the postinc/postdec operators from postfix-expression, and various
1664 : /// extensions.
1665 : ///
1666 : /// Notes on various nodes:
1667 : ///
1668 : /// Real/Imag - These return the real/imag part of a complex operand. If
1669 : /// applied to a non-complex value, the former returns its operand and the
1670 : /// later returns zero in the type of the operand.
1671 : ///
1672 : class UnaryOperator : public Expr {
1673 : public:
1674 : typedef UnaryOperatorKind Opcode;
1675 :
1676 : private:
1677 : unsigned Opc : 5;
1678 : SourceLocation Loc;
1679 : Stmt *Val;
1680 : public:
1681 :
1682 : UnaryOperator(Expr *input, Opcode opc, QualType type,
1683 : ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
1684 : : Expr(UnaryOperatorClass, type, VK, OK,
1685 : input->isTypeDependent() || type->isDependentType(),
1686 : input->isValueDependent(),
1687 : (input->isInstantiationDependent() ||
1688 : type->isInstantiationDependentType()),
1689 : input->containsUnexpandedParameterPack()),
1690 : Opc(opc), Loc(l), Val(input) {}
1691 :
1692 : /// \brief Build an empty unary operator.
1693 : explicit UnaryOperator(EmptyShell Empty)
1694 : : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
1695 :
1696 1 : Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
1697 : void setOpcode(Opcode O) { Opc = O; }
1698 :
1699 0 : Expr *getSubExpr() const { return cast<Expr>(Val); }
1700 : void setSubExpr(Expr *E) { Val = E; }
1701 :
1702 : /// getOperatorLoc - Return the location of the operator.
1703 : SourceLocation getOperatorLoc() const { return Loc; }
1704 : void setOperatorLoc(SourceLocation L) { Loc = L; }
1705 :
1706 : /// isPostfix - Return true if this is a postfix operation, like x++.
1707 : static bool isPostfix(Opcode Op) {
1708 : return Op == UO_PostInc || Op == UO_PostDec;
1709 : }
1710 :
1711 : /// isPrefix - Return true if this is a prefix operation, like --x.
1712 : static bool isPrefix(Opcode Op) {
1713 : return Op == UO_PreInc || Op == UO_PreDec;
1714 : }
1715 :
1716 : bool isPrefix() const { return isPrefix(getOpcode()); }
1717 : bool isPostfix() const { return isPostfix(getOpcode()); }
1718 :
1719 : static bool isIncrementOp(Opcode Op) {
1720 : return Op == UO_PreInc || Op == UO_PostInc;
1721 : }
1722 : bool isIncrementOp() const {
1723 : return isIncrementOp(getOpcode());
1724 : }
1725 :
1726 : static bool isDecrementOp(Opcode Op) {
1727 : return Op == UO_PreDec || Op == UO_PostDec;
1728 : }
1729 : bool isDecrementOp() const {
1730 : return isDecrementOp(getOpcode());
1731 : }
1732 :
1733 : static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
1734 : bool isIncrementDecrementOp() const {
1735 : return isIncrementDecrementOp(getOpcode());
1736 : }
1737 :
1738 : static bool isArithmeticOp(Opcode Op) {
1739 : return Op >= UO_Plus && Op <= UO_LNot;
1740 : }
1741 : bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
1742 :
1743 : /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1744 : /// corresponds to, e.g. "sizeof" or "[pre]++"
1745 : static StringRef getOpcodeStr(Opcode Op);
1746 :
1747 : /// \brief Retrieve the unary opcode that corresponds to the given
1748 : /// overloaded operator.
1749 : static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
1750 :
1751 : /// \brief Retrieve the overloaded operator kind that corresponds to
1752 : /// the given unary opcode.
1753 : static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
1754 :
1755 : SourceLocation getLocStart() const LLVM_READONLY {
1756 : return isPostfix() ? Val->getLocStart() : Loc;
1757 : }
1758 : SourceLocation getLocEnd() const LLVM_READONLY {
1759 : return isPostfix() ? Loc : Val->getLocEnd();
1760 : }
1761 : SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
1762 :
1763 : static bool classof(const Stmt *T) {
1764 148 : return T->getStmtClass() == UnaryOperatorClass;
1765 : }
1766 :
1767 : // Iterators
1768 0 : child_range children() { return child_range(&Val, &Val+1); }
1769 : };
1770 :
1771 : /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
1772 : /// offsetof(record-type, member-designator). For example, given:
1773 : /// @code
1774 : /// struct S {
1775 : /// float f;
1776 : /// double d;
1777 : /// };
1778 : /// struct T {
1779 : /// int i;
1780 : /// struct S s[10];
1781 : /// };
1782 : /// @endcode
1783 : /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
1784 :
1785 : class OffsetOfExpr : public Expr {
1786 : public:
1787 : // __builtin_offsetof(type, identifier(.identifier|[expr])*)
1788 : class OffsetOfNode {
1789 : public:
1790 : /// \brief The kind of offsetof node we have.
1791 : enum Kind {
1792 : /// \brief An index into an array.
1793 : Array = 0x00,
1794 : /// \brief A field.
1795 : Field = 0x01,
1796 : /// \brief A field in a dependent type, known only by its name.
1797 : Identifier = 0x02,
1798 : /// \brief An implicit indirection through a C++ base class, when the
1799 : /// field found is in a base class.
1800 : Base = 0x03
1801 : };
1802 :
1803 : private:
1804 : enum { MaskBits = 2, Mask = 0x03 };
1805 :
1806 : /// \brief The source range that covers this part of the designator.
1807 : SourceRange Range;
1808 :
1809 : /// \brief The data describing the designator, which comes in three
1810 : /// different forms, depending on the lower two bits.
1811 : /// - An unsigned index into the array of Expr*'s stored after this node
1812 : /// in memory, for [constant-expression] designators.
1813 : /// - A FieldDecl*, for references to a known field.
1814 : /// - An IdentifierInfo*, for references to a field with a given name
1815 : /// when the class type is dependent.
1816 : /// - A CXXBaseSpecifier*, for references that look at a field in a
1817 : /// base class.
1818 : uintptr_t Data;
1819 :
1820 : public:
1821 : /// \brief Create an offsetof node that refers to an array element.
1822 : OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
1823 : SourceLocation RBracketLoc)
1824 : : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
1825 :
1826 : /// \brief Create an offsetof node that refers to a field.
1827 : OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
1828 : SourceLocation NameLoc)
1829 : : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1830 : Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
1831 :
1832 : /// \brief Create an offsetof node that refers to an identifier.
1833 : OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
1834 : SourceLocation NameLoc)
1835 : : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
1836 : Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
1837 :
1838 : /// \brief Create an offsetof node that refers into a C++ base class.
1839 : explicit OffsetOfNode(const CXXBaseSpecifier *Base)
1840 : : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
1841 :
1842 : /// \brief Determine what kind of offsetof node this is.
1843 : Kind getKind() const {
1844 : return static_cast<Kind>(Data & Mask);
1845 : }
1846 :
1847 : /// \brief For an array element node, returns the index into the array
1848 : /// of expressions.
1849 : unsigned getArrayExprIndex() const {
1850 : assert(getKind() == Array);
1851 : return Data >> 2;
1852 : }
1853 :
1854 : /// \brief For a field offsetof node, returns the field.
1855 : FieldDecl *getField() const {
1856 : assert(getKind() == Field);
1857 : return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
1858 : }
1859 :
1860 : /// \brief For a field or identifier offsetof node, returns the name of
1861 : /// the field.
1862 : IdentifierInfo *getFieldName() const;
1863 :
1864 : /// \brief For a base class node, returns the base specifier.
1865 : CXXBaseSpecifier *getBase() const {
1866 : assert(getKind() == Base);
1867 : return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
1868 : }
1869 :
1870 : /// \brief Retrieve the source range that covers this offsetof node.
1871 : ///
1872 : /// For an array element node, the source range contains the locations of
1873 : /// the square brackets. For a field or identifier node, the source range
1874 : /// contains the location of the period (if there is one) and the
1875 : /// identifier.
1876 : SourceRange getSourceRange() const LLVM_READONLY { return Range; }
1877 : SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
1878 : SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
1879 : };
1880 :
1881 : private:
1882 :
1883 : SourceLocation OperatorLoc, RParenLoc;
1884 : // Base type;
1885 : TypeSourceInfo *TSInfo;
1886 : // Number of sub-components (i.e. instances of OffsetOfNode).
1887 : unsigned NumComps;
1888 : // Number of sub-expressions (i.e. array subscript expressions).
1889 : unsigned NumExprs;
1890 :
1891 : OffsetOfExpr(const ASTContext &C, QualType type,
1892 : SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1893 : ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1894 : SourceLocation RParenLoc);
1895 :
1896 : explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
1897 : : Expr(OffsetOfExprClass, EmptyShell()),
1898 : TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
1899 :
1900 : public:
1901 :
1902 : static OffsetOfExpr *Create(const ASTContext &C, QualType type,
1903 : SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1904 : ArrayRef<OffsetOfNode> comps,
1905 : ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
1906 :
1907 : static OffsetOfExpr *CreateEmpty(const ASTContext &C,
1908 : unsigned NumComps, unsigned NumExprs);
1909 :
1910 : /// getOperatorLoc - Return the location of the operator.
1911 : SourceLocation getOperatorLoc() const { return OperatorLoc; }
1912 : void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
1913 :
1914 : /// \brief Return the location of the right parentheses.
1915 : SourceLocation getRParenLoc() const { return RParenLoc; }
1916 : void setRParenLoc(SourceLocation R) { RParenLoc = R; }
1917 :
1918 : TypeSourceInfo *getTypeSourceInfo() const {
1919 0 : return TSInfo;
1920 : }
1921 : void setTypeSourceInfo(TypeSourceInfo *tsi) {
1922 : TSInfo = tsi;
1923 : }
1924 :
1925 : const OffsetOfNode &getComponent(unsigned Idx) const {
1926 : assert(Idx < NumComps && "Subscript out of range");
1927 : return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
1928 : }
1929 :
1930 : void setComponent(unsigned Idx, OffsetOfNode ON) {
1931 : assert(Idx < NumComps && "Subscript out of range");
1932 : reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
1933 : }
1934 :
1935 : unsigned getNumComponents() const {
1936 : return NumComps;
1937 : }
1938 :
1939 : Expr* getIndexExpr(unsigned Idx) {
1940 : assert(Idx < NumExprs && "Subscript out of range");
1941 : return reinterpret_cast<Expr **>(
1942 : reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
1943 : }
1944 : const Expr *getIndexExpr(unsigned Idx) const {
1945 : return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
1946 : }
1947 :
1948 : void setIndexExpr(unsigned Idx, Expr* E) {
1949 : assert(Idx < NumComps && "Subscript out of range");
1950 : reinterpret_cast<Expr **>(
1951 : reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
1952 : }
1953 :
1954 : unsigned getNumExpressions() const {
1955 : return NumExprs;
1956 : }
1957 :
1958 : SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
1959 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
1960 :
1961 : static bool classof(const Stmt *T) {
1962 : return T->getStmtClass() == OffsetOfExprClass;
1963 : }
1964 :
1965 : // Iterators
1966 : child_range children() {
1967 0 : Stmt **begin =
1968 0 : reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
1969 0 : + NumComps);
1970 0 : return child_range(begin, begin + NumExprs);
1971 : }
1972 : };
1973 :
1974 : /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
1975 : /// expression operand. Used for sizeof/alignof (C99 6.5.3.4) and
1976 : /// vec_step (OpenCL 1.1 6.11.12).
1977 : class UnaryExprOrTypeTraitExpr : public Expr {
1978 : union {
1979 : TypeSourceInfo *Ty;
1980 : Stmt *Ex;
1981 : } Argument;
1982 : SourceLocation OpLoc, RParenLoc;
1983 :
1984 : public:
1985 : UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
1986 : QualType resultType, SourceLocation op,
1987 : SourceLocation rp) :
1988 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1989 : false, // Never type-dependent (C++ [temp.dep.expr]p3).
1990 : // Value-dependent if the argument is type-dependent.
1991 : TInfo->getType()->isDependentType(),
1992 : TInfo->getType()->isInstantiationDependentType(),
1993 : TInfo->getType()->containsUnexpandedParameterPack()),
1994 : OpLoc(op), RParenLoc(rp) {
1995 : UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1996 : UnaryExprOrTypeTraitExprBits.IsType = true;
1997 : Argument.Ty = TInfo;
1998 : }
1999 :
2000 : UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
2001 : QualType resultType, SourceLocation op,
2002 : SourceLocation rp);
2003 :
2004 : /// \brief Construct an empty sizeof/alignof expression.
2005 : explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
2006 : : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
2007 :
2008 : UnaryExprOrTypeTrait getKind() const {
2009 : return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
2010 : }
2011 : void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
2012 :
2013 0 : bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
2014 : QualType getArgumentType() const {
2015 : return getArgumentTypeInfo()->getType();
2016 : }
2017 : TypeSourceInfo *getArgumentTypeInfo() const {
2018 0 : assert(isArgumentType() && "calling getArgumentType() when arg is expr");
2019 0 : return Argument.Ty;
2020 : }
2021 : Expr *getArgumentExpr() {
2022 : assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
2023 : return static_cast<Expr*>(Argument.Ex);
2024 : }
2025 : const Expr *getArgumentExpr() const {
2026 : return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
2027 : }
2028 :
2029 : void setArgument(Expr *E) {
2030 : Argument.Ex = E;
2031 : UnaryExprOrTypeTraitExprBits.IsType = false;
2032 : }
2033 : void setArgument(TypeSourceInfo *TInfo) {
2034 : Argument.Ty = TInfo;
2035 : UnaryExprOrTypeTraitExprBits.IsType = true;
2036 : }
2037 :
2038 : /// Gets the argument type, or the type of the argument expression, whichever
2039 : /// is appropriate.
2040 : QualType getTypeOfArgument() const {
2041 : return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
2042 : }
2043 :
2044 : SourceLocation getOperatorLoc() const { return OpLoc; }
2045 : void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2046 :
2047 : SourceLocation getRParenLoc() const { return RParenLoc; }
2048 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2049 :
2050 : SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
2051 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
2052 :
2053 : static bool classof(const Stmt *T) {
2054 : return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
2055 : }
2056 :
2057 : // Iterators
2058 : child_range children();
2059 : };
2060 :
2061 : //===----------------------------------------------------------------------===//
2062 : // Postfix Operators.
2063 : //===----------------------------------------------------------------------===//
2064 :
2065 : /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
2066 : class ArraySubscriptExpr : public Expr {
2067 : enum { LHS, RHS, END_EXPR=2 };
2068 : Stmt* SubExprs[END_EXPR];
2069 : SourceLocation RBracketLoc;
2070 : public:
2071 : ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
2072 : ExprValueKind VK, ExprObjectKind OK,
2073 : SourceLocation rbracketloc)
2074 : : Expr(ArraySubscriptExprClass, t, VK, OK,
2075 : lhs->isTypeDependent() || rhs->isTypeDependent(),
2076 : lhs->isValueDependent() || rhs->isValueDependent(),
2077 : (lhs->isInstantiationDependent() ||
2078 : rhs->isInstantiationDependent()),
2079 : (lhs->containsUnexpandedParameterPack() ||
2080 : rhs->containsUnexpandedParameterPack())),
2081 : RBracketLoc(rbracketloc) {
2082 : SubExprs[LHS] = lhs;
2083 : SubExprs[RHS] = rhs;
2084 : }
2085 :
2086 : /// \brief Create an empty array subscript expression.
2087 : explicit ArraySubscriptExpr(EmptyShell Shell)
2088 : : Expr(ArraySubscriptExprClass, Shell) { }
2089 :
2090 : /// An array access can be written A[4] or 4[A] (both are equivalent).
2091 : /// - getBase() and getIdx() always present the normalized view: A[4].
2092 : /// In this case getBase() returns "A" and getIdx() returns "4".
2093 : /// - getLHS() and getRHS() present the syntactic view. e.g. for
2094 : /// 4[A] getLHS() returns "4".
2095 : /// Note: Because vector element access is also written A[4] we must
2096 : /// predicate the format conversion in getBase and getIdx only on the
2097 : /// the type of the RHS, as it is possible for the LHS to be a vector of
2098 : /// integer type
2099 : Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
2100 : const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2101 : void setLHS(Expr *E) { SubExprs[LHS] = E; }
2102 :
2103 : Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
2104 : const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2105 : void setRHS(Expr *E) { SubExprs[RHS] = E; }
2106 :
2107 : Expr *getBase() {
2108 : return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2109 : }
2110 :
2111 : const Expr *getBase() const {
2112 : return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
2113 : }
2114 :
2115 : Expr *getIdx() {
2116 : return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2117 : }
2118 :
2119 : const Expr *getIdx() const {
2120 : return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
2121 : }
2122 :
2123 : SourceLocation getLocStart() const LLVM_READONLY {
2124 : return getLHS()->getLocStart();
2125 : }
2126 : SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
2127 :
2128 : SourceLocation getRBracketLoc() const { return RBracketLoc; }
2129 : void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
2130 :
2131 : SourceLocation getExprLoc() const LLVM_READONLY {
2132 : return getBase()->getExprLoc();
2133 : }
2134 :
2135 : static bool classof(const Stmt *T) {
2136 : return T->getStmtClass() == ArraySubscriptExprClass;
2137 : }
2138 :
2139 : // Iterators
2140 : child_range children() {
2141 0 : return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
2142 : }
2143 : };
2144 :
2145 :
2146 : /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
2147 : /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
2148 : /// while its subclasses may represent alternative syntax that (semantically)
2149 : /// results in a function call. For example, CXXOperatorCallExpr is
2150 : /// a subclass for overloaded operator calls that use operator syntax, e.g.,
2151 : /// "str1 + str2" to resolve to a function call.
2152 : class CallExpr : public Expr {
2153 : enum { FN=0, PREARGS_START=1 };
2154 : Stmt **SubExprs;
2155 : unsigned NumArgs;
2156 : SourceLocation RParenLoc;
2157 :
2158 : protected:
2159 : // These versions of the constructor are for derived classes.
2160 : CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
2161 : ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
2162 : SourceLocation rparenloc);
2163 : CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
2164 : EmptyShell Empty);
2165 :
2166 : Stmt *getPreArg(unsigned i) {
2167 : assert(i < getNumPreArgs() && "Prearg access out of range!");
2168 : return SubExprs[PREARGS_START+i];
2169 : }
2170 : const Stmt *getPreArg(unsigned i) const {
2171 : assert(i < getNumPreArgs() && "Prearg access out of range!");
2172 : return SubExprs[PREARGS_START+i];
2173 : }
2174 : void setPreArg(unsigned i, Stmt *PreArg) {
2175 : assert(i < getNumPreArgs() && "Prearg access out of range!");
2176 : SubExprs[PREARGS_START+i] = PreArg;
2177 : }
2178 :
2179 5 : unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
2180 :
2181 : public:
2182 : CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
2183 : ExprValueKind VK, SourceLocation rparenloc);
2184 :
2185 : /// \brief Build an empty call expression.
2186 : CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
2187 :
2188 : const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
2189 : Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
2190 : void setCallee(Expr *F) { SubExprs[FN] = F; }
2191 :
2192 : Decl *getCalleeDecl();
2193 : const Decl *getCalleeDecl() const {
2194 : return const_cast<CallExpr*>(this)->getCalleeDecl();
2195 : }
2196 :
2197 : /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
2198 : FunctionDecl *getDirectCallee();
2199 : const FunctionDecl *getDirectCallee() const {
2200 : return const_cast<CallExpr*>(this)->getDirectCallee();
2201 : }
2202 :
2203 : /// getNumArgs - Return the number of actual arguments to this call.
2204 : ///
2205 : unsigned getNumArgs() const { return NumArgs; }
2206 :
2207 : /// \brief Retrieve the call arguments.
2208 : Expr **getArgs() {
2209 : return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
2210 : }
2211 : const Expr *const *getArgs() const {
2212 : return const_cast<CallExpr*>(this)->getArgs();
2213 : }
2214 :
2215 : /// getArg - Return the specified argument.
2216 : Expr *getArg(unsigned Arg) {
2217 : assert(Arg < NumArgs && "Arg access out of range!");
2218 : return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2219 : }
2220 : const Expr *getArg(unsigned Arg) const {
2221 : assert(Arg < NumArgs && "Arg access out of range!");
2222 : return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
2223 : }
2224 :
2225 : /// setArg - Set the specified argument.
2226 : void setArg(unsigned Arg, Expr *ArgExpr) {
2227 : assert(Arg < NumArgs && "Arg access out of range!");
2228 : SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
2229 : }
2230 :
2231 : /// setNumArgs - This changes the number of arguments present in this call.
2232 : /// Any orphaned expressions are deleted by this, and any new operands are set
2233 : /// to null.
2234 : void setNumArgs(const ASTContext& C, unsigned NumArgs);
2235 :
2236 : typedef ExprIterator arg_iterator;
2237 : typedef ConstExprIterator const_arg_iterator;
2238 : typedef llvm::iterator_range<arg_iterator> arg_range;
2239 : typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
2240 :
2241 : arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
2242 : arg_const_range arguments() const {
2243 : return arg_const_range(arg_begin(), arg_end());
2244 : }
2245 :
2246 : arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
2247 : arg_iterator arg_end() {
2248 : return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2249 : }
2250 : const_arg_iterator arg_begin() const {
2251 : return SubExprs+PREARGS_START+getNumPreArgs();
2252 : }
2253 : const_arg_iterator arg_end() const {
2254 : return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
2255 : }
2256 :
2257 : /// This method provides fast access to all the subexpressions of
2258 : /// a CallExpr without going through the slower virtual child_iterator
2259 : /// interface. This provides efficient reverse iteration of the
2260 : /// subexpressions. This is currently used for CFG construction.
2261 : ArrayRef<Stmt*> getRawSubExprs() {
2262 : return llvm::makeArrayRef(SubExprs,
2263 : getNumPreArgs() + PREARGS_START + getNumArgs());
2264 : }
2265 :
2266 : /// getNumCommas - Return the number of commas that must have been present in
2267 : /// this function call.
2268 : unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
2269 :
2270 : /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
2271 : /// of the callee. If not, return 0.
2272 : unsigned getBuiltinCallee() const;
2273 :
2274 : /// \brief Returns \c true if this is a call to a builtin which does not
2275 : /// evaluate side-effects within its arguments.
2276 : bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
2277 :
2278 : /// getCallReturnType - Get the return type of the call expr. This is not
2279 : /// always the type of the expr itself, if the return type is a reference
2280 : /// type.
2281 : QualType getCallReturnType(const ASTContext &Ctx) const;
2282 :
2283 : SourceLocation getRParenLoc() const { return RParenLoc; }
2284 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
2285 :
2286 : SourceLocation getLocStart() const LLVM_READONLY;
2287 : SourceLocation getLocEnd() const LLVM_READONLY;
2288 :
2289 : static bool classof(const Stmt *T) {
2290 : return T->getStmtClass() >= firstCallExprConstant &&
2291 : T->getStmtClass() <= lastCallExprConstant;
2292 : }
2293 :
2294 : // Iterators
2295 : child_range children() {
2296 10 : return child_range(&SubExprs[0],
2297 5 : &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
2298 : }
2299 : };
2300 :
2301 : /// MemberExpr - [C99 6.5.2.3] Structure and Union Members. X->F and X.F.
2302 : ///
2303 : class MemberExpr : public Expr {
2304 : /// Extra data stored in some member expressions.
2305 : struct MemberNameQualifier {
2306 : /// \brief The nested-name-specifier that qualifies the name, including
2307 : /// source-location information.
2308 : NestedNameSpecifierLoc QualifierLoc;
2309 :
2310 : /// \brief The DeclAccessPair through which the MemberDecl was found due to
2311 : /// name qualifiers.
2312 : DeclAccessPair FoundDecl;
2313 : };
2314 :
2315 : /// Base - the expression for the base pointer or structure references. In
2316 : /// X.F, this is "X".
2317 : Stmt *Base;
2318 :
2319 : /// MemberDecl - This is the decl being referenced by the field/member name.
2320 : /// In X.F, this is the decl referenced by F.
2321 : ValueDecl *MemberDecl;
2322 :
2323 : /// MemberDNLoc - Provides source/type location info for the
2324 : /// declaration name embedded in MemberDecl.
2325 : DeclarationNameLoc MemberDNLoc;
2326 :
2327 : /// MemberLoc - This is the location of the member name.
2328 : SourceLocation MemberLoc;
2329 :
2330 : /// This is the location of the -> or . in the expression.
2331 : SourceLocation OperatorLoc;
2332 :
2333 : /// IsArrow - True if this is "X->F", false if this is "X.F".
2334 : bool IsArrow : 1;
2335 :
2336 : /// \brief True if this member expression used a nested-name-specifier to
2337 : /// refer to the member, e.g., "x->Base::f", or found its member via a using
2338 : /// declaration. When true, a MemberNameQualifier
2339 : /// structure is allocated immediately after the MemberExpr.
2340 : bool HasQualifierOrFoundDecl : 1;
2341 :
2342 : /// \brief True if this member expression specified a template keyword
2343 : /// and/or a template argument list explicitly, e.g., x->f<int>,
2344 : /// x->template f, x->template f<int>.
2345 : /// When true, an ASTTemplateKWAndArgsInfo structure and its
2346 : /// TemplateArguments (if any) are allocated immediately after
2347 : /// the MemberExpr or, if the member expression also has a qualifier,
2348 : /// after the MemberNameQualifier structure.
2349 : bool HasTemplateKWAndArgsInfo : 1;
2350 :
2351 : /// \brief True if this member expression refers to a method that
2352 : /// was resolved from an overloaded set having size greater than 1.
2353 : bool HadMultipleCandidates : 1;
2354 :
2355 : /// \brief Retrieve the qualifier that preceded the member name, if any.
2356 : MemberNameQualifier *getMemberQualifier() {
2357 0 : assert(HasQualifierOrFoundDecl);
2358 0 : return reinterpret_cast<MemberNameQualifier *> (this + 1);
2359 : }
2360 :
2361 : /// \brief Retrieve the qualifier that preceded the member name, if any.
2362 : const MemberNameQualifier *getMemberQualifier() const {
2363 0 : return const_cast<MemberExpr *>(this)->getMemberQualifier();
2364 : }
2365 :
2366 : public:
2367 : MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2368 : ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
2369 : QualType ty, ExprValueKind VK, ExprObjectKind OK)
2370 : : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2371 : base->isValueDependent(), base->isInstantiationDependent(),
2372 : base->containsUnexpandedParameterPack()),
2373 : Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
2374 : MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
2375 : IsArrow(isarrow), HasQualifierOrFoundDecl(false),
2376 : HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
2377 : assert(memberdecl->getDeclName() == NameInfo.getName());
2378 : }
2379 :
2380 : // NOTE: this constructor should be used only when it is known that
2381 : // the member name can not provide additional syntactic info
2382 : // (i.e., source locations for C++ operator names or type source info
2383 : // for constructors, destructors and conversion operators).
2384 : MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
2385 : ValueDecl *memberdecl, SourceLocation l, QualType ty,
2386 : ExprValueKind VK, ExprObjectKind OK)
2387 : : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
2388 : base->isValueDependent(), base->isInstantiationDependent(),
2389 : base->containsUnexpandedParameterPack()),
2390 : Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
2391 : OperatorLoc(operatorloc), IsArrow(isarrow),
2392 : HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
2393 : HadMultipleCandidates(false) {}
2394 :
2395 : static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
2396 : SourceLocation OperatorLoc,
2397 : NestedNameSpecifierLoc QualifierLoc,
2398 : SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
2399 : DeclAccessPair founddecl,
2400 : DeclarationNameInfo MemberNameInfo,
2401 : const TemplateArgumentListInfo *targs, QualType ty,
2402 : ExprValueKind VK, ExprObjectKind OK);
2403 :
2404 : void setBase(Expr *E) { Base = E; }
2405 : Expr *getBase() const { return cast<Expr>(Base); }
2406 :
2407 : /// \brief Retrieve the member declaration to which this expression refers.
2408 : ///
2409 : /// The returned declaration will either be a FieldDecl or (in C++)
2410 : /// a CXXMethodDecl.
2411 6 : ValueDecl *getMemberDecl() const { return MemberDecl; }
2412 : void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
2413 :
2414 : /// \brief Retrieves the declaration found by lookup.
2415 : DeclAccessPair getFoundDecl() const {
2416 : if (!HasQualifierOrFoundDecl)
2417 : return DeclAccessPair::make(getMemberDecl(),
2418 : getMemberDecl()->getAccess());
2419 : return getMemberQualifier()->FoundDecl;
2420 : }
2421 :
2422 : /// \brief Determines whether this member expression actually had
2423 : /// a C++ nested-name-specifier prior to the name of the member, e.g.,
2424 : /// x->Base::foo.
2425 6 : bool hasQualifier() const { return getQualifier() != nullptr; }
2426 :
2427 : /// \brief If the member name was qualified, retrieves the
2428 : /// nested-name-specifier that precedes the member name. Otherwise, returns
2429 : /// NULL.
2430 : NestedNameSpecifier *getQualifier() const {
2431 6 : if (!HasQualifierOrFoundDecl)
2432 6 : return nullptr;
2433 :
2434 0 : return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
2435 6 : }
2436 :
2437 : /// \brief If the member name was qualified, retrieves the
2438 : /// nested-name-specifier that precedes the member name, with source-location
2439 : /// information.
2440 : NestedNameSpecifierLoc getQualifierLoc() const {
2441 6 : if (!hasQualifier())
2442 6 : return NestedNameSpecifierLoc();
2443 :
2444 0 : return getMemberQualifier()->QualifierLoc;
2445 6 : }
2446 :
2447 : /// \brief Return the optional template keyword and arguments info.
2448 : ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
2449 0 : if (!HasTemplateKWAndArgsInfo)
2450 0 : return nullptr;
2451 :
2452 0 : if (!HasQualifierOrFoundDecl)
2453 0 : return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
2454 :
2455 0 : return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
2456 0 : getMemberQualifier() + 1);
2457 0 : }
2458 :
2459 : /// \brief Return the optional template keyword and arguments info.
2460 : const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
2461 0 : return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
2462 : }
2463 :
2464 : /// \brief Retrieve the location of the template keyword preceding
2465 : /// the member name, if any.
2466 : SourceLocation getTemplateKeywordLoc() const {
2467 : if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2468 : return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
2469 : }
2470 :
2471 : /// \brief Retrieve the location of the left angle bracket starting the
2472 : /// explicit template argument list following the member name, if any.
2473 : SourceLocation getLAngleLoc() const {
2474 24 : if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2475 0 : return getTemplateKWAndArgsInfo()->LAngleLoc;
2476 12 : }
2477 :
2478 : /// \brief Retrieve the location of the right angle bracket ending the
2479 : /// explicit template argument list following the member name, if any.
2480 : SourceLocation getRAngleLoc() const {
2481 : if (!HasTemplateKWAndArgsInfo) return SourceLocation();
2482 : return getTemplateKWAndArgsInfo()->RAngleLoc;
2483 : }
2484 :
2485 : /// Determines whether the member name was preceded by the template keyword.
2486 : bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
2487 :
2488 : /// \brief Determines whether the member name was followed by an
2489 : /// explicit template argument list.
2490 12 : bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
2491 :
2492 : /// \brief Copies the template arguments (if present) into the given
2493 : /// structure.
2494 : void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
2495 : if (hasExplicitTemplateArgs())
2496 : getExplicitTemplateArgs().copyInto(List);
2497 : }
2498 :
2499 : /// \brief Retrieve the explicit template argument list that
2500 : /// follow the member template name. This must only be called on an
2501 : /// expression with explicit template arguments.
2502 : ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
2503 0 : assert(hasExplicitTemplateArgs());
2504 0 : return *getTemplateKWAndArgsInfo();
2505 : }
2506 :
2507 : /// \brief Retrieve the explicit template argument list that
2508 : /// followed the member template name. This must only be called on
2509 : /// an expression with explicit template arguments.
2510 : const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
2511 0 : return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
2512 : }
2513 :
2514 : /// \brief Retrieves the optional explicit template arguments.
2515 : /// This points to the same data as getExplicitTemplateArgs(), but
2516 : /// returns null if there are no explicit template arguments.
2517 : const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
2518 : if (!hasExplicitTemplateArgs()) return nullptr;
2519 : return &getExplicitTemplateArgs();
2520 : }
2521 :
2522 : /// \brief Retrieve the template arguments provided as part of this
2523 : /// template-id.
2524 : const TemplateArgumentLoc *getTemplateArgs() const {
2525 6 : if (!hasExplicitTemplateArgs())
2526 6 : return nullptr;
2527 :
2528 0 : return getExplicitTemplateArgs().getTemplateArgs();
2529 6 : }
2530 :
2531 : /// \brief Retrieve the number of template arguments provided as part of this
2532 : /// template-id.
2533 : unsigned getNumTemplateArgs() const {
2534 6 : if (!hasExplicitTemplateArgs())
2535 6 : return 0;
2536 :
2537 0 : return getExplicitTemplateArgs().NumTemplateArgs;
2538 6 : }
2539 :
2540 : /// \brief Retrieve the member declaration name info.
2541 : DeclarationNameInfo getMemberNameInfo() const {
2542 12 : return DeclarationNameInfo(MemberDecl->getDeclName(),
2543 6 : MemberLoc, MemberDNLoc);
2544 : }
2545 :
2546 : SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
2547 :
2548 : bool isArrow() const { return IsArrow; }
2549 : void setArrow(bool A) { IsArrow = A; }
2550 :
2551 : /// getMemberLoc - Return the location of the "member", in X->F, it is the
2552 : /// location of 'F'.
2553 8 : SourceLocation getMemberLoc() const { return MemberLoc; }
2554 : void setMemberLoc(SourceLocation L) { MemberLoc = L; }
2555 :
2556 : SourceLocation getLocStart() const LLVM_READONLY;
2557 : SourceLocation getLocEnd() const LLVM_READONLY;
2558 :
2559 : SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
2560 :
2561 : /// \brief Determine whether the base of this explicit is implicit.
2562 : bool isImplicitAccess() const {
2563 : return getBase() && getBase()->isImplicitCXXThis();
2564 : }
2565 :
2566 : /// \brief Returns true if this member expression refers to a method that
2567 : /// was resolved from an overloaded set having size greater than 1.
2568 : bool hadMultipleCandidates() const {
2569 : return HadMultipleCandidates;
2570 : }
2571 : /// \brief Sets the flag telling whether this expression refers to
2572 : /// a method that was resolved from an overloaded set having size
2573 : /// greater than 1.
2574 : void setHadMultipleCandidates(bool V = true) {
2575 : HadMultipleCandidates = V;
2576 : }
2577 :
2578 : static bool classof(const Stmt *T) {
2579 : return T->getStmtClass() == MemberExprClass;
2580 : }
2581 :
2582 : // Iterators
2583 6 : child_range children() { return child_range(&Base, &Base+1); }
2584 :
2585 : friend class ASTReader;
2586 : friend class ASTStmtWriter;
2587 : };
2588 :
2589 : /// CompoundLiteralExpr - [C99 6.5.2.5]
2590 : ///
2591 : class CompoundLiteralExpr : public Expr {
2592 : /// LParenLoc - If non-null, this is the location of the left paren in a
2593 : /// compound literal like "(int){4}". This can be null if this is a
2594 : /// synthesized compound expression.
2595 : SourceLocation LParenLoc;
2596 :
2597 : /// The type as written. This can be an incomplete array type, in
2598 : /// which case the actual expression type will be different.
2599 : /// The int part of the pair stores whether this expr is file scope.
2600 : llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
2601 : Stmt *Init;
2602 : public:
2603 : CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
2604 : QualType T, ExprValueKind VK, Expr *init, bool fileScope)
2605 : : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
2606 : tinfo->getType()->isDependentType(),
2607 : init->isValueDependent(),
2608 : (init->isInstantiationDependent() ||
2609 : tinfo->getType()->isInstantiationDependentType()),
2610 : init->containsUnexpandedParameterPack()),
2611 : LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
2612 :
2613 : /// \brief Construct an empty compound literal.
2614 : explicit CompoundLiteralExpr(EmptyShell Empty)
2615 : : Expr(CompoundLiteralExprClass, Empty) { }
2616 :
2617 : const Expr *getInitializer() const { return cast<Expr>(Init); }
2618 : Expr *getInitializer() { return cast<Expr>(Init); }
2619 : void setInitializer(Expr *E) { Init = E; }
2620 :
2621 : bool isFileScope() const { return TInfoAndScope.getInt(); }
2622 : void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
2623 :
2624 : SourceLocation getLParenLoc() const { return LParenLoc; }
2625 : void setLParenLoc(SourceLocation L) { LParenLoc = L; }
2626 :
2627 : TypeSourceInfo *getTypeSourceInfo() const {
2628 0 : return TInfoAndScope.getPointer();
2629 : }
2630 : void setTypeSourceInfo(TypeSourceInfo *tinfo) {
2631 : TInfoAndScope.setPointer(tinfo);
2632 : }
2633 :
2634 : SourceLocation getLocStart() const LLVM_READONLY {
2635 : // FIXME: Init should never be null.
2636 : if (!Init)
2637 : return SourceLocation();
2638 : if (LParenLoc.isInvalid())
2639 : return Init->getLocStart();
2640 : return LParenLoc;
2641 : }
2642 : SourceLocation getLocEnd() const LLVM_READONLY {
2643 : // FIXME: Init should never be null.
2644 : if (!Init)
2645 : return SourceLocation();
2646 : return Init->getLocEnd();
2647 : }
2648 :
2649 : static bool classof(const Stmt *T) {
2650 : return T->getStmtClass() == CompoundLiteralExprClass;
2651 : }
2652 :
2653 : // Iterators
2654 0 : child_range children() { return child_range(&Init, &Init+1); }
2655 : };
2656 :
2657 : /// CastExpr - Base class for type casts, including both implicit
2658 : /// casts (ImplicitCastExpr) and explicit casts that have some
2659 : /// representation in the source code (ExplicitCastExpr's derived
2660 : /// classes).
2661 : class CastExpr : public Expr {
2662 : private:
2663 : Stmt *Op;
2664 :
2665 : bool CastConsistency() const;
2666 :
2667 : const CXXBaseSpecifier * const *path_buffer() const {
2668 : return const_cast<CastExpr*>(this)->path_buffer();
2669 : }
2670 : CXXBaseSpecifier **path_buffer();
2671 :
2672 : void setBasePathSize(unsigned basePathSize) {
2673 : CastExprBits.BasePathSize = basePathSize;
2674 : assert(CastExprBits.BasePathSize == basePathSize &&
2675 : "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
2676 : }
2677 :
2678 : protected:
2679 : CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
2680 : Expr *op, unsigned BasePathSize)
2681 : : Expr(SC, ty, VK, OK_Ordinary,
2682 : // Cast expressions are type-dependent if the type is
2683 : // dependent (C++ [temp.dep.expr]p3).
2684 : ty->isDependentType(),
2685 : // Cast expressions are value-dependent if the type is
2686 : // dependent or if the subexpression is value-dependent.
2687 : ty->isDependentType() || (op && op->isValueDependent()),
2688 : (ty->isInstantiationDependentType() ||
2689 : (op && op->isInstantiationDependent())),
2690 : // An implicit cast expression doesn't (lexically) contain an
2691 : // unexpanded pack, even if its target type does.
2692 : ((SC != ImplicitCastExprClass &&
2693 : ty->containsUnexpandedParameterPack()) ||
2694 : (op && op->containsUnexpandedParameterPack()))),
2695 : Op(op) {
2696 : assert(kind != CK_Invalid && "creating cast with invalid cast kind");
2697 : CastExprBits.Kind = kind;
2698 : setBasePathSize(BasePathSize);
2699 : assert(CastConsistency());
2700 : }
2701 :
2702 : /// \brief Construct an empty cast.
2703 : CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
2704 : : Expr(SC, Empty) {
2705 : setBasePathSize(BasePathSize);
2706 : }
2707 :
2708 : public:
2709 : CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
2710 : void setCastKind(CastKind K) { CastExprBits.Kind = K; }
2711 : const char *getCastKindName() const;
2712 :
2713 : Expr *getSubExpr() { return cast<Expr>(Op); }
2714 : const Expr *getSubExpr() const { return cast<Expr>(Op); }
2715 : void setSubExpr(Expr *E) { Op = E; }
2716 :
2717 : /// \brief Retrieve the cast subexpression as it was written in the source
2718 : /// code, looking through any implicit casts or other intermediate nodes
2719 : /// introduced by semantic analysis.
2720 : Expr *getSubExprAsWritten();
2721 : const Expr *getSubExprAsWritten() const {
2722 : return const_cast<CastExpr *>(this)->getSubExprAsWritten();
2723 : }
2724 :
2725 : typedef CXXBaseSpecifier **path_iterator;
2726 : typedef const CXXBaseSpecifier * const *path_const_iterator;
2727 : bool path_empty() const { return CastExprBits.BasePathSize == 0; }
2728 : unsigned path_size() const { return CastExprBits.BasePathSize; }
2729 : path_iterator path_begin() { return path_buffer(); }
2730 : path_iterator path_end() { return path_buffer() + path_size(); }
2731 : path_const_iterator path_begin() const { return path_buffer(); }
2732 : path_const_iterator path_end() const { return path_buffer() + path_size(); }
2733 :
2734 : void setCastPath(const CXXCastPath &Path);
2735 :
2736 : static bool classof(const Stmt *T) {
2737 : return T->getStmtClass() >= firstCastExprConstant &&
2738 : T->getStmtClass() <= lastCastExprConstant;
2739 : }
2740 :
2741 : // Iterators
2742 13 : child_range children() { return child_range(&Op, &Op+1); }
2743 : };
2744 :
2745 : /// ImplicitCastExpr - Allows us to explicitly represent implicit type
2746 : /// conversions, which have no direct representation in the original
2747 : /// source code. For example: converting T[]->T*, void f()->void
2748 : /// (*f)(), float->double, short->int, etc.
2749 : ///
2750 : /// In C, implicit casts always produce rvalues. However, in C++, an
2751 : /// implicit cast whose result is being bound to a reference will be
2752 : /// an lvalue or xvalue. For example:
2753 : ///
2754 : /// @code
2755 : /// class Base { };
2756 : /// class Derived : public Base { };
2757 : /// Derived &&ref();
2758 : /// void f(Derived d) {
2759 : /// Base& b = d; // initializer is an ImplicitCastExpr
2760 : /// // to an lvalue of type Base
2761 : /// Base&& r = ref(); // initializer is an ImplicitCastExpr
2762 : /// // to an xvalue of type Base
2763 : /// }
2764 : /// @endcode
2765 : class ImplicitCastExpr : public CastExpr {
2766 : private:
2767 : ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
2768 : unsigned BasePathLength, ExprValueKind VK)
2769 : : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
2770 : }
2771 :
2772 : /// \brief Construct an empty implicit cast.
2773 : explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
2774 : : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
2775 :
2776 : public:
2777 : enum OnStack_t { OnStack };
2778 : ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
2779 : ExprValueKind VK)
2780 : : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
2781 : }
2782 :
2783 : static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
2784 : CastKind Kind, Expr *Operand,
2785 : const CXXCastPath *BasePath,
2786 : ExprValueKind Cat);
2787 :
2788 : static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
2789 : unsigned PathSize);
2790 :
2791 : SourceLocation getLocStart() const LLVM_READONLY {
2792 : return getSubExpr()->getLocStart();
2793 : }
2794 : SourceLocation getLocEnd() const LLVM_READONLY {
2795 : return getSubExpr()->getLocEnd();
2796 : }
2797 :
2798 : static bool classof(const Stmt *T) {
2799 : return T->getStmtClass() == ImplicitCastExprClass;
2800 : }
2801 : };
2802 :
2803 : inline Expr *Expr::IgnoreImpCasts() {
2804 : Expr *e = this;
2805 : while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
2806 : e = ice->getSubExpr();
2807 : return e;
2808 : }
2809 :
2810 : /// ExplicitCastExpr - An explicit cast written in the source
2811 : /// code.
2812 : ///
2813 : /// This class is effectively an abstract class, because it provides
2814 : /// the basic representation of an explicitly-written cast without
2815 : /// specifying which kind of cast (C cast, functional cast, static
2816 : /// cast, etc.) was written; specific derived classes represent the
2817 : /// particular style of cast and its location information.
2818 : ///
2819 : /// Unlike implicit casts, explicit cast nodes have two different
2820 : /// types: the type that was written into the source code, and the
2821 : /// actual type of the expression as determined by semantic
2822 : /// analysis. These types may differ slightly. For example, in C++ one
2823 : /// can cast to a reference type, which indicates that the resulting
2824 : /// expression will be an lvalue or xvalue. The reference type, however,
2825 : /// will not be used as the type of the expression.
2826 : class ExplicitCastExpr : public CastExpr {
2827 : /// TInfo - Source type info for the (written) type
2828 : /// this expression is casting to.
2829 : TypeSourceInfo *TInfo;
2830 :
2831 : protected:
2832 : ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
2833 : CastKind kind, Expr *op, unsigned PathSize,
2834 : TypeSourceInfo *writtenTy)
2835 : : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
2836 :
2837 : /// \brief Construct an empty explicit cast.
2838 : ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
2839 : : CastExpr(SC, Shell, PathSize) { }
2840 :
2841 : public:
2842 : /// getTypeInfoAsWritten - Returns the type source info for the type
2843 : /// that this expression is casting to.
2844 4 : TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
2845 : void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
2846 :
2847 : /// getTypeAsWritten - Returns the type that this expression is
2848 : /// casting to, as written in the source code.
2849 : QualType getTypeAsWritten() const { return TInfo->getType(); }
2850 :
2851 : static bool classof(const Stmt *T) {
2852 : return T->getStmtClass() >= firstExplicitCastExprConstant &&
2853 : T->getStmtClass() <= lastExplicitCastExprConstant;
2854 : }
2855 : };
2856 :
2857 : /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
2858 : /// cast in C++ (C++ [expr.cast]), which uses the syntax
2859 : /// (Type)expr. For example: @c (int)f.
2860 : class CStyleCastExpr : public ExplicitCastExpr {
2861 : SourceLocation LPLoc; // the location of the left paren
2862 : SourceLocation RPLoc; // the location of the right paren
2863 :
2864 : CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
2865 : unsigned PathSize, TypeSourceInfo *writtenTy,
2866 : SourceLocation l, SourceLocation r)
2867 : : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
2868 : writtenTy), LPLoc(l), RPLoc(r) {}
2869 :
2870 : /// \brief Construct an empty C-style explicit cast.
2871 : explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
2872 : : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
2873 :
2874 : public:
2875 : static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
2876 : ExprValueKind VK, CastKind K,
2877 : Expr *Op, const CXXCastPath *BasePath,
2878 : TypeSourceInfo *WrittenTy, SourceLocation L,
2879 : SourceLocation R);
2880 :
2881 : static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
2882 : unsigned PathSize);
2883 :
2884 : SourceLocation getLParenLoc() const { return LPLoc; }
2885 : void setLParenLoc(SourceLocation L) { LPLoc = L; }
2886 :
2887 : SourceLocation getRParenLoc() const { return RPLoc; }
2888 : void setRParenLoc(SourceLocation L) { RPLoc = L; }
2889 :
2890 : SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
2891 : SourceLocation getLocEnd() const LLVM_READONLY {
2892 : return getSubExpr()->getLocEnd();
2893 : }
2894 :
2895 : static bool classof(const Stmt *T) {
2896 : return T->getStmtClass() == CStyleCastExprClass;
2897 : }
2898 : };
2899 :
2900 : /// \brief A builtin binary operation expression such as "x + y" or "x <= y".
2901 : ///
2902 : /// This expression node kind describes a builtin binary operation,
2903 : /// such as "x + y" for integer values "x" and "y". The operands will
2904 : /// already have been converted to appropriate types (e.g., by
2905 : /// performing promotions or conversions).
2906 : ///
2907 : /// In C++, where operators may be overloaded, a different kind of
2908 : /// expression node (CXXOperatorCallExpr) is used to express the
2909 : /// invocation of an overloaded operator with operator syntax. Within
2910 : /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
2911 : /// used to store an expression "x + y" depends on the subexpressions
2912 : /// for x and y. If neither x or y is type-dependent, and the "+"
2913 : /// operator resolves to a built-in operation, BinaryOperator will be
2914 : /// used to express the computation (x and y may still be
2915 : /// value-dependent). If either x or y is type-dependent, or if the
2916 : /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
2917 : /// be used to express the computation.
2918 : class BinaryOperator : public Expr {
2919 : public:
2920 : typedef BinaryOperatorKind Opcode;
2921 :
2922 : private:
2923 : unsigned Opc : 6;
2924 :
2925 : // Records the FP_CONTRACT pragma status at the point that this binary
2926 : // operator was parsed. This bit is only meaningful for operations on
2927 : // floating point types. For all other types it should default to
2928 : // false.
2929 : unsigned FPContractable : 1;
2930 : SourceLocation OpLoc;
2931 :
2932 : enum { LHS, RHS, END_EXPR };
2933 : Stmt* SubExprs[END_EXPR];
2934 : public:
2935 :
2936 : BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
2937 : ExprValueKind VK, ExprObjectKind OK,
2938 : SourceLocation opLoc, bool fpContractable)
2939 : : Expr(BinaryOperatorClass, ResTy, VK, OK,
2940 : lhs->isTypeDependent() || rhs->isTypeDependent(),
2941 : lhs->isValueDependent() || rhs->isValueDependent(),
2942 : (lhs->isInstantiationDependent() ||
2943 : rhs->isInstantiationDependent()),
2944 : (lhs->containsUnexpandedParameterPack() ||
2945 : rhs->containsUnexpandedParameterPack())),
2946 : Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
2947 : SubExprs[LHS] = lhs;
2948 : SubExprs[RHS] = rhs;
2949 : assert(!isCompoundAssignmentOp() &&
2950 : "Use CompoundAssignOperator for compound assignments");
2951 : }
2952 :
2953 : /// \brief Construct an empty binary operator.
2954 : explicit BinaryOperator(EmptyShell Empty)
2955 : : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
2956 :
2957 : SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
2958 : SourceLocation getOperatorLoc() const { return OpLoc; }
2959 : void setOperatorLoc(SourceLocation L) { OpLoc = L; }
2960 :
2961 1 : Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
2962 : void setOpcode(Opcode O) { Opc = O; }
2963 :
2964 0 : Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
2965 : void setLHS(Expr *E) { SubExprs[LHS] = E; }
2966 0 : Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
2967 : void setRHS(Expr *E) { SubExprs[RHS] = E; }
2968 :
2969 : SourceLocation getLocStart() const LLVM_READONLY {
2970 : return getLHS()->getLocStart();
2971 : }
2972 : SourceLocation getLocEnd() const LLVM_READONLY {
2973 : return getRHS()->getLocEnd();
2974 : }
2975 :
2976 : /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2977 : /// corresponds to, e.g. "<<=".
2978 : static StringRef getOpcodeStr(Opcode Op);
2979 :
2980 : StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
2981 :
2982 : /// \brief Retrieve the binary opcode that corresponds to the given
2983 : /// overloaded operator.
2984 : static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
2985 :
2986 : /// \brief Retrieve the overloaded operator kind that corresponds to
2987 : /// the given binary opcode.
2988 : static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
2989 :
2990 : /// predicates to categorize the respective opcodes.
2991 : bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
2992 : bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
2993 : static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
2994 : bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
2995 : static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
2996 : bool isShiftOp() const { return isShiftOp(getOpcode()); }
2997 :
2998 : static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
2999 : bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
3000 :
3001 : static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
3002 : bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
3003 :
3004 : static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
3005 : bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
3006 :
3007 : static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
3008 : bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
3009 :
3010 : static Opcode negateComparisonOp(Opcode Opc) {
3011 : switch (Opc) {
3012 : default:
3013 : llvm_unreachable("Not a comparsion operator.");
3014 : case BO_LT: return BO_GE;
3015 : case BO_GT: return BO_LE;
3016 : case BO_LE: return BO_GT;
3017 : case BO_GE: return BO_LT;
3018 : case BO_EQ: return BO_NE;
3019 : case BO_NE: return BO_EQ;
3020 : }
3021 : }
3022 :
3023 : static Opcode reverseComparisonOp(Opcode Opc) {
3024 : switch (Opc) {
3025 : default:
3026 : llvm_unreachable("Not a comparsion operator.");
3027 : case BO_LT: return BO_GT;
3028 : case BO_GT: return BO_LT;
3029 : case BO_LE: return BO_GE;
3030 : case BO_GE: return BO_LE;
3031 : case BO_EQ:
3032 : case BO_NE:
3033 : return Opc;
3034 : }
3035 : }
3036 :
3037 : static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
3038 : bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
3039 :
3040 : static bool isAssignmentOp(Opcode Opc) {
3041 : return Opc >= BO_Assign && Opc <= BO_OrAssign;
3042 : }
3043 : bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
3044 :
3045 : static bool isCompoundAssignmentOp(Opcode Opc) {
3046 : return Opc > BO_Assign && Opc <= BO_OrAssign;
3047 : }
3048 : bool isCompoundAssignmentOp() const {
3049 : return isCompoundAssignmentOp(getOpcode());
3050 : }
3051 : static Opcode getOpForCompoundAssignment(Opcode Opc) {
3052 : assert(isCompoundAssignmentOp(Opc));
3053 : if (Opc >= BO_AndAssign)
3054 : return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
3055 : else
3056 : return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
3057 : }
3058 :
3059 : static bool isShiftAssignOp(Opcode Opc) {
3060 : return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
3061 : }
3062 : bool isShiftAssignOp() const {
3063 : return isShiftAssignOp(getOpcode());
3064 : }
3065 :
3066 : static bool classof(const Stmt *S) {
3067 306 : return S->getStmtClass() >= firstBinaryOperatorConstant &&
3068 115 : S->getStmtClass() <= lastBinaryOperatorConstant;
3069 : }
3070 :
3071 : // Iterators
3072 : child_range children() {
3073 0 : return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3074 : }
3075 :
3076 : // Set the FP contractability status of this operator. Only meaningful for
3077 : // operations on floating point types.
3078 : void setFPContractable(bool FPC) { FPContractable = FPC; }
3079 :
3080 : // Get the FP contractability status of this operator. Only meaningful for
3081 : // operations on floating point types.
3082 : bool isFPContractable() const { return FPContractable; }
3083 :
3084 : protected:
3085 : BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
3086 : ExprValueKind VK, ExprObjectKind OK,
3087 : SourceLocation opLoc, bool fpContractable, bool dead2)
3088 : : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
3089 : lhs->isTypeDependent() || rhs->isTypeDependent(),
3090 : lhs->isValueDependent() || rhs->isValueDependent(),
3091 : (lhs->isInstantiationDependent() ||
3092 : rhs->isInstantiationDependent()),
3093 : (lhs->containsUnexpandedParameterPack() ||
3094 : rhs->containsUnexpandedParameterPack())),
3095 : Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
3096 : SubExprs[LHS] = lhs;
3097 : SubExprs[RHS] = rhs;
3098 : }
3099 :
3100 : BinaryOperator(StmtClass SC, EmptyShell Empty)
3101 : : Expr(SC, Empty), Opc(BO_MulAssign) { }
3102 : };
3103 :
3104 : /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
3105 : /// track of the type the operation is performed in. Due to the semantics of
3106 : /// these operators, the operands are promoted, the arithmetic performed, an
3107 : /// implicit conversion back to the result type done, then the assignment takes
3108 : /// place. This captures the intermediate type which the computation is done
3109 : /// in.
3110 : class CompoundAssignOperator : public BinaryOperator {
3111 : QualType ComputationLHSType;
3112 : QualType ComputationResultType;
3113 : public:
3114 : CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
3115 : ExprValueKind VK, ExprObjectKind OK,
3116 : QualType CompLHSType, QualType CompResultType,
3117 : SourceLocation OpLoc, bool fpContractable)
3118 : : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
3119 : true),
3120 : ComputationLHSType(CompLHSType),
3121 : ComputationResultType(CompResultType) {
3122 : assert(isCompoundAssignmentOp() &&
3123 : "Only should be used for compound assignments");
3124 : }
3125 :
3126 : /// \brief Build an empty compound assignment operator expression.
3127 : explicit CompoundAssignOperator(EmptyShell Empty)
3128 : : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
3129 :
3130 : // The two computation types are the type the LHS is converted
3131 : // to for the computation and the type of the result; the two are
3132 : // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
3133 : QualType getComputationLHSType() const { return ComputationLHSType; }
3134 : void setComputationLHSType(QualType T) { ComputationLHSType = T; }
3135 :
3136 : QualType getComputationResultType() const { return ComputationResultType; }
3137 : void setComputationResultType(QualType T) { ComputationResultType = T; }
3138 :
3139 : static bool classof(const Stmt *S) {
3140 : return S->getStmtClass() == CompoundAssignOperatorClass;
3141 : }
3142 : };
3143 :
3144 : /// AbstractConditionalOperator - An abstract base class for
3145 : /// ConditionalOperator and BinaryConditionalOperator.
3146 : class AbstractConditionalOperator : public Expr {
3147 : SourceLocation QuestionLoc, ColonLoc;
3148 : friend class ASTStmtReader;
3149 :
3150 : protected:
3151 : AbstractConditionalOperator(StmtClass SC, QualType T,
3152 : ExprValueKind VK, ExprObjectKind OK,
3153 : bool TD, bool VD, bool ID,
3154 : bool ContainsUnexpandedParameterPack,
3155 : SourceLocation qloc,
3156 : SourceLocation cloc)
3157 : : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
3158 : QuestionLoc(qloc), ColonLoc(cloc) {}
3159 :
3160 : AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
3161 : : Expr(SC, Empty) { }
3162 :
3163 : public:
3164 : // getCond - Return the expression representing the condition for
3165 : // the ?: operator.
3166 : Expr *getCond() const;
3167 :
3168 : // getTrueExpr - Return the subexpression representing the value of
3169 : // the expression if the condition evaluates to true.
3170 : Expr *getTrueExpr() const;
3171 :
3172 : // getFalseExpr - Return the subexpression representing the value of
3173 : // the expression if the condition evaluates to false. This is
3174 : // the same as getRHS.
3175 : Expr *getFalseExpr() const;
3176 :
3177 : SourceLocation getQuestionLoc() const { return QuestionLoc; }
3178 : SourceLocation getColonLoc() const { return ColonLoc; }
3179 :
3180 : static bool classof(const Stmt *T) {
3181 : return T->getStmtClass() == ConditionalOperatorClass ||
3182 : T->getStmtClass() == BinaryConditionalOperatorClass;
3183 : }
3184 : };
3185 :
3186 : /// ConditionalOperator - The ?: ternary operator. The GNU "missing
3187 : /// middle" extension is a BinaryConditionalOperator.
3188 : class ConditionalOperator : public AbstractConditionalOperator {
3189 : enum { COND, LHS, RHS, END_EXPR };
3190 : Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3191 :
3192 : friend class ASTStmtReader;
3193 : public:
3194 : ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
3195 : SourceLocation CLoc, Expr *rhs,
3196 : QualType t, ExprValueKind VK, ExprObjectKind OK)
3197 : : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
3198 : // FIXME: the type of the conditional operator doesn't
3199 : // depend on the type of the conditional, but the standard
3200 : // seems to imply that it could. File a bug!
3201 : (lhs->isTypeDependent() || rhs->isTypeDependent()),
3202 : (cond->isValueDependent() || lhs->isValueDependent() ||
3203 : rhs->isValueDependent()),
3204 : (cond->isInstantiationDependent() ||
3205 : lhs->isInstantiationDependent() ||
3206 : rhs->isInstantiationDependent()),
3207 : (cond->containsUnexpandedParameterPack() ||
3208 : lhs->containsUnexpandedParameterPack() ||
3209 : rhs->containsUnexpandedParameterPack()),
3210 : QLoc, CLoc) {
3211 : SubExprs[COND] = cond;
3212 : SubExprs[LHS] = lhs;
3213 : SubExprs[RHS] = rhs;
3214 : }
3215 :
3216 : /// \brief Build an empty conditional operator.
3217 : explicit ConditionalOperator(EmptyShell Empty)
3218 : : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
3219 :
3220 : // getCond - Return the expression representing the condition for
3221 : // the ?: operator.
3222 : Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3223 :
3224 : // getTrueExpr - Return the subexpression representing the value of
3225 : // the expression if the condition evaluates to true.
3226 : Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
3227 :
3228 : // getFalseExpr - Return the subexpression representing the value of
3229 : // the expression if the condition evaluates to false. This is
3230 : // the same as getRHS.
3231 : Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
3232 :
3233 : Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3234 : Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3235 :
3236 : SourceLocation getLocStart() const LLVM_READONLY {
3237 : return getCond()->getLocStart();
3238 : }
3239 : SourceLocation getLocEnd() const LLVM_READONLY {
3240 : return getRHS()->getLocEnd();
3241 : }
3242 :
3243 : static bool classof(const Stmt *T) {
3244 : return T->getStmtClass() == ConditionalOperatorClass;
3245 : }
3246 :
3247 : // Iterators
3248 : child_range children() {
3249 0 : return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3250 : }
3251 : };
3252 :
3253 : /// BinaryConditionalOperator - The GNU extension to the conditional
3254 : /// operator which allows the middle operand to be omitted.
3255 : ///
3256 : /// This is a different expression kind on the assumption that almost
3257 : /// every client ends up needing to know that these are different.
3258 : class BinaryConditionalOperator : public AbstractConditionalOperator {
3259 : enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
3260 :
3261 : /// - the common condition/left-hand-side expression, which will be
3262 : /// evaluated as the opaque value
3263 : /// - the condition, expressed in terms of the opaque value
3264 : /// - the left-hand-side, expressed in terms of the opaque value
3265 : /// - the right-hand-side
3266 : Stmt *SubExprs[NUM_SUBEXPRS];
3267 : OpaqueValueExpr *OpaqueValue;
3268 :
3269 : friend class ASTStmtReader;
3270 : public:
3271 : BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
3272 : Expr *cond, Expr *lhs, Expr *rhs,
3273 : SourceLocation qloc, SourceLocation cloc,
3274 : QualType t, ExprValueKind VK, ExprObjectKind OK)
3275 : : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
3276 : (common->isTypeDependent() || rhs->isTypeDependent()),
3277 : (common->isValueDependent() || rhs->isValueDependent()),
3278 : (common->isInstantiationDependent() ||
3279 : rhs->isInstantiationDependent()),
3280 : (common->containsUnexpandedParameterPack() ||
3281 : rhs->containsUnexpandedParameterPack()),
3282 : qloc, cloc),
3283 : OpaqueValue(opaqueValue) {
3284 : SubExprs[COMMON] = common;
3285 : SubExprs[COND] = cond;
3286 : SubExprs[LHS] = lhs;
3287 : SubExprs[RHS] = rhs;
3288 : assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
3289 : }
3290 :
3291 : /// \brief Build an empty conditional operator.
3292 : explicit BinaryConditionalOperator(EmptyShell Empty)
3293 : : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
3294 :
3295 : /// \brief getCommon - Return the common expression, written to the
3296 : /// left of the condition. The opaque value will be bound to the
3297 : /// result of this expression.
3298 : Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
3299 :
3300 : /// \brief getOpaqueValue - Return the opaque value placeholder.
3301 : OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
3302 :
3303 : /// \brief getCond - Return the condition expression; this is defined
3304 : /// in terms of the opaque value.
3305 : Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3306 :
3307 : /// \brief getTrueExpr - Return the subexpression which will be
3308 : /// evaluated if the condition evaluates to true; this is defined
3309 : /// in terms of the opaque value.
3310 : Expr *getTrueExpr() const {
3311 : return cast<Expr>(SubExprs[LHS]);
3312 : }
3313 :
3314 : /// \brief getFalseExpr - Return the subexpression which will be
3315 : /// evaluated if the condnition evaluates to false; this is
3316 : /// defined in terms of the opaque value.
3317 : Expr *getFalseExpr() const {
3318 : return cast<Expr>(SubExprs[RHS]);
3319 : }
3320 :
3321 : SourceLocation getLocStart() const LLVM_READONLY {
3322 : return getCommon()->getLocStart();
3323 : }
3324 : SourceLocation getLocEnd() const LLVM_READONLY {
3325 : return getFalseExpr()->getLocEnd();
3326 : }
3327 :
3328 : static bool classof(const Stmt *T) {
3329 : return T->getStmtClass() == BinaryConditionalOperatorClass;
3330 : }
3331 :
3332 : // Iterators
3333 : child_range children() {
3334 0 : return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
3335 : }
3336 : };
3337 :
3338 : inline Expr *AbstractConditionalOperator::getCond() const {
3339 : if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3340 : return co->getCond();
3341 : return cast<BinaryConditionalOperator>(this)->getCond();
3342 : }
3343 :
3344 : inline Expr *AbstractConditionalOperator::getTrueExpr() const {
3345 : if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3346 : return co->getTrueExpr();
3347 : return cast<BinaryConditionalOperator>(this)->getTrueExpr();
3348 : }
3349 :
3350 : inline Expr *AbstractConditionalOperator::getFalseExpr() const {
3351 : if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
3352 : return co->getFalseExpr();
3353 : return cast<BinaryConditionalOperator>(this)->getFalseExpr();
3354 : }
3355 :
3356 : /// AddrLabelExpr - The GNU address of label extension, representing &&label.
3357 : class AddrLabelExpr : public Expr {
3358 : SourceLocation AmpAmpLoc, LabelLoc;
3359 : LabelDecl *Label;
3360 : public:
3361 : AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
3362 : QualType t)
3363 : : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
3364 : false),
3365 : AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
3366 :
3367 : /// \brief Build an empty address of a label expression.
3368 : explicit AddrLabelExpr(EmptyShell Empty)
3369 : : Expr(AddrLabelExprClass, Empty) { }
3370 :
3371 : SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
3372 : void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
3373 : SourceLocation getLabelLoc() const { return LabelLoc; }
3374 : void setLabelLoc(SourceLocation L) { LabelLoc = L; }
3375 :
3376 : SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
3377 : SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
3378 :
3379 : LabelDecl *getLabel() const { return Label; }
3380 : void setLabel(LabelDecl *L) { Label = L; }
3381 :
3382 : static bool classof(const Stmt *T) {
3383 : return T->getStmtClass() == AddrLabelExprClass;
3384 : }
3385 :
3386 : // Iterators
3387 0 : child_range children() { return child_range(); }
3388 : };
3389 :
3390 : /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
3391 : /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
3392 : /// takes the value of the last subexpression.
3393 : ///
3394 : /// A StmtExpr is always an r-value; values "returned" out of a
3395 : /// StmtExpr will be copied.
3396 : class StmtExpr : public Expr {
3397 : Stmt *SubStmt;
3398 : SourceLocation LParenLoc, RParenLoc;
3399 : public:
3400 : // FIXME: Does type-dependence need to be computed differently?
3401 : // FIXME: Do we need to compute instantiation instantiation-dependence for
3402 : // statements? (ugh!)
3403 : StmtExpr(CompoundStmt *substmt, QualType T,
3404 : SourceLocation lp, SourceLocation rp) :
3405 : Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
3406 : T->isDependentType(), false, false, false),
3407 : SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
3408 :
3409 : /// \brief Build an empty statement expression.
3410 : explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
3411 :
3412 : CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
3413 : const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
3414 : void setSubStmt(CompoundStmt *S) { SubStmt = S; }
3415 :
3416 : SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
3417 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3418 :
3419 : SourceLocation getLParenLoc() const { return LParenLoc; }
3420 : void setLParenLoc(SourceLocation L) { LParenLoc = L; }
3421 : SourceLocation getRParenLoc() const { return RParenLoc; }
3422 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3423 :
3424 : static bool classof(const Stmt *T) {
3425 : return T->getStmtClass() == StmtExprClass;
3426 : }
3427 :
3428 : // Iterators
3429 0 : child_range children() { return child_range(&SubStmt, &SubStmt+1); }
3430 : };
3431 :
3432 :
3433 : /// ShuffleVectorExpr - clang-specific builtin-in function
3434 : /// __builtin_shufflevector.
3435 : /// This AST node represents a operator that does a constant
3436 : /// shuffle, similar to LLVM's shufflevector instruction. It takes
3437 : /// two vectors and a variable number of constant indices,
3438 : /// and returns the appropriately shuffled vector.
3439 : class ShuffleVectorExpr : public Expr {
3440 : SourceLocation BuiltinLoc, RParenLoc;
3441 :
3442 : // SubExprs - the list of values passed to the __builtin_shufflevector
3443 : // function. The first two are vectors, and the rest are constant
3444 : // indices. The number of values in this list is always
3445 : // 2+the number of indices in the vector type.
3446 : Stmt **SubExprs;
3447 : unsigned NumExprs;
3448 :
3449 : public:
3450 : ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
3451 : SourceLocation BLoc, SourceLocation RP);
3452 :
3453 : /// \brief Build an empty vector-shuffle expression.
3454 : explicit ShuffleVectorExpr(EmptyShell Empty)
3455 : : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
3456 :
3457 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3458 : void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3459 :
3460 : SourceLocation getRParenLoc() const { return RParenLoc; }
3461 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3462 :
3463 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3464 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3465 :
3466 : static bool classof(const Stmt *T) {
3467 : return T->getStmtClass() == ShuffleVectorExprClass;
3468 : }
3469 :
3470 : /// getNumSubExprs - Return the size of the SubExprs array. This includes the
3471 : /// constant expression, the actual arguments passed in, and the function
3472 : /// pointers.
3473 : unsigned getNumSubExprs() const { return NumExprs; }
3474 :
3475 : /// \brief Retrieve the array of expressions.
3476 : Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
3477 :
3478 : /// getExpr - Return the Expr at the specified index.
3479 : Expr *getExpr(unsigned Index) {
3480 : assert((Index < NumExprs) && "Arg access out of range!");
3481 : return cast<Expr>(SubExprs[Index]);
3482 : }
3483 : const Expr *getExpr(unsigned Index) const {
3484 : assert((Index < NumExprs) && "Arg access out of range!");
3485 : return cast<Expr>(SubExprs[Index]);
3486 : }
3487 :
3488 : void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
3489 :
3490 : llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
3491 : assert((N < NumExprs - 2) && "Shuffle idx out of range!");
3492 : return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
3493 : }
3494 :
3495 : // Iterators
3496 : child_range children() {
3497 0 : return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
3498 : }
3499 : };
3500 :
3501 : /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
3502 : /// This AST node provides support for converting a vector type to another
3503 : /// vector type of the same arity.
3504 : class ConvertVectorExpr : public Expr {
3505 : private:
3506 : Stmt *SrcExpr;
3507 : TypeSourceInfo *TInfo;
3508 : SourceLocation BuiltinLoc, RParenLoc;
3509 :
3510 : friend class ASTReader;
3511 : friend class ASTStmtReader;
3512 : explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
3513 :
3514 : public:
3515 : ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
3516 : ExprValueKind VK, ExprObjectKind OK,
3517 : SourceLocation BuiltinLoc, SourceLocation RParenLoc)
3518 : : Expr(ConvertVectorExprClass, DstType, VK, OK,
3519 : DstType->isDependentType(),
3520 : DstType->isDependentType() || SrcExpr->isValueDependent(),
3521 : (DstType->isInstantiationDependentType() ||
3522 : SrcExpr->isInstantiationDependent()),
3523 : (DstType->containsUnexpandedParameterPack() ||
3524 : SrcExpr->containsUnexpandedParameterPack())),
3525 : SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
3526 :
3527 : /// getSrcExpr - Return the Expr to be converted.
3528 : Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
3529 :
3530 : /// getTypeSourceInfo - Return the destination type.
3531 : TypeSourceInfo *getTypeSourceInfo() const {
3532 : return TInfo;
3533 : }
3534 : void setTypeSourceInfo(TypeSourceInfo *ti) {
3535 : TInfo = ti;
3536 : }
3537 :
3538 : /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
3539 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3540 :
3541 : /// getRParenLoc - Return the location of final right parenthesis.
3542 : SourceLocation getRParenLoc() const { return RParenLoc; }
3543 :
3544 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3545 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3546 :
3547 : static bool classof(const Stmt *T) {
3548 : return T->getStmtClass() == ConvertVectorExprClass;
3549 : }
3550 :
3551 : // Iterators
3552 0 : child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
3553 : };
3554 :
3555 : /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
3556 : /// This AST node is similar to the conditional operator (?:) in C, with
3557 : /// the following exceptions:
3558 : /// - the test expression must be a integer constant expression.
3559 : /// - the expression returned acts like the chosen subexpression in every
3560 : /// visible way: the type is the same as that of the chosen subexpression,
3561 : /// and all predicates (whether it's an l-value, whether it's an integer
3562 : /// constant expression, etc.) return the same result as for the chosen
3563 : /// sub-expression.
3564 : class ChooseExpr : public Expr {
3565 : enum { COND, LHS, RHS, END_EXPR };
3566 : Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
3567 : SourceLocation BuiltinLoc, RParenLoc;
3568 : bool CondIsTrue;
3569 : public:
3570 : ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
3571 : QualType t, ExprValueKind VK, ExprObjectKind OK,
3572 : SourceLocation RP, bool condIsTrue,
3573 : bool TypeDependent, bool ValueDependent)
3574 : : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
3575 : (cond->isInstantiationDependent() ||
3576 : lhs->isInstantiationDependent() ||
3577 : rhs->isInstantiationDependent()),
3578 : (cond->containsUnexpandedParameterPack() ||
3579 : lhs->containsUnexpandedParameterPack() ||
3580 : rhs->containsUnexpandedParameterPack())),
3581 : BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
3582 : SubExprs[COND] = cond;
3583 : SubExprs[LHS] = lhs;
3584 : SubExprs[RHS] = rhs;
3585 : }
3586 :
3587 : /// \brief Build an empty __builtin_choose_expr.
3588 : explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
3589 :
3590 : /// isConditionTrue - Return whether the condition is true (i.e. not
3591 : /// equal to zero).
3592 : bool isConditionTrue() const {
3593 : assert(!isConditionDependent() &&
3594 : "Dependent condition isn't true or false");
3595 : return CondIsTrue;
3596 : }
3597 : void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
3598 :
3599 : bool isConditionDependent() const {
3600 : return getCond()->isTypeDependent() || getCond()->isValueDependent();
3601 : }
3602 :
3603 : /// getChosenSubExpr - Return the subexpression chosen according to the
3604 : /// condition.
3605 : Expr *getChosenSubExpr() const {
3606 : return isConditionTrue() ? getLHS() : getRHS();
3607 : }
3608 :
3609 : Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
3610 : void setCond(Expr *E) { SubExprs[COND] = E; }
3611 : Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
3612 : void setLHS(Expr *E) { SubExprs[LHS] = E; }
3613 : Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
3614 : void setRHS(Expr *E) { SubExprs[RHS] = E; }
3615 :
3616 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3617 : void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3618 :
3619 : SourceLocation getRParenLoc() const { return RParenLoc; }
3620 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3621 :
3622 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3623 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3624 :
3625 : static bool classof(const Stmt *T) {
3626 : return T->getStmtClass() == ChooseExprClass;
3627 : }
3628 :
3629 : // Iterators
3630 : child_range children() {
3631 0 : return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
3632 : }
3633 : };
3634 :
3635 : /// GNUNullExpr - Implements the GNU __null extension, which is a name
3636 : /// for a null pointer constant that has integral type (e.g., int or
3637 : /// long) and is the same size and alignment as a pointer. The __null
3638 : /// extension is typically only used by system headers, which define
3639 : /// NULL as __null in C++ rather than using 0 (which is an integer
3640 : /// that may not match the size of a pointer).
3641 : class GNUNullExpr : public Expr {
3642 : /// TokenLoc - The location of the __null keyword.
3643 : SourceLocation TokenLoc;
3644 :
3645 : public:
3646 : GNUNullExpr(QualType Ty, SourceLocation Loc)
3647 : : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
3648 : false),
3649 : TokenLoc(Loc) { }
3650 :
3651 : /// \brief Build an empty GNU __null expression.
3652 : explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
3653 :
3654 : /// getTokenLocation - The location of the __null token.
3655 : SourceLocation getTokenLocation() const { return TokenLoc; }
3656 : void setTokenLocation(SourceLocation L) { TokenLoc = L; }
3657 :
3658 : SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
3659 : SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
3660 :
3661 : static bool classof(const Stmt *T) {
3662 : return T->getStmtClass() == GNUNullExprClass;
3663 : }
3664 :
3665 : // Iterators
3666 0 : child_range children() { return child_range(); }
3667 : };
3668 :
3669 : /// VAArgExpr, used for the builtin function __builtin_va_arg.
3670 : class VAArgExpr : public Expr {
3671 : Stmt *Val;
3672 : TypeSourceInfo *TInfo;
3673 : SourceLocation BuiltinLoc, RParenLoc;
3674 : public:
3675 : VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
3676 : SourceLocation RPLoc, QualType t)
3677 : : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
3678 : t->isDependentType(), false,
3679 : (TInfo->getType()->isInstantiationDependentType() ||
3680 : e->isInstantiationDependent()),
3681 : (TInfo->getType()->containsUnexpandedParameterPack() ||
3682 : e->containsUnexpandedParameterPack())),
3683 : Val(e), TInfo(TInfo),
3684 : BuiltinLoc(BLoc),
3685 : RParenLoc(RPLoc) { }
3686 :
3687 : /// \brief Create an empty __builtin_va_arg expression.
3688 : explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
3689 :
3690 : const Expr *getSubExpr() const { return cast<Expr>(Val); }
3691 : Expr *getSubExpr() { return cast<Expr>(Val); }
3692 : void setSubExpr(Expr *E) { Val = E; }
3693 :
3694 0 : TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
3695 : void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
3696 :
3697 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
3698 : void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
3699 :
3700 : SourceLocation getRParenLoc() const { return RParenLoc; }
3701 : void setRParenLoc(SourceLocation L) { RParenLoc = L; }
3702 :
3703 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
3704 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
3705 :
3706 : static bool classof(const Stmt *T) {
3707 : return T->getStmtClass() == VAArgExprClass;
3708 : }
3709 :
3710 : // Iterators
3711 0 : child_range children() { return child_range(&Val, &Val+1); }
3712 : };
3713 :
3714 : /// @brief Describes an C or C++ initializer list.
3715 : ///
3716 : /// InitListExpr describes an initializer list, which can be used to
3717 : /// initialize objects of different types, including
3718 : /// struct/class/union types, arrays, and vectors. For example:
3719 : ///
3720 : /// @code
3721 : /// struct foo x = { 1, { 2, 3 } };
3722 : /// @endcode
3723 : ///
3724 : /// Prior to semantic analysis, an initializer list will represent the
3725 : /// initializer list as written by the user, but will have the
3726 : /// placeholder type "void". This initializer list is called the
3727 : /// syntactic form of the initializer, and may contain C99 designated
3728 : /// initializers (represented as DesignatedInitExprs), initializations
3729 : /// of subobject members without explicit braces, and so on. Clients
3730 : /// interested in the original syntax of the initializer list should
3731 : /// use the syntactic form of the initializer list.
3732 : ///
3733 : /// After semantic analysis, the initializer list will represent the
3734 : /// semantic form of the initializer, where the initializations of all
3735 : /// subobjects are made explicit with nested InitListExpr nodes and
3736 : /// C99 designators have been eliminated by placing the designated
3737 : /// initializations into the subobject they initialize. Additionally,
3738 : /// any "holes" in the initialization, where no initializer has been
3739 : /// specified for a particular subobject, will be replaced with
3740 : /// implicitly-generated ImplicitValueInitExpr expressions that
3741 : /// value-initialize the subobjects. Note, however, that the
3742 : /// initializer lists may still have fewer initializers than there are
3743 : /// elements to initialize within the object.
3744 : ///
3745 : /// After semantic analysis has completed, given an initializer list,
3746 : /// method isSemanticForm() returns true if and only if this is the
3747 : /// semantic form of the initializer list (note: the same AST node
3748 : /// may at the same time be the syntactic form).
3749 : /// Given the semantic form of the initializer list, one can retrieve
3750 : /// the syntactic form of that initializer list (when different)
3751 : /// using method getSyntacticForm(); the method returns null if applied
3752 : /// to a initializer list which is already in syntactic form.
3753 : /// Similarly, given the syntactic form (i.e., an initializer list such
3754 : /// that isSemanticForm() returns false), one can retrieve the semantic
3755 : /// form using method getSemanticForm().
3756 : /// Since many initializer lists have the same syntactic and semantic forms,
3757 : /// getSyntacticForm() may return NULL, indicating that the current
3758 : /// semantic initializer list also serves as its syntactic form.
3759 : class InitListExpr : public Expr {
3760 : // FIXME: Eliminate this vector in favor of ASTContext allocation
3761 : typedef ASTVector<Stmt *> InitExprsTy;
3762 : InitExprsTy InitExprs;
3763 : SourceLocation LBraceLoc, RBraceLoc;
3764 :
3765 : /// The alternative form of the initializer list (if it exists).
3766 : /// The int part of the pair stores whether this initializer list is
3767 : /// in semantic form. If not null, the pointer points to:
3768 : /// - the syntactic form, if this is in semantic form;
3769 : /// - the semantic form, if this is in syntactic form.
3770 : llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
3771 :
3772 : /// \brief Either:
3773 : /// If this initializer list initializes an array with more elements than
3774 : /// there are initializers in the list, specifies an expression to be used
3775 : /// for value initialization of the rest of the elements.
3776 : /// Or
3777 : /// If this initializer list initializes a union, specifies which
3778 : /// field within the union will be initialized.
3779 : llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
3780 :
3781 : public:
3782 : InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
3783 : ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
3784 :
3785 : /// \brief Build an empty initializer list.
3786 : explicit InitListExpr(EmptyShell Empty)
3787 : : Expr(InitListExprClass, Empty) { }
3788 :
3789 : unsigned getNumInits() const { return InitExprs.size(); }
3790 :
3791 : /// \brief Retrieve the set of initializers.
3792 : Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
3793 :
3794 : const Expr *getInit(unsigned Init) const {
3795 : assert(Init < getNumInits() && "Initializer access out of range!");
3796 : return cast_or_null<Expr>(InitExprs[Init]);
3797 : }
3798 :
3799 : Expr *getInit(unsigned Init) {
3800 : assert(Init < getNumInits() && "Initializer access out of range!");
3801 : return cast_or_null<Expr>(InitExprs[Init]);
3802 : }
3803 :
3804 : void setInit(unsigned Init, Expr *expr) {
3805 : assert(Init < getNumInits() && "Initializer access out of range!");
3806 : InitExprs[Init] = expr;
3807 :
3808 : if (expr) {
3809 : ExprBits.TypeDependent |= expr->isTypeDependent();
3810 : ExprBits.ValueDependent |= expr->isValueDependent();
3811 : ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
3812 : ExprBits.ContainsUnexpandedParameterPack |=
3813 : expr->containsUnexpandedParameterPack();
3814 : }
3815 : }
3816 :
3817 : /// \brief Reserve space for some number of initializers.
3818 : void reserveInits(const ASTContext &C, unsigned NumInits);
3819 :
3820 : /// @brief Specify the number of initializers
3821 : ///
3822 : /// If there are more than @p NumInits initializers, the remaining
3823 : /// initializers will be destroyed. If there are fewer than @p
3824 : /// NumInits initializers, NULL expressions will be added for the
3825 : /// unknown initializers.
3826 : void resizeInits(const ASTContext &Context, unsigned NumInits);
3827 :
3828 : /// @brief Updates the initializer at index @p Init with the new
3829 : /// expression @p expr, and returns the old expression at that
3830 : /// location.
3831 : ///
3832 : /// When @p Init is out of range for this initializer list, the
3833 : /// initializer list will be extended with NULL expressions to
3834 : /// accommodate the new entry.
3835 : Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
3836 :
3837 : /// \brief If this initializer list initializes an array with more elements
3838 : /// than there are initializers in the list, specifies an expression to be
3839 : /// used for value initialization of the rest of the elements.
3840 : Expr *getArrayFiller() {
3841 : return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
3842 : }
3843 : const Expr *getArrayFiller() const {
3844 : return const_cast<InitListExpr *>(this)->getArrayFiller();
3845 : }
3846 : void setArrayFiller(Expr *filler);
3847 :
3848 : /// \brief Return true if this is an array initializer and its array "filler"
3849 : /// has been set.
3850 : bool hasArrayFiller() const { return getArrayFiller(); }
3851 :
3852 : /// \brief If this initializes a union, specifies which field in the
3853 : /// union to initialize.
3854 : ///
3855 : /// Typically, this field is the first named field within the
3856 : /// union. However, a designated initializer can specify the
3857 : /// initialization of a different field within the union.
3858 : FieldDecl *getInitializedFieldInUnion() {
3859 : return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
3860 : }
3861 : const FieldDecl *getInitializedFieldInUnion() const {
3862 : return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
3863 : }
3864 : void setInitializedFieldInUnion(FieldDecl *FD) {
3865 : assert((FD == nullptr
3866 : || getInitializedFieldInUnion() == nullptr
3867 : || getInitializedFieldInUnion() == FD)
3868 : && "Only one field of a union may be initialized at a time!");
3869 : ArrayFillerOrUnionFieldInit = FD;
3870 : }
3871 :
3872 : // Explicit InitListExpr's originate from source code (and have valid source
3873 : // locations). Implicit InitListExpr's are created by the semantic analyzer.
3874 : bool isExplicit() {
3875 : return LBraceLoc.isValid() && RBraceLoc.isValid();
3876 : }
3877 :
3878 : // Is this an initializer for an array of characters, initialized by a string
3879 : // literal or an @encode?
3880 : bool isStringLiteralInit() const;
3881 :
3882 : SourceLocation getLBraceLoc() const { return LBraceLoc; }
3883 : void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
3884 : SourceLocation getRBraceLoc() const { return RBraceLoc; }
3885 : void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
3886 :
3887 0 : bool isSemanticForm() const { return AltForm.getInt(); }
3888 : InitListExpr *getSemanticForm() const {
3889 0 : return isSemanticForm() ? nullptr : AltForm.getPointer();
3890 : }
3891 : InitListExpr *getSyntacticForm() const {
3892 0 : return isSemanticForm() ? AltForm.getPointer() : nullptr;
3893 : }
3894 :
3895 : void setSyntacticForm(InitListExpr *Init) {
3896 : AltForm.setPointer(Init);
3897 : AltForm.setInt(true);
3898 : Init->AltForm.setPointer(this);
3899 : Init->AltForm.setInt(false);
3900 : }
3901 :
3902 : bool hadArrayRangeDesignator() const {
3903 : return InitListExprBits.HadArrayRangeDesignator != 0;
3904 : }
3905 : void sawArrayRangeDesignator(bool ARD = true) {
3906 : InitListExprBits.HadArrayRangeDesignator = ARD;
3907 : }
3908 :
3909 : SourceLocation getLocStart() const LLVM_READONLY;
3910 : SourceLocation getLocEnd() const LLVM_READONLY;
3911 :
3912 : static bool classof(const Stmt *T) {
3913 : return T->getStmtClass() == InitListExprClass;
3914 : }
3915 :
3916 : // Iterators
3917 : child_range children() {
3918 : // FIXME: This does not include the array filler expression.
3919 0 : if (InitExprs.empty()) return child_range();
3920 0 : return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
3921 0 : }
3922 :
3923 : typedef InitExprsTy::iterator iterator;
3924 : typedef InitExprsTy::const_iterator const_iterator;
3925 : typedef InitExprsTy::reverse_iterator reverse_iterator;
3926 : typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
3927 :
3928 : iterator begin() { return InitExprs.begin(); }
3929 : const_iterator begin() const { return InitExprs.begin(); }
3930 : iterator end() { return InitExprs.end(); }
3931 : const_iterator end() const { return InitExprs.end(); }
3932 : reverse_iterator rbegin() { return InitExprs.rbegin(); }
3933 : const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
3934 : reverse_iterator rend() { return InitExprs.rend(); }
3935 : const_reverse_iterator rend() const { return InitExprs.rend(); }
3936 :
3937 : friend class ASTStmtReader;
3938 : friend class ASTStmtWriter;
3939 : };
3940 :
3941 : /// @brief Represents a C99 designated initializer expression.
3942 : ///
3943 : /// A designated initializer expression (C99 6.7.8) contains one or
3944 : /// more designators (which can be field designators, array
3945 : /// designators, or GNU array-range designators) followed by an
3946 : /// expression that initializes the field or element(s) that the
3947 : /// designators refer to. For example, given:
3948 : ///
3949 : /// @code
3950 : /// struct point {
3951 : /// double x;
3952 : /// double y;
3953 : /// };
3954 : /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
3955 : /// @endcode
3956 : ///
3957 : /// The InitListExpr contains three DesignatedInitExprs, the first of
3958 : /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
3959 : /// designators, one array designator for @c [2] followed by one field
3960 : /// designator for @c .y. The initialization expression will be 1.0.
3961 : class DesignatedInitExpr : public Expr {
3962 : public:
3963 : /// \brief Forward declaration of the Designator class.
3964 : class Designator;
3965 :
3966 : private:
3967 : /// The location of the '=' or ':' prior to the actual initializer
3968 : /// expression.
3969 : SourceLocation EqualOrColonLoc;
3970 :
3971 : /// Whether this designated initializer used the GNU deprecated
3972 : /// syntax rather than the C99 '=' syntax.
3973 : bool GNUSyntax : 1;
3974 :
3975 : /// The number of designators in this initializer expression.
3976 : unsigned NumDesignators : 15;
3977 :
3978 : /// The number of subexpressions of this initializer expression,
3979 : /// which contains both the initializer and any additional
3980 : /// expressions used by array and array-range designators.
3981 : unsigned NumSubExprs : 16;
3982 :
3983 : /// \brief The designators in this designated initialization
3984 : /// expression.
3985 : Designator *Designators;
3986 :
3987 :
3988 : DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
3989 : const Designator *Designators,
3990 : SourceLocation EqualOrColonLoc, bool GNUSyntax,
3991 : ArrayRef<Expr*> IndexExprs, Expr *Init);
3992 :
3993 : explicit DesignatedInitExpr(unsigned NumSubExprs)
3994 : : Expr(DesignatedInitExprClass, EmptyShell()),
3995 : NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
3996 :
3997 : public:
3998 : /// A field designator, e.g., ".x".
3999 : struct FieldDesignator {
4000 : /// Refers to the field that is being initialized. The low bit
4001 : /// of this field determines whether this is actually a pointer
4002 : /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
4003 : /// initially constructed, a field designator will store an
4004 : /// IdentifierInfo*. After semantic analysis has resolved that
4005 : /// name, the field designator will instead store a FieldDecl*.
4006 : uintptr_t NameOrField;
4007 :
4008 : /// The location of the '.' in the designated initializer.
4009 : unsigned DotLoc;
4010 :
4011 : /// The location of the field name in the designated initializer.
4012 : unsigned FieldLoc;
4013 : };
4014 :
4015 : /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4016 : struct ArrayOrRangeDesignator {
4017 : /// Location of the first index expression within the designated
4018 : /// initializer expression's list of subexpressions.
4019 : unsigned Index;
4020 : /// The location of the '[' starting the array range designator.
4021 : unsigned LBracketLoc;
4022 : /// The location of the ellipsis separating the start and end
4023 : /// indices. Only valid for GNU array-range designators.
4024 : unsigned EllipsisLoc;
4025 : /// The location of the ']' terminating the array range designator.
4026 : unsigned RBracketLoc;
4027 : };
4028 :
4029 : /// @brief Represents a single C99 designator.
4030 : ///
4031 : /// @todo This class is infuriatingly similar to clang::Designator,
4032 : /// but minor differences (storing indices vs. storing pointers)
4033 : /// keep us from reusing it. Try harder, later, to rectify these
4034 : /// differences.
4035 : class Designator {
4036 : /// @brief The kind of designator this describes.
4037 : enum {
4038 : FieldDesignator,
4039 : ArrayDesignator,
4040 : ArrayRangeDesignator
4041 : } Kind;
4042 :
4043 : union {
4044 : /// A field designator, e.g., ".x".
4045 : struct FieldDesignator Field;
4046 : /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
4047 : struct ArrayOrRangeDesignator ArrayOrRange;
4048 : };
4049 : friend class DesignatedInitExpr;
4050 :
4051 : public:
4052 : Designator() {}
4053 :
4054 : /// @brief Initializes a field designator.
4055 : Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
4056 : SourceLocation FieldLoc)
4057 : : Kind(FieldDesignator) {
4058 : Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
4059 : Field.DotLoc = DotLoc.getRawEncoding();
4060 : Field.FieldLoc = FieldLoc.getRawEncoding();
4061 : }
4062 :
4063 : /// @brief Initializes an array designator.
4064 : Designator(unsigned Index, SourceLocation LBracketLoc,
4065 : SourceLocation RBracketLoc)
4066 : : Kind(ArrayDesignator) {
4067 : ArrayOrRange.Index = Index;
4068 : ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4069 : ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
4070 : ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4071 : }
4072 :
4073 : /// @brief Initializes a GNU array-range designator.
4074 : Designator(unsigned Index, SourceLocation LBracketLoc,
4075 : SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
4076 : : Kind(ArrayRangeDesignator) {
4077 : ArrayOrRange.Index = Index;
4078 : ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
4079 : ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
4080 : ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
4081 : }
4082 :
4083 : bool isFieldDesignator() const { return Kind == FieldDesignator; }
4084 : bool isArrayDesignator() const { return Kind == ArrayDesignator; }
4085 : bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
4086 :
4087 : IdentifierInfo *getFieldName() const;
4088 :
4089 : FieldDecl *getField() const {
4090 : assert(Kind == FieldDesignator && "Only valid on a field designator");
4091 : if (Field.NameOrField & 0x01)
4092 : return nullptr;
4093 : else
4094 : return reinterpret_cast<FieldDecl *>(Field.NameOrField);
4095 : }
4096 :
4097 : void setField(FieldDecl *FD) {
4098 : assert(Kind == FieldDesignator && "Only valid on a field designator");
4099 : Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
4100 : }
4101 :
4102 : SourceLocation getDotLoc() const {
4103 : assert(Kind == FieldDesignator && "Only valid on a field designator");
4104 : return SourceLocation::getFromRawEncoding(Field.DotLoc);
4105 : }
4106 :
4107 : SourceLocation getFieldLoc() const {
4108 : assert(Kind == FieldDesignator && "Only valid on a field designator");
4109 : return SourceLocation::getFromRawEncoding(Field.FieldLoc);
4110 : }
4111 :
4112 : SourceLocation getLBracketLoc() const {
4113 : assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4114 : "Only valid on an array or array-range designator");
4115 : return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
4116 : }
4117 :
4118 : SourceLocation getRBracketLoc() const {
4119 : assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4120 : "Only valid on an array or array-range designator");
4121 : return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
4122 : }
4123 :
4124 : SourceLocation getEllipsisLoc() const {
4125 : assert(Kind == ArrayRangeDesignator &&
4126 : "Only valid on an array-range designator");
4127 : return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
4128 : }
4129 :
4130 : unsigned getFirstExprIndex() const {
4131 : assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
4132 : "Only valid on an array or array-range designator");
4133 : return ArrayOrRange.Index;
4134 : }
4135 :
4136 : SourceLocation getLocStart() const LLVM_READONLY {
4137 : if (Kind == FieldDesignator)
4138 : return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
4139 : else
4140 : return getLBracketLoc();
4141 : }
4142 : SourceLocation getLocEnd() const LLVM_READONLY {
4143 : return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
4144 : }
4145 : SourceRange getSourceRange() const LLVM_READONLY {
4146 : return SourceRange(getLocStart(), getLocEnd());
4147 : }
4148 : };
4149 :
4150 : static DesignatedInitExpr *Create(const ASTContext &C,
4151 : Designator *Designators,
4152 : unsigned NumDesignators,
4153 : ArrayRef<Expr*> IndexExprs,
4154 : SourceLocation EqualOrColonLoc,
4155 : bool GNUSyntax, Expr *Init);
4156 :
4157 : static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
4158 : unsigned NumIndexExprs);
4159 :
4160 : /// @brief Returns the number of designators in this initializer.
4161 : unsigned size() const { return NumDesignators; }
4162 :
4163 : // Iterator access to the designators.
4164 : typedef Designator *designators_iterator;
4165 : designators_iterator designators_begin() { return Designators; }
4166 : designators_iterator designators_end() {
4167 : return Designators + NumDesignators;
4168 : }
4169 :
4170 : typedef const Designator *const_designators_iterator;
4171 : const_designators_iterator designators_begin() const { return Designators; }
4172 : const_designators_iterator designators_end() const {
4173 : return Designators + NumDesignators;
4174 : }
4175 :
4176 : typedef llvm::iterator_range<designators_iterator> designators_range;
4177 : designators_range designators() {
4178 : return designators_range(designators_begin(), designators_end());
4179 : }
4180 :
4181 : typedef llvm::iterator_range<const_designators_iterator>
4182 : designators_const_range;
4183 : designators_const_range designators() const {
4184 : return designators_const_range(designators_begin(), designators_end());
4185 : }
4186 :
4187 : typedef std::reverse_iterator<designators_iterator>
4188 : reverse_designators_iterator;
4189 : reverse_designators_iterator designators_rbegin() {
4190 : return reverse_designators_iterator(designators_end());
4191 : }
4192 : reverse_designators_iterator designators_rend() {
4193 : return reverse_designators_iterator(designators_begin());
4194 : }
4195 :
4196 : typedef std::reverse_iterator<const_designators_iterator>
4197 : const_reverse_designators_iterator;
4198 : const_reverse_designators_iterator designators_rbegin() const {
4199 : return const_reverse_designators_iterator(designators_end());
4200 : }
4201 : const_reverse_designators_iterator designators_rend() const {
4202 : return const_reverse_designators_iterator(designators_begin());
4203 : }
4204 :
4205 : Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
4206 :
4207 : void setDesignators(const ASTContext &C, const Designator *Desigs,
4208 : unsigned NumDesigs);
4209 :
4210 : Expr *getArrayIndex(const Designator &D) const;
4211 : Expr *getArrayRangeStart(const Designator &D) const;
4212 : Expr *getArrayRangeEnd(const Designator &D) const;
4213 :
4214 : /// @brief Retrieve the location of the '=' that precedes the
4215 : /// initializer value itself, if present.
4216 : SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
4217 : void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
4218 :
4219 : /// @brief Determines whether this designated initializer used the
4220 : /// deprecated GNU syntax for designated initializers.
4221 : bool usesGNUSyntax() const { return GNUSyntax; }
4222 : void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
4223 :
4224 : /// @brief Retrieve the initializer value.
4225 : Expr *getInit() const {
4226 : return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
4227 : }
4228 :
4229 : void setInit(Expr *init) {
4230 : *child_begin() = init;
4231 : }
4232 :
4233 : /// \brief Retrieve the total number of subexpressions in this
4234 : /// designated initializer expression, including the actual
4235 : /// initialized value and any expressions that occur within array
4236 : /// and array-range designators.
4237 : unsigned getNumSubExprs() const { return NumSubExprs; }
4238 :
4239 : Expr *getSubExpr(unsigned Idx) const {
4240 : assert(Idx < NumSubExprs && "Subscript out of range");
4241 : return cast<Expr>(reinterpret_cast<Stmt *const *>(this + 1)[Idx]);
4242 : }
4243 :
4244 : void setSubExpr(unsigned Idx, Expr *E) {
4245 : assert(Idx < NumSubExprs && "Subscript out of range");
4246 : reinterpret_cast<Stmt **>(this + 1)[Idx] = E;
4247 : }
4248 :
4249 : /// \brief Replaces the designator at index @p Idx with the series
4250 : /// of designators in [First, Last).
4251 : void ExpandDesignator(const ASTContext &C, unsigned Idx,
4252 : const Designator *First, const Designator *Last);
4253 :
4254 : SourceRange getDesignatorsSourceRange() const;
4255 :
4256 : SourceLocation getLocStart() const LLVM_READONLY;
4257 : SourceLocation getLocEnd() const LLVM_READONLY;
4258 :
4259 : static bool classof(const Stmt *T) {
4260 : return T->getStmtClass() == DesignatedInitExprClass;
4261 : }
4262 :
4263 : // Iterators
4264 : child_range children() {
4265 0 : Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
4266 0 : return child_range(begin, begin + NumSubExprs);
4267 : }
4268 : };
4269 :
4270 : /// \brief Represents a place-holder for an object not to be initialized by
4271 : /// anything.
4272 : ///
4273 : /// This only makes sense when it appears as part of an updater of a
4274 : /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
4275 : /// initializes a big object, and the NoInitExpr's mark the spots within the
4276 : /// big object not to be overwritten by the updater.
4277 : ///
4278 : /// \see DesignatedInitUpdateExpr
4279 : class NoInitExpr : public Expr {
4280 : public:
4281 : explicit NoInitExpr(QualType ty)
4282 : : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
4283 : false, false, ty->isInstantiationDependentType(), false) { }
4284 :
4285 : explicit NoInitExpr(EmptyShell Empty)
4286 : : Expr(NoInitExprClass, Empty) { }
4287 :
4288 : static bool classof(const Stmt *T) {
4289 : return T->getStmtClass() == NoInitExprClass;
4290 : }
4291 :
4292 : SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4293 : SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4294 :
4295 : // Iterators
4296 0 : child_range children() { return child_range(); }
4297 : };
4298 :
4299 : // In cases like:
4300 : // struct Q { int a, b, c; };
4301 : // Q *getQ();
4302 : // void foo() {
4303 : // struct A { Q q; } a = { *getQ(), .q.b = 3 };
4304 : // }
4305 : //
4306 : // We will have an InitListExpr for a, with type A, and then a
4307 : // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
4308 : // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
4309 : //
4310 : class DesignatedInitUpdateExpr : public Expr {
4311 : // BaseAndUpdaterExprs[0] is the base expression;
4312 : // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
4313 : Stmt *BaseAndUpdaterExprs[2];
4314 :
4315 : public:
4316 : DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
4317 : Expr *baseExprs, SourceLocation rBraceLoc);
4318 :
4319 : explicit DesignatedInitUpdateExpr(EmptyShell Empty)
4320 : : Expr(DesignatedInitUpdateExprClass, Empty) { }
4321 :
4322 : SourceLocation getLocStart() const LLVM_READONLY;
4323 : SourceLocation getLocEnd() const LLVM_READONLY;
4324 :
4325 : static bool classof(const Stmt *T) {
4326 : return T->getStmtClass() == DesignatedInitUpdateExprClass;
4327 : }
4328 :
4329 : Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
4330 : void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
4331 :
4332 : InitListExpr *getUpdater() const {
4333 : return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
4334 : }
4335 : void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
4336 :
4337 : // Iterators
4338 : // children = the base and the updater
4339 : child_range children() {
4340 0 : return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
4341 : }
4342 : };
4343 :
4344 : /// \brief Represents an implicitly-generated value initialization of
4345 : /// an object of a given type.
4346 : ///
4347 : /// Implicit value initializations occur within semantic initializer
4348 : /// list expressions (InitListExpr) as placeholders for subobject
4349 : /// initializations not explicitly specified by the user.
4350 : ///
4351 : /// \see InitListExpr
4352 : class ImplicitValueInitExpr : public Expr {
4353 : public:
4354 : explicit ImplicitValueInitExpr(QualType ty)
4355 : : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
4356 : false, false, ty->isInstantiationDependentType(), false) { }
4357 :
4358 : /// \brief Construct an empty implicit value initialization.
4359 : explicit ImplicitValueInitExpr(EmptyShell Empty)
4360 : : Expr(ImplicitValueInitExprClass, Empty) { }
4361 :
4362 : static bool classof(const Stmt *T) {
4363 : return T->getStmtClass() == ImplicitValueInitExprClass;
4364 : }
4365 :
4366 : SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4367 : SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4368 :
4369 : // Iterators
4370 0 : child_range children() { return child_range(); }
4371 : };
4372 :
4373 :
4374 : class ParenListExpr : public Expr {
4375 : Stmt **Exprs;
4376 : unsigned NumExprs;
4377 : SourceLocation LParenLoc, RParenLoc;
4378 :
4379 : public:
4380 : ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4381 : ArrayRef<Expr*> exprs, SourceLocation rparenloc);
4382 :
4383 : /// \brief Build an empty paren list.
4384 : explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
4385 :
4386 : unsigned getNumExprs() const { return NumExprs; }
4387 :
4388 : const Expr* getExpr(unsigned Init) const {
4389 : assert(Init < getNumExprs() && "Initializer access out of range!");
4390 : return cast_or_null<Expr>(Exprs[Init]);
4391 : }
4392 :
4393 : Expr* getExpr(unsigned Init) {
4394 : assert(Init < getNumExprs() && "Initializer access out of range!");
4395 : return cast_or_null<Expr>(Exprs[Init]);
4396 : }
4397 :
4398 : Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
4399 :
4400 : SourceLocation getLParenLoc() const { return LParenLoc; }
4401 : SourceLocation getRParenLoc() const { return RParenLoc; }
4402 :
4403 : SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
4404 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4405 :
4406 : static bool classof(const Stmt *T) {
4407 : return T->getStmtClass() == ParenListExprClass;
4408 : }
4409 :
4410 : // Iterators
4411 : child_range children() {
4412 0 : return child_range(&Exprs[0], &Exprs[0]+NumExprs);
4413 : }
4414 :
4415 : friend class ASTStmtReader;
4416 : friend class ASTStmtWriter;
4417 : };
4418 :
4419 :
4420 : /// \brief Represents a C11 generic selection.
4421 : ///
4422 : /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
4423 : /// expression, followed by one or more generic associations. Each generic
4424 : /// association specifies a type name and an expression, or "default" and an
4425 : /// expression (in which case it is known as a default generic association).
4426 : /// The type and value of the generic selection are identical to those of its
4427 : /// result expression, which is defined as the expression in the generic
4428 : /// association with a type name that is compatible with the type of the
4429 : /// controlling expression, or the expression in the default generic association
4430 : /// if no types are compatible. For example:
4431 : ///
4432 : /// @code
4433 : /// _Generic(X, double: 1, float: 2, default: 3)
4434 : /// @endcode
4435 : ///
4436 : /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
4437 : /// or 3 if "hello".
4438 : ///
4439 : /// As an extension, generic selections are allowed in C++, where the following
4440 : /// additional semantics apply:
4441 : ///
4442 : /// Any generic selection whose controlling expression is type-dependent or
4443 : /// which names a dependent type in its association list is result-dependent,
4444 : /// which means that the choice of result expression is dependent.
4445 : /// Result-dependent generic associations are both type- and value-dependent.
4446 : class GenericSelectionExpr : public Expr {
4447 : enum { CONTROLLING, END_EXPR };
4448 : TypeSourceInfo **AssocTypes;
4449 : Stmt **SubExprs;
4450 : unsigned NumAssocs, ResultIndex;
4451 : SourceLocation GenericLoc, DefaultLoc, RParenLoc;
4452 :
4453 : public:
4454 : GenericSelectionExpr(const ASTContext &Context,
4455 : SourceLocation GenericLoc, Expr *ControllingExpr,
4456 : ArrayRef<TypeSourceInfo*> AssocTypes,
4457 : ArrayRef<Expr*> AssocExprs,
4458 : SourceLocation DefaultLoc, SourceLocation RParenLoc,
4459 : bool ContainsUnexpandedParameterPack,
4460 : unsigned ResultIndex);
4461 :
4462 : /// This constructor is used in the result-dependent case.
4463 : GenericSelectionExpr(const ASTContext &Context,
4464 : SourceLocation GenericLoc, Expr *ControllingExpr,
4465 : ArrayRef<TypeSourceInfo*> AssocTypes,
4466 : ArrayRef<Expr*> AssocExprs,
4467 : SourceLocation DefaultLoc, SourceLocation RParenLoc,
4468 : bool ContainsUnexpandedParameterPack);
4469 :
4470 : explicit GenericSelectionExpr(EmptyShell Empty)
4471 : : Expr(GenericSelectionExprClass, Empty) { }
4472 :
4473 0 : unsigned getNumAssocs() const { return NumAssocs; }
4474 :
4475 : SourceLocation getGenericLoc() const { return GenericLoc; }
4476 : SourceLocation getDefaultLoc() const { return DefaultLoc; }
4477 : SourceLocation getRParenLoc() const { return RParenLoc; }
4478 :
4479 : const Expr *getAssocExpr(unsigned i) const {
4480 : return cast<Expr>(SubExprs[END_EXPR+i]);
4481 : }
4482 0 : Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
4483 :
4484 : const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
4485 : return AssocTypes[i];
4486 : }
4487 0 : TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
4488 :
4489 : QualType getAssocType(unsigned i) const {
4490 : if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
4491 : return TS->getType();
4492 : else
4493 : return QualType();
4494 : }
4495 :
4496 : const Expr *getControllingExpr() const {
4497 : return cast<Expr>(SubExprs[CONTROLLING]);
4498 : }
4499 0 : Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
4500 :
4501 : /// Whether this generic selection is result-dependent.
4502 : bool isResultDependent() const { return ResultIndex == -1U; }
4503 :
4504 : /// The zero-based index of the result expression's generic association in
4505 : /// the generic selection's association list. Defined only if the
4506 : /// generic selection is not result-dependent.
4507 : unsigned getResultIndex() const {
4508 : assert(!isResultDependent() && "Generic selection is result-dependent");
4509 : return ResultIndex;
4510 : }
4511 :
4512 : /// The generic selection's result expression. Defined only if the
4513 : /// generic selection is not result-dependent.
4514 : const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
4515 : Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
4516 :
4517 : SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
4518 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4519 :
4520 : static bool classof(const Stmt *T) {
4521 : return T->getStmtClass() == GenericSelectionExprClass;
4522 : }
4523 :
4524 : child_range children() {
4525 : return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
4526 : }
4527 :
4528 : friend class ASTStmtReader;
4529 : };
4530 :
4531 : //===----------------------------------------------------------------------===//
4532 : // Clang Extensions
4533 : //===----------------------------------------------------------------------===//
4534 :
4535 :
4536 : /// ExtVectorElementExpr - This represents access to specific elements of a
4537 : /// vector, and may occur on the left hand side or right hand side. For example
4538 : /// the following is legal: "V.xy = V.zw" if V is a 4 element extended vector.
4539 : ///
4540 : /// Note that the base may have either vector or pointer to vector type, just
4541 : /// like a struct field reference.
4542 : ///
4543 : class ExtVectorElementExpr : public Expr {
4544 : Stmt *Base;
4545 : IdentifierInfo *Accessor;
4546 : SourceLocation AccessorLoc;
4547 : public:
4548 : ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
4549 : IdentifierInfo &accessor, SourceLocation loc)
4550 : : Expr(ExtVectorElementExprClass, ty, VK,
4551 : (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
4552 : base->isTypeDependent(), base->isValueDependent(),
4553 : base->isInstantiationDependent(),
4554 : base->containsUnexpandedParameterPack()),
4555 : Base(base), Accessor(&accessor), AccessorLoc(loc) {}
4556 :
4557 : /// \brief Build an empty vector element expression.
4558 : explicit ExtVectorElementExpr(EmptyShell Empty)
4559 : : Expr(ExtVectorElementExprClass, Empty) { }
4560 :
4561 : const Expr *getBase() const { return cast<Expr>(Base); }
4562 : Expr *getBase() { return cast<Expr>(Base); }
4563 : void setBase(Expr *E) { Base = E; }
4564 :
4565 : IdentifierInfo &getAccessor() const { return *Accessor; }
4566 : void setAccessor(IdentifierInfo *II) { Accessor = II; }
4567 :
4568 : SourceLocation getAccessorLoc() const { return AccessorLoc; }
4569 : void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
4570 :
4571 : /// getNumElements - Get the number of components being selected.
4572 : unsigned getNumElements() const;
4573 :
4574 : /// containsDuplicateElements - Return true if any element access is
4575 : /// repeated.
4576 : bool containsDuplicateElements() const;
4577 :
4578 : /// getEncodedElementAccess - Encode the elements accessed into an llvm
4579 : /// aggregate Constant of ConstantInt(s).
4580 : void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
4581 :
4582 : SourceLocation getLocStart() const LLVM_READONLY {
4583 : return getBase()->getLocStart();
4584 : }
4585 : SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
4586 :
4587 : /// isArrow - Return true if the base expression is a pointer to vector,
4588 : /// return false if the base expression is a vector.
4589 : bool isArrow() const;
4590 :
4591 : static bool classof(const Stmt *T) {
4592 : return T->getStmtClass() == ExtVectorElementExprClass;
4593 : }
4594 :
4595 : // Iterators
4596 0 : child_range children() { return child_range(&Base, &Base+1); }
4597 : };
4598 :
4599 :
4600 : /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
4601 : /// ^{ statement-body } or ^(int arg1, float arg2){ statement-body }
4602 : class BlockExpr : public Expr {
4603 : protected:
4604 : BlockDecl *TheBlock;
4605 : public:
4606 : BlockExpr(BlockDecl *BD, QualType ty)
4607 : : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
4608 : ty->isDependentType(), ty->isDependentType(),
4609 : ty->isInstantiationDependentType() || BD->isDependentContext(),
4610 : false),
4611 : TheBlock(BD) {}
4612 :
4613 : /// \brief Build an empty block expression.
4614 : explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
4615 :
4616 : const BlockDecl *getBlockDecl() const { return TheBlock; }
4617 0 : BlockDecl *getBlockDecl() { return TheBlock; }
4618 : void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
4619 :
4620 : // Convenience functions for probing the underlying BlockDecl.
4621 : SourceLocation getCaretLocation() const;
4622 : const Stmt *getBody() const;
4623 : Stmt *getBody();
4624 :
4625 : SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
4626 : SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
4627 :
4628 : /// getFunctionType - Return the underlying function type for this block.
4629 : const FunctionProtoType *getFunctionType() const;
4630 :
4631 : static bool classof(const Stmt *T) {
4632 : return T->getStmtClass() == BlockExprClass;
4633 : }
4634 :
4635 : // Iterators
4636 : child_range children() { return child_range(); }
4637 : };
4638 :
4639 : /// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
4640 : /// This AST node provides support for reinterpreting a type to another
4641 : /// type of the same size.
4642 : class AsTypeExpr : public Expr {
4643 : private:
4644 : Stmt *SrcExpr;
4645 : SourceLocation BuiltinLoc, RParenLoc;
4646 :
4647 : friend class ASTReader;
4648 : friend class ASTStmtReader;
4649 : explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
4650 :
4651 : public:
4652 : AsTypeExpr(Expr* SrcExpr, QualType DstType,
4653 : ExprValueKind VK, ExprObjectKind OK,
4654 : SourceLocation BuiltinLoc, SourceLocation RParenLoc)
4655 : : Expr(AsTypeExprClass, DstType, VK, OK,
4656 : DstType->isDependentType(),
4657 : DstType->isDependentType() || SrcExpr->isValueDependent(),
4658 : (DstType->isInstantiationDependentType() ||
4659 : SrcExpr->isInstantiationDependent()),
4660 : (DstType->containsUnexpandedParameterPack() ||
4661 : SrcExpr->containsUnexpandedParameterPack())),
4662 : SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
4663 :
4664 : /// getSrcExpr - Return the Expr to be converted.
4665 : Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
4666 :
4667 : /// getBuiltinLoc - Return the location of the __builtin_astype token.
4668 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4669 :
4670 : /// getRParenLoc - Return the location of final right parenthesis.
4671 : SourceLocation getRParenLoc() const { return RParenLoc; }
4672 :
4673 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4674 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4675 :
4676 : static bool classof(const Stmt *T) {
4677 : return T->getStmtClass() == AsTypeExprClass;
4678 : }
4679 :
4680 : // Iterators
4681 0 : child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
4682 : };
4683 :
4684 : /// PseudoObjectExpr - An expression which accesses a pseudo-object
4685 : /// l-value. A pseudo-object is an abstract object, accesses to which
4686 : /// are translated to calls. The pseudo-object expression has a
4687 : /// syntactic form, which shows how the expression was actually
4688 : /// written in the source code, and a semantic form, which is a series
4689 : /// of expressions to be executed in order which detail how the
4690 : /// operation is actually evaluated. Optionally, one of the semantic
4691 : /// forms may also provide a result value for the expression.
4692 : ///
4693 : /// If any of the semantic-form expressions is an OpaqueValueExpr,
4694 : /// that OVE is required to have a source expression, and it is bound
4695 : /// to the result of that source expression. Such OVEs may appear
4696 : /// only in subsequent semantic-form expressions and as
4697 : /// sub-expressions of the syntactic form.
4698 : ///
4699 : /// PseudoObjectExpr should be used only when an operation can be
4700 : /// usefully described in terms of fairly simple rewrite rules on
4701 : /// objects and functions that are meant to be used by end-developers.
4702 : /// For example, under the Itanium ABI, dynamic casts are implemented
4703 : /// as a call to a runtime function called __dynamic_cast; using this
4704 : /// class to describe that would be inappropriate because that call is
4705 : /// not really part of the user-visible semantics, and instead the
4706 : /// cast is properly reflected in the AST and IR-generation has been
4707 : /// taught to generate the call as necessary. In contrast, an
4708 : /// Objective-C property access is semantically defined to be
4709 : /// equivalent to a particular message send, and this is very much
4710 : /// part of the user model. The name of this class encourages this
4711 : /// modelling design.
4712 : class PseudoObjectExpr : public Expr {
4713 : // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
4714 : // Always at least two, because the first sub-expression is the
4715 : // syntactic form.
4716 :
4717 : // PseudoObjectExprBits.ResultIndex - The index of the
4718 : // sub-expression holding the result. 0 means the result is void,
4719 : // which is unambiguous because it's the index of the syntactic
4720 : // form. Note that this is therefore 1 higher than the value passed
4721 : // in to Create, which is an index within the semantic forms.
4722 : // Note also that ASTStmtWriter assumes this encoding.
4723 :
4724 0 : Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
4725 : const Expr * const *getSubExprsBuffer() const {
4726 : return reinterpret_cast<const Expr * const *>(this + 1);
4727 : }
4728 :
4729 : friend class ASTStmtReader;
4730 :
4731 : PseudoObjectExpr(QualType type, ExprValueKind VK,
4732 : Expr *syntactic, ArrayRef<Expr*> semantic,
4733 : unsigned resultIndex);
4734 :
4735 : PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
4736 :
4737 : unsigned getNumSubExprs() const {
4738 0 : return PseudoObjectExprBits.NumSubExprs;
4739 : }
4740 :
4741 : public:
4742 : /// NoResult - A value for the result index indicating that there is
4743 : /// no semantic result.
4744 : enum : unsigned { NoResult = ~0U };
4745 :
4746 : static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
4747 : ArrayRef<Expr*> semantic,
4748 : unsigned resultIndex);
4749 :
4750 : static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
4751 : unsigned numSemanticExprs);
4752 :
4753 : /// Return the syntactic form of this expression, i.e. the
4754 : /// expression it actually looks like. Likely to be expressed in
4755 : /// terms of OpaqueValueExprs bound in the semantic form.
4756 0 : Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
4757 : const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
4758 :
4759 : /// Return the index of the result-bearing expression into the semantics
4760 : /// expressions, or PseudoObjectExpr::NoResult if there is none.
4761 : unsigned getResultExprIndex() const {
4762 : if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
4763 : return PseudoObjectExprBits.ResultIndex - 1;
4764 : }
4765 :
4766 : /// Return the result-bearing expression, or null if there is none.
4767 : Expr *getResultExpr() {
4768 : if (PseudoObjectExprBits.ResultIndex == 0)
4769 : return nullptr;
4770 : return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
4771 : }
4772 : const Expr *getResultExpr() const {
4773 : return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
4774 : }
4775 :
4776 : unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
4777 :
4778 : typedef Expr * const *semantics_iterator;
4779 : typedef const Expr * const *const_semantics_iterator;
4780 : semantics_iterator semantics_begin() {
4781 0 : return getSubExprsBuffer() + 1;
4782 : }
4783 : const_semantics_iterator semantics_begin() const {
4784 : return getSubExprsBuffer() + 1;
4785 : }
4786 : semantics_iterator semantics_end() {
4787 0 : return getSubExprsBuffer() + getNumSubExprs();
4788 : }
4789 : const_semantics_iterator semantics_end() const {
4790 : return getSubExprsBuffer() + getNumSubExprs();
4791 : }
4792 : Expr *getSemanticExpr(unsigned index) {
4793 : assert(index + 1 < getNumSubExprs());
4794 : return getSubExprsBuffer()[index + 1];
4795 : }
4796 : const Expr *getSemanticExpr(unsigned index) const {
4797 : return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
4798 : }
4799 :
4800 : SourceLocation getExprLoc() const LLVM_READONLY {
4801 : return getSyntacticForm()->getExprLoc();
4802 : }
4803 :
4804 : SourceLocation getLocStart() const LLVM_READONLY {
4805 : return getSyntacticForm()->getLocStart();
4806 : }
4807 : SourceLocation getLocEnd() const LLVM_READONLY {
4808 : return getSyntacticForm()->getLocEnd();
4809 : }
4810 :
4811 : child_range children() {
4812 : Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
4813 : return child_range(cs, cs + getNumSubExprs());
4814 : }
4815 :
4816 : static bool classof(const Stmt *T) {
4817 : return T->getStmtClass() == PseudoObjectExprClass;
4818 : }
4819 : };
4820 :
4821 : /// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
4822 : /// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
4823 : /// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
4824 : /// All of these instructions take one primary pointer and at least one memory
4825 : /// order.
4826 : class AtomicExpr : public Expr {
4827 : public:
4828 : enum AtomicOp {
4829 : #define BUILTIN(ID, TYPE, ATTRS)
4830 : #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
4831 : #include "clang/Basic/Builtins.def"
4832 : // Avoid trailing comma
4833 : BI_First = 0
4834 : };
4835 :
4836 : // The ABI values for various atomic memory orderings.
4837 : enum AtomicOrderingKind {
4838 : AO_ABI_memory_order_relaxed = 0,
4839 : AO_ABI_memory_order_consume = 1,
4840 : AO_ABI_memory_order_acquire = 2,
4841 : AO_ABI_memory_order_release = 3,
4842 : AO_ABI_memory_order_acq_rel = 4,
4843 : AO_ABI_memory_order_seq_cst = 5
4844 : };
4845 :
4846 : private:
4847 : enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
4848 : Stmt* SubExprs[END_EXPR];
4849 : unsigned NumSubExprs;
4850 : SourceLocation BuiltinLoc, RParenLoc;
4851 : AtomicOp Op;
4852 :
4853 : friend class ASTStmtReader;
4854 :
4855 : public:
4856 : AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
4857 : AtomicOp op, SourceLocation RP);
4858 :
4859 : /// \brief Determine the number of arguments the specified atomic builtin
4860 : /// should have.
4861 : static unsigned getNumSubExprs(AtomicOp Op);
4862 :
4863 : /// \brief Build an empty AtomicExpr.
4864 : explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
4865 :
4866 : Expr *getPtr() const {
4867 : return cast<Expr>(SubExprs[PTR]);
4868 : }
4869 : Expr *getOrder() const {
4870 : return cast<Expr>(SubExprs[ORDER]);
4871 : }
4872 : Expr *getVal1() const {
4873 : if (Op == AO__c11_atomic_init)
4874 : return cast<Expr>(SubExprs[ORDER]);
4875 : assert(NumSubExprs > VAL1);
4876 : return cast<Expr>(SubExprs[VAL1]);
4877 : }
4878 : Expr *getOrderFail() const {
4879 : assert(NumSubExprs > ORDER_FAIL);
4880 : return cast<Expr>(SubExprs[ORDER_FAIL]);
4881 : }
4882 : Expr *getVal2() const {
4883 : if (Op == AO__atomic_exchange)
4884 : return cast<Expr>(SubExprs[ORDER_FAIL]);
4885 : assert(NumSubExprs > VAL2);
4886 : return cast<Expr>(SubExprs[VAL2]);
4887 : }
4888 : Expr *getWeak() const {
4889 : assert(NumSubExprs > WEAK);
4890 : return cast<Expr>(SubExprs[WEAK]);
4891 : }
4892 :
4893 : AtomicOp getOp() const { return Op; }
4894 : unsigned getNumSubExprs() { return NumSubExprs; }
4895 :
4896 : Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
4897 :
4898 : bool isVolatile() const {
4899 : return getPtr()->getType()->getPointeeType().isVolatileQualified();
4900 : }
4901 :
4902 : bool isCmpXChg() const {
4903 : return getOp() == AO__c11_atomic_compare_exchange_strong ||
4904 : getOp() == AO__c11_atomic_compare_exchange_weak ||
4905 : getOp() == AO__atomic_compare_exchange ||
4906 : getOp() == AO__atomic_compare_exchange_n;
4907 : }
4908 :
4909 : SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
4910 : SourceLocation getRParenLoc() const { return RParenLoc; }
4911 :
4912 : SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
4913 : SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
4914 :
4915 : static bool classof(const Stmt *T) {
4916 : return T->getStmtClass() == AtomicExprClass;
4917 : }
4918 :
4919 : // Iterators
4920 : child_range children() {
4921 0 : return child_range(SubExprs, SubExprs+NumSubExprs);
4922 : }
4923 : };
4924 :
4925 : /// TypoExpr - Internal placeholder for expressions where typo correction
4926 : /// still needs to be performed and/or an error diagnostic emitted.
4927 : class TypoExpr : public Expr {
4928 : public:
4929 : TypoExpr(QualType T)
4930 : : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
4931 : /*isTypeDependent*/ true,
4932 : /*isValueDependent*/ true,
4933 : /*isInstantiationDependent*/ true,
4934 : /*containsUnexpandedParameterPack*/ false) {
4935 : assert(T->isDependentType() && "TypoExpr given a non-dependent type");
4936 : }
4937 :
4938 0 : child_range children() { return child_range(); }
4939 : SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
4940 : SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
4941 : };
4942 : } // end namespace clang
4943 :
4944 : #endif
|