LCOV - code coverage report
Current view: top level - clang/AST - Expr.h (source / functions) Hit Total Coverage
Test: clang.info Lines: 56 161 34.8 %
Date: 2016-01-31 12:01:00 Functions: 35 102 34.3 %

          Line data    Source code
       1             : //===--- Expr.h - Classes for representing expressions ----------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : //  This file defines the Expr interface and subclasses.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_CLANG_AST_EXPR_H
      15             : #define LLVM_CLANG_AST_EXPR_H
      16             : 
      17             : #include "clang/AST/APValue.h"
      18             : #include "clang/AST/ASTVector.h"
      19             : #include "clang/AST/Decl.h"
      20             : #include "clang/AST/DeclAccessPair.h"
      21             : #include "clang/AST/OperationKinds.h"
      22             : #include "clang/AST/Stmt.h"
      23             : #include "clang/AST/TemplateBase.h"
      24             : #include "clang/AST/Type.h"
      25             : #include "clang/Basic/CharInfo.h"
      26             : #include "clang/Basic/TypeTraits.h"
      27             : #include "llvm/ADT/APFloat.h"
      28             : #include "llvm/ADT/APSInt.h"
      29             : #include "llvm/ADT/SmallVector.h"
      30             : #include "llvm/ADT/StringRef.h"
      31             : #include "llvm/Support/Compiler.h"
      32             : 
      33             : namespace clang {
      34             :   class APValue;
      35             :   class ASTContext;
      36             :   class BlockDecl;
      37             :   class CXXBaseSpecifier;
      38             :   class CXXMemberCallExpr;
      39             :   class CXXOperatorCallExpr;
      40             :   class CastExpr;
      41             :   class Decl;
      42             :   class IdentifierInfo;
      43             :   class MaterializeTemporaryExpr;
      44             :   class NamedDecl;
      45             :   class ObjCPropertyRefExpr;
      46             :   class OpaqueValueExpr;
      47             :   class ParmVarDecl;
      48             :   class StringLiteral;
      49             :   class TargetInfo;
      50             :   class ValueDecl;
      51             : 
      52             : /// \brief A simple array of base specifiers.
      53             : typedef SmallVector<CXXBaseSpecifier*, 4> CXXCastPath;
      54             : 
      55             : /// \brief An adjustment to be made to the temporary created when emitting a
      56             : /// reference binding, which accesses a particular subobject of that temporary.
      57             : struct SubobjectAdjustment {
      58             :   enum {
      59             :     DerivedToBaseAdjustment,
      60             :     FieldAdjustment,
      61             :     MemberPointerAdjustment
      62             :   } Kind;
      63             : 
      64             : 
      65             :   struct DTB {
      66             :     const CastExpr *BasePath;
      67             :     const CXXRecordDecl *DerivedClass;
      68             :   };
      69             : 
      70             :   struct P {
      71             :     const MemberPointerType *MPT;
      72             :     Expr *RHS;
      73             :   };
      74             : 
      75             :   union {
      76             :     struct DTB DerivedToBase;
      77             :     FieldDecl *Field;
      78             :     struct P Ptr;
      79             :   };
      80             : 
      81             :   SubobjectAdjustment(const CastExpr *BasePath,
      82             :                       const CXXRecordDecl *DerivedClass)
      83             :     : Kind(DerivedToBaseAdjustment) {
      84             :     DerivedToBase.BasePath = BasePath;
      85             :     DerivedToBase.DerivedClass = DerivedClass;
      86             :   }
      87             : 
      88             :   SubobjectAdjustment(FieldDecl *Field)
      89             :     : Kind(FieldAdjustment) {
      90             :     this->Field = Field;
      91             :   }
      92             : 
      93             :   SubobjectAdjustment(const MemberPointerType *MPT, Expr *RHS)
      94             :     : Kind(MemberPointerAdjustment) {
      95             :     this->Ptr.MPT = MPT;
      96             :     this->Ptr.RHS = RHS;
      97             :   }
      98             : };
      99             : 
     100             : /// Expr - This represents one expression.  Note that Expr's are subclasses of
     101             : /// Stmt.  This allows an expression to be transparently used any place a Stmt
     102             : /// is required.
     103             : ///
     104             : class Expr : public Stmt {
     105             :   QualType TR;
     106             : 
     107             : protected:
     108             :   Expr(StmtClass SC, QualType T, ExprValueKind VK, ExprObjectKind OK,
     109             :        bool TD, bool VD, bool ID, bool ContainsUnexpandedParameterPack)
     110             :     : Stmt(SC)
     111             :   {
     112             :     ExprBits.TypeDependent = TD;
     113             :     ExprBits.ValueDependent = VD;
     114             :     ExprBits.InstantiationDependent = ID;
     115             :     ExprBits.ValueKind = VK;
     116             :     ExprBits.ObjectKind = OK;
     117             :     ExprBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
     118             :     setType(T);
     119             :   }
     120             : 
     121             :   /// \brief Construct an empty expression.
     122             :   explicit Expr(StmtClass SC, EmptyShell) : Stmt(SC) { }
     123             : 
     124             : public:
     125           2 :   QualType getType() const { return TR; }
     126             :   void setType(QualType t) {
     127             :     // In C++, the type of an expression is always adjusted so that it
     128             :     // will not have reference type (C++ [expr]p6). Use
     129             :     // QualType::getNonReferenceType() to retrieve the non-reference
     130             :     // type. Additionally, inspect Expr::isLvalue to determine whether
     131             :     // an expression that is adjusted in this manner should be
     132             :     // considered an lvalue.
     133             :     assert((t.isNull() || !t->isReferenceType()) &&
     134             :            "Expressions can't have reference type");
     135             : 
     136             :     TR = t;
     137             :   }
     138             : 
     139             :   /// isValueDependent - Determines whether this expression is
     140             :   /// value-dependent (C++ [temp.dep.constexpr]). For example, the
     141             :   /// array bound of "Chars" in the following example is
     142             :   /// value-dependent.
     143             :   /// @code
     144             :   /// template<int Size, char (&Chars)[Size]> struct meta_string;
     145             :   /// @endcode
     146             :   bool isValueDependent() const { return ExprBits.ValueDependent; }
     147             : 
     148             :   /// \brief Set whether this expression is value-dependent or not.
     149             :   void setValueDependent(bool VD) {
     150             :     ExprBits.ValueDependent = VD;
     151             :     if (VD)
     152             :       ExprBits.InstantiationDependent = true;
     153             :   }
     154             : 
     155             :   /// isTypeDependent - Determines whether this expression is
     156             :   /// type-dependent (C++ [temp.dep.expr]), which means that its type
     157             :   /// could change from one template instantiation to the next. For
     158             :   /// example, the expressions "x" and "x + y" are type-dependent in
     159             :   /// the following code, but "y" is not type-dependent:
     160             :   /// @code
     161             :   /// template<typename T>
     162             :   /// void add(T x, int y) {
     163             :   ///   x + y;
     164             :   /// }
     165             :   /// @endcode
     166             :   bool isTypeDependent() const { return ExprBits.TypeDependent; }
     167             : 
     168             :   /// \brief Set whether this expression is type-dependent or not.
     169             :   void setTypeDependent(bool TD) {
     170             :     ExprBits.TypeDependent = TD;
     171             :     if (TD)
     172             :       ExprBits.InstantiationDependent = true;
     173             :   }
     174             : 
     175             :   /// \brief Whether this expression is instantiation-dependent, meaning that
     176             :   /// it depends in some way on a template parameter, even if neither its type
     177             :   /// nor (constant) value can change due to the template instantiation.
     178             :   ///
     179             :   /// In the following example, the expression \c sizeof(sizeof(T() + T())) is
     180             :   /// instantiation-dependent (since it involves a template parameter \c T), but
     181             :   /// is neither type- nor value-dependent, since the type of the inner
     182             :   /// \c sizeof is known (\c std::size_t) and therefore the size of the outer
     183             :   /// \c sizeof is known.
     184             :   ///
     185             :   /// \code
     186             :   /// template<typename T>
     187             :   /// void f(T x, T y) {
     188             :   ///   sizeof(sizeof(T() + T());
     189             :   /// }
     190             :   /// \endcode
     191             :   ///
     192             :   bool isInstantiationDependent() const {
     193             :     return ExprBits.InstantiationDependent;
     194             :   }
     195             : 
     196             :   /// \brief Set whether this expression is instantiation-dependent or not.
     197             :   void setInstantiationDependent(bool ID) {
     198             :     ExprBits.InstantiationDependent = ID;
     199             :   }
     200             : 
     201             :   /// \brief Whether this expression contains an unexpanded parameter
     202             :   /// pack (for C++11 variadic templates).
     203             :   ///
     204             :   /// Given the following function template:
     205             :   ///
     206             :   /// \code
     207             :   /// template<typename F, typename ...Types>
     208             :   /// void forward(const F &f, Types &&...args) {
     209             :   ///   f(static_cast<Types&&>(args)...);
     210             :   /// }
     211             :   /// \endcode
     212             :   ///
     213             :   /// The expressions \c args and \c static_cast<Types&&>(args) both
     214             :   /// contain parameter packs.
     215             :   bool containsUnexpandedParameterPack() const {
     216             :     return ExprBits.ContainsUnexpandedParameterPack;
     217             :   }
     218             : 
     219             :   /// \brief Set the bit that describes whether this expression
     220             :   /// contains an unexpanded parameter pack.
     221             :   void setContainsUnexpandedParameterPack(bool PP = true) {
     222             :     ExprBits.ContainsUnexpandedParameterPack = PP;
     223             :   }
     224             : 
     225             :   /// getExprLoc - Return the preferred location for the arrow when diagnosing
     226             :   /// a problem with a generic expression.
     227             :   SourceLocation getExprLoc() const LLVM_READONLY;
     228             : 
     229             :   /// isUnusedResultAWarning - Return true if this immediate expression should
     230             :   /// be warned about if the result is unused.  If so, fill in expr, location,
     231             :   /// and ranges with expr to warn on and source locations/ranges appropriate
     232             :   /// for a warning.
     233             :   bool isUnusedResultAWarning(const Expr *&WarnExpr, SourceLocation &Loc,
     234             :                               SourceRange &R1, SourceRange &R2,
     235             :                               ASTContext &Ctx) const;
     236             : 
     237             :   /// isLValue - True if this expression is an "l-value" according to
     238             :   /// the rules of the current language.  C and C++ give somewhat
     239             :   /// different rules for this concept, but in general, the result of
     240             :   /// an l-value expression identifies a specific object whereas the
     241             :   /// result of an r-value expression is a value detached from any
     242             :   /// specific storage.
     243             :   ///
     244             :   /// C++11 divides the concept of "r-value" into pure r-values
     245             :   /// ("pr-values") and so-called expiring values ("x-values"), which
     246             :   /// identify specific objects that can be safely cannibalized for
     247             :   /// their resources.  This is an unfortunate abuse of terminology on
     248             :   /// the part of the C++ committee.  In Clang, when we say "r-value",
     249             :   /// we generally mean a pr-value.
     250             :   bool isLValue() const { return getValueKind() == VK_LValue; }
     251             :   bool isRValue() const { return getValueKind() == VK_RValue; }
     252             :   bool isXValue() const { return getValueKind() == VK_XValue; }
     253             :   bool isGLValue() const { return getValueKind() != VK_RValue; }
     254             : 
     255             :   enum LValueClassification {
     256             :     LV_Valid,
     257             :     LV_NotObjectType,
     258             :     LV_IncompleteVoidType,
     259             :     LV_DuplicateVectorComponents,
     260             :     LV_InvalidExpression,
     261             :     LV_InvalidMessageExpression,
     262             :     LV_MemberFunction,
     263             :     LV_SubObjCPropertySetting,
     264             :     LV_ClassTemporary,
     265             :     LV_ArrayTemporary
     266             :   };
     267             :   /// Reasons why an expression might not be an l-value.
     268             :   LValueClassification ClassifyLValue(ASTContext &Ctx) const;
     269             : 
     270             :   enum isModifiableLvalueResult {
     271             :     MLV_Valid,
     272             :     MLV_NotObjectType,
     273             :     MLV_IncompleteVoidType,
     274             :     MLV_DuplicateVectorComponents,
     275             :     MLV_InvalidExpression,
     276             :     MLV_LValueCast,           // Specialized form of MLV_InvalidExpression.
     277             :     MLV_IncompleteType,
     278             :     MLV_ConstQualified,
     279             :     MLV_ConstAddrSpace,
     280             :     MLV_ArrayType,
     281             :     MLV_NoSetterProperty,
     282             :     MLV_MemberFunction,
     283             :     MLV_SubObjCPropertySetting,
     284             :     MLV_InvalidMessageExpression,
     285             :     MLV_ClassTemporary,
     286             :     MLV_ArrayTemporary
     287             :   };
     288             :   /// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
     289             :   /// does not have an incomplete type, does not have a const-qualified type,
     290             :   /// and if it is a structure or union, does not have any member (including,
     291             :   /// recursively, any member or element of all contained aggregates or unions)
     292             :   /// with a const-qualified type.
     293             :   ///
     294             :   /// \param Loc [in,out] - A source location which *may* be filled
     295             :   /// in with the location of the expression making this a
     296             :   /// non-modifiable lvalue, if specified.
     297             :   isModifiableLvalueResult
     298             :   isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc = nullptr) const;
     299             : 
     300             :   /// \brief The return type of classify(). Represents the C++11 expression
     301             :   ///        taxonomy.
     302             :   class Classification {
     303             :   public:
     304             :     /// \brief The various classification results. Most of these mean prvalue.
     305             :     enum Kinds {
     306             :       CL_LValue,
     307             :       CL_XValue,
     308             :       CL_Function, // Functions cannot be lvalues in C.
     309             :       CL_Void, // Void cannot be an lvalue in C.
     310             :       CL_AddressableVoid, // Void expression whose address can be taken in C.
     311             :       CL_DuplicateVectorComponents, // A vector shuffle with dupes.
     312             :       CL_MemberFunction, // An expression referring to a member function
     313             :       CL_SubObjCPropertySetting,
     314             :       CL_ClassTemporary, // A temporary of class type, or subobject thereof.
     315             :       CL_ArrayTemporary, // A temporary of array type.
     316             :       CL_ObjCMessageRValue, // ObjC message is an rvalue
     317             :       CL_PRValue // A prvalue for any other reason, of any other type
     318             :     };
     319             :     /// \brief The results of modification testing.
     320             :     enum ModifiableType {
     321             :       CM_Untested, // testModifiable was false.
     322             :       CM_Modifiable,
     323             :       CM_RValue, // Not modifiable because it's an rvalue
     324             :       CM_Function, // Not modifiable because it's a function; C++ only
     325             :       CM_LValueCast, // Same as CM_RValue, but indicates GCC cast-as-lvalue ext
     326             :       CM_NoSetterProperty,// Implicit assignment to ObjC property without setter
     327             :       CM_ConstQualified,
     328             :       CM_ConstAddrSpace,
     329             :       CM_ArrayType,
     330             :       CM_IncompleteType
     331             :     };
     332             : 
     333             :   private:
     334             :     friend class Expr;
     335             : 
     336             :     unsigned short Kind;
     337             :     unsigned short Modifiable;
     338             : 
     339             :     explicit Classification(Kinds k, ModifiableType m)
     340             :       : Kind(k), Modifiable(m)
     341             :     {}
     342             : 
     343             :   public:
     344             :     Classification() {}
     345             : 
     346             :     Kinds getKind() const { return static_cast<Kinds>(Kind); }
     347             :     ModifiableType getModifiable() const {
     348             :       assert(Modifiable != CM_Untested && "Did not test for modifiability.");
     349             :       return static_cast<ModifiableType>(Modifiable);
     350             :     }
     351             :     bool isLValue() const { return Kind == CL_LValue; }
     352             :     bool isXValue() const { return Kind == CL_XValue; }
     353             :     bool isGLValue() const { return Kind <= CL_XValue; }
     354             :     bool isPRValue() const { return Kind >= CL_Function; }
     355             :     bool isRValue() const { return Kind >= CL_XValue; }
     356             :     bool isModifiable() const { return getModifiable() == CM_Modifiable; }
     357             : 
     358             :     /// \brief Create a simple, modifiably lvalue
     359             :     static Classification makeSimpleLValue() {
     360             :       return Classification(CL_LValue, CM_Modifiable);
     361             :     }
     362             : 
     363             :   };
     364             :   /// \brief Classify - Classify this expression according to the C++11
     365             :   ///        expression taxonomy.
     366             :   ///
     367             :   /// C++11 defines ([basic.lval]) a new taxonomy of expressions to replace the
     368             :   /// old lvalue vs rvalue. This function determines the type of expression this
     369             :   /// is. There are three expression types:
     370             :   /// - lvalues are classical lvalues as in C++03.
     371             :   /// - prvalues are equivalent to rvalues in C++03.
     372             :   /// - xvalues are expressions yielding unnamed rvalue references, e.g. a
     373             :   ///   function returning an rvalue reference.
     374             :   /// lvalues and xvalues are collectively referred to as glvalues, while
     375             :   /// prvalues and xvalues together form rvalues.
     376             :   Classification Classify(ASTContext &Ctx) const {
     377             :     return ClassifyImpl(Ctx, nullptr);
     378             :   }
     379             : 
     380             :   /// \brief ClassifyModifiable - Classify this expression according to the
     381             :   ///        C++11 expression taxonomy, and see if it is valid on the left side
     382             :   ///        of an assignment.
     383             :   ///
     384             :   /// This function extends classify in that it also tests whether the
     385             :   /// expression is modifiable (C99 6.3.2.1p1).
     386             :   /// \param Loc A source location that might be filled with a relevant location
     387             :   ///            if the expression is not modifiable.
     388             :   Classification ClassifyModifiable(ASTContext &Ctx, SourceLocation &Loc) const{
     389             :     return ClassifyImpl(Ctx, &Loc);
     390             :   }
     391             : 
     392             :   /// getValueKindForType - Given a formal return or parameter type,
     393             :   /// give its value kind.
     394             :   static ExprValueKind getValueKindForType(QualType T) {
     395             :     if (const ReferenceType *RT = T->getAs<ReferenceType>())
     396             :       return (isa<LValueReferenceType>(RT)
     397             :                 ? VK_LValue
     398             :                 : (RT->getPointeeType()->isFunctionType()
     399             :                      ? VK_LValue : VK_XValue));
     400             :     return VK_RValue;
     401             :   }
     402             : 
     403             :   /// getValueKind - The value kind that this expression produces.
     404             :   ExprValueKind getValueKind() const {
     405             :     return static_cast<ExprValueKind>(ExprBits.ValueKind);
     406             :   }
     407             : 
     408             :   /// getObjectKind - The object kind that this expression produces.
     409             :   /// Object kinds are meaningful only for expressions that yield an
     410             :   /// l-value or x-value.
     411             :   ExprObjectKind getObjectKind() const {
     412             :     return static_cast<ExprObjectKind>(ExprBits.ObjectKind);
     413             :   }
     414             : 
     415             :   bool isOrdinaryOrBitFieldObject() const {
     416             :     ExprObjectKind OK = getObjectKind();
     417             :     return (OK == OK_Ordinary || OK == OK_BitField);
     418             :   }
     419             : 
     420             :   /// setValueKind - Set the value kind produced by this expression.
     421             :   void setValueKind(ExprValueKind Cat) { ExprBits.ValueKind = Cat; }
     422             : 
     423             :   /// setObjectKind - Set the object kind produced by this expression.
     424             :   void setObjectKind(ExprObjectKind Cat) { ExprBits.ObjectKind = Cat; }
     425             : 
     426             : private:
     427             :   Classification ClassifyImpl(ASTContext &Ctx, SourceLocation *Loc) const;
     428             : 
     429             : public:
     430             : 
     431             :   /// \brief Returns true if this expression is a gl-value that
     432             :   /// potentially refers to a bit-field.
     433             :   ///
     434             :   /// In C++, whether a gl-value refers to a bitfield is essentially
     435             :   /// an aspect of the value-kind type system.
     436             :   bool refersToBitField() const { return getObjectKind() == OK_BitField; }
     437             : 
     438             :   /// \brief If this expression refers to a bit-field, retrieve the
     439             :   /// declaration of that bit-field.
     440             :   ///
     441             :   /// Note that this returns a non-null pointer in subtly different
     442             :   /// places than refersToBitField returns true.  In particular, this can
     443             :   /// return a non-null pointer even for r-values loaded from
     444             :   /// bit-fields, but it will return null for a conditional bit-field.
     445             :   FieldDecl *getSourceBitField();
     446             : 
     447             :   const FieldDecl *getSourceBitField() const {
     448             :     return const_cast<Expr*>(this)->getSourceBitField();
     449             :   }
     450             : 
     451             :   /// \brief If this expression is an l-value for an Objective C
     452             :   /// property, find the underlying property reference expression.
     453             :   const ObjCPropertyRefExpr *getObjCProperty() const;
     454             : 
     455             :   /// \brief Check if this expression is the ObjC 'self' implicit parameter.
     456             :   bool isObjCSelfExpr() const;
     457             : 
     458             :   /// \brief Returns whether this expression refers to a vector element.
     459             :   bool refersToVectorElement() const;
     460             : 
     461             :   /// \brief Returns whether this expression has a placeholder type.
     462             :   bool hasPlaceholderType() const {
     463             :     return getType()->isPlaceholderType();
     464             :   }
     465             : 
     466             :   /// \brief Returns whether this expression has a specific placeholder type.
     467             :   bool hasPlaceholderType(BuiltinType::Kind K) const {
     468             :     assert(BuiltinType::isPlaceholderTypeKind(K));
     469             :     if (const BuiltinType *BT = dyn_cast<BuiltinType>(getType()))
     470             :       return BT->getKind() == K;
     471             :     return false;
     472             :   }
     473             : 
     474             :   /// isKnownToHaveBooleanValue - Return true if this is an integer expression
     475             :   /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
     476             :   /// but also int expressions which are produced by things like comparisons in
     477             :   /// C.
     478             :   bool isKnownToHaveBooleanValue() const;
     479             : 
     480             :   /// isIntegerConstantExpr - Return true if this expression is a valid integer
     481             :   /// constant expression, and, if so, return its value in Result.  If not a
     482             :   /// valid i-c-e, return false and fill in Loc (if specified) with the location
     483             :   /// of the invalid expression.
     484             :   ///
     485             :   /// Note: This does not perform the implicit conversions required by C++11
     486             :   /// [expr.const]p5.
     487             :   bool isIntegerConstantExpr(llvm::APSInt &Result, const ASTContext &Ctx,
     488             :                              SourceLocation *Loc = nullptr,
     489             :                              bool isEvaluated = true) const;
     490             :   bool isIntegerConstantExpr(const ASTContext &Ctx,
     491             :                              SourceLocation *Loc = nullptr) const;
     492             : 
     493             :   /// isCXX98IntegralConstantExpr - Return true if this expression is an
     494             :   /// integral constant expression in C++98. Can only be used in C++.
     495             :   bool isCXX98IntegralConstantExpr(const ASTContext &Ctx) const;
     496             : 
     497             :   /// isCXX11ConstantExpr - Return true if this expression is a constant
     498             :   /// expression in C++11. Can only be used in C++.
     499             :   ///
     500             :   /// Note: This does not perform the implicit conversions required by C++11
     501             :   /// [expr.const]p5.
     502             :   bool isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result = nullptr,
     503             :                            SourceLocation *Loc = nullptr) const;
     504             : 
     505             :   /// isPotentialConstantExpr - Return true if this function's definition
     506             :   /// might be usable in a constant expression in C++11, if it were marked
     507             :   /// constexpr. Return false if the function can never produce a constant
     508             :   /// expression, along with diagnostics describing why not.
     509             :   static bool isPotentialConstantExpr(const FunctionDecl *FD,
     510             :                                       SmallVectorImpl<
     511             :                                         PartialDiagnosticAt> &Diags);
     512             : 
     513             :   /// isPotentialConstantExprUnevaluted - Return true if this expression might
     514             :   /// be usable in a constant expression in C++11 in an unevaluated context, if
     515             :   /// it were in function FD marked constexpr. Return false if the function can
     516             :   /// never produce a constant expression, along with diagnostics describing
     517             :   /// why not.
     518             :   static bool isPotentialConstantExprUnevaluated(Expr *E,
     519             :                                                  const FunctionDecl *FD,
     520             :                                                  SmallVectorImpl<
     521             :                                                    PartialDiagnosticAt> &Diags);
     522             : 
     523             :   /// isConstantInitializer - Returns true if this expression can be emitted to
     524             :   /// IR as a constant, and thus can be used as a constant initializer in C.
     525             :   /// If this expression is not constant and Culprit is non-null,
     526             :   /// it is used to store the address of first non constant expr.
     527             :   bool isConstantInitializer(ASTContext &Ctx, bool ForRef,
     528             :                              const Expr **Culprit = nullptr) const;
     529             : 
     530             :   /// EvalStatus is a struct with detailed info about an evaluation in progress.
     531             :   struct EvalStatus {
     532             :     /// HasSideEffects - Whether the evaluated expression has side effects.
     533             :     /// For example, (f() && 0) can be folded, but it still has side effects.
     534             :     bool HasSideEffects;
     535             : 
     536             :     /// Diag - If this is non-null, it will be filled in with a stack of notes
     537             :     /// indicating why evaluation failed (or why it failed to produce a constant
     538             :     /// expression).
     539             :     /// If the expression is unfoldable, the notes will indicate why it's not
     540             :     /// foldable. If the expression is foldable, but not a constant expression,
     541             :     /// the notes will describes why it isn't a constant expression. If the
     542             :     /// expression *is* a constant expression, no notes will be produced.
     543             :     SmallVectorImpl<PartialDiagnosticAt> *Diag;
     544             : 
     545             :     EvalStatus() : HasSideEffects(false), Diag(nullptr) {}
     546             : 
     547             :     // hasSideEffects - Return true if the evaluated expression has
     548             :     // side effects.
     549             :     bool hasSideEffects() const {
     550             :       return HasSideEffects;
     551             :     }
     552             :   };
     553             : 
     554             :   /// EvalResult is a struct with detailed info about an evaluated expression.
     555             :   struct EvalResult : EvalStatus {
     556             :     /// Val - This is the value the expression can be folded to.
     557             :     APValue Val;
     558             : 
     559             :     // isGlobalLValue - Return true if the evaluated lvalue expression
     560             :     // is global.
     561             :     bool isGlobalLValue() const;
     562             :   };
     563             : 
     564             :   /// EvaluateAsRValue - Return true if this is a constant which we can fold to
     565             :   /// an rvalue using any crazy technique (that has nothing to do with language
     566             :   /// standards) that we want to, even if the expression has side-effects. If
     567             :   /// this function returns true, it returns the folded constant in Result. If
     568             :   /// the expression is a glvalue, an lvalue-to-rvalue conversion will be
     569             :   /// applied.
     570             :   bool EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const;
     571             : 
     572             :   /// EvaluateAsBooleanCondition - Return true if this is a constant
     573             :   /// which we we can fold and convert to a boolean condition using
     574             :   /// any crazy technique that we want to, even if the expression has
     575             :   /// side-effects.
     576             :   bool EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx) const;
     577             : 
     578             :   enum SideEffectsKind { SE_NoSideEffects, SE_AllowSideEffects };
     579             : 
     580             :   /// EvaluateAsInt - Return true if this is a constant which we can fold and
     581             :   /// convert to an integer, using any crazy technique that we want to.
     582             :   bool EvaluateAsInt(llvm::APSInt &Result, const ASTContext &Ctx,
     583             :                      SideEffectsKind AllowSideEffects = SE_NoSideEffects) const;
     584             : 
     585             :   /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
     586             :   /// constant folded without side-effects, but discard the result.
     587             :   bool isEvaluatable(const ASTContext &Ctx) const;
     588             : 
     589             :   /// HasSideEffects - This routine returns true for all those expressions
     590             :   /// which have any effect other than producing a value. Example is a function
     591             :   /// call, volatile variable read, or throwing an exception. If
     592             :   /// IncludePossibleEffects is false, this call treats certain expressions with
     593             :   /// potential side effects (such as function call-like expressions,
     594             :   /// instantiation-dependent expressions, or invocations from a macro) as not
     595             :   /// having side effects.
     596             :   bool HasSideEffects(const ASTContext &Ctx,
     597             :                       bool IncludePossibleEffects = true) const;
     598             : 
     599             :   /// \brief Determine whether this expression involves a call to any function
     600             :   /// that is not trivial.
     601             :   bool hasNonTrivialCall(const ASTContext &Ctx) const;
     602             : 
     603             :   /// EvaluateKnownConstInt - Call EvaluateAsRValue and return the folded
     604             :   /// integer. This must be called on an expression that constant folds to an
     605             :   /// integer.
     606             :   llvm::APSInt EvaluateKnownConstInt(const ASTContext &Ctx,
     607             :                     SmallVectorImpl<PartialDiagnosticAt> *Diag = nullptr) const;
     608             : 
     609             :   void EvaluateForOverflow(const ASTContext &Ctx) const;
     610             : 
     611             :   /// EvaluateAsLValue - Evaluate an expression to see if we can fold it to an
     612             :   /// lvalue with link time known address, with no side-effects.
     613             :   bool EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const;
     614             : 
     615             :   /// EvaluateAsInitializer - Evaluate an expression as if it were the
     616             :   /// initializer of the given declaration. Returns true if the initializer
     617             :   /// can be folded to a constant, and produces any relevant notes. In C++11,
     618             :   /// notes will be produced if the expression is not a constant expression.
     619             :   bool EvaluateAsInitializer(APValue &Result, const ASTContext &Ctx,
     620             :                              const VarDecl *VD,
     621             :                              SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
     622             : 
     623             :   /// EvaluateWithSubstitution - Evaluate an expression as if from the context
     624             :   /// of a call to the given function with the given arguments, inside an
     625             :   /// unevaluated context. Returns true if the expression could be folded to a
     626             :   /// constant.
     627             :   bool EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
     628             :                                 const FunctionDecl *Callee,
     629             :                                 ArrayRef<const Expr*> Args) const;
     630             : 
     631             :   /// \brief Enumeration used to describe the kind of Null pointer constant
     632             :   /// returned from \c isNullPointerConstant().
     633             :   enum NullPointerConstantKind {
     634             :     /// \brief Expression is not a Null pointer constant.
     635             :     NPCK_NotNull = 0,
     636             : 
     637             :     /// \brief Expression is a Null pointer constant built from a zero integer
     638             :     /// expression that is not a simple, possibly parenthesized, zero literal.
     639             :     /// C++ Core Issue 903 will classify these expressions as "not pointers"
     640             :     /// once it is adopted.
     641             :     /// http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903
     642             :     NPCK_ZeroExpression,
     643             : 
     644             :     /// \brief Expression is a Null pointer constant built from a literal zero.
     645             :     NPCK_ZeroLiteral,
     646             : 
     647             :     /// \brief Expression is a C++11 nullptr.
     648             :     NPCK_CXX11_nullptr,
     649             : 
     650             :     /// \brief Expression is a GNU-style __null constant.
     651             :     NPCK_GNUNull
     652             :   };
     653             : 
     654             :   /// \brief Enumeration used to describe how \c isNullPointerConstant()
     655             :   /// should cope with value-dependent expressions.
     656             :   enum NullPointerConstantValueDependence {
     657             :     /// \brief Specifies that the expression should never be value-dependent.
     658             :     NPC_NeverValueDependent = 0,
     659             : 
     660             :     /// \brief Specifies that a value-dependent expression of integral or
     661             :     /// dependent type should be considered a null pointer constant.
     662             :     NPC_ValueDependentIsNull,
     663             : 
     664             :     /// \brief Specifies that a value-dependent expression should be considered
     665             :     /// to never be a null pointer constant.
     666             :     NPC_ValueDependentIsNotNull
     667             :   };
     668             : 
     669             :   /// isNullPointerConstant - C99 6.3.2.3p3 - Test if this reduces down to
     670             :   /// a Null pointer constant. The return value can further distinguish the
     671             :   /// kind of NULL pointer constant that was detected.
     672             :   NullPointerConstantKind isNullPointerConstant(
     673             :       ASTContext &Ctx,
     674             :       NullPointerConstantValueDependence NPC) const;
     675             : 
     676             :   /// isOBJCGCCandidate - Return true if this expression may be used in a read/
     677             :   /// write barrier.
     678             :   bool isOBJCGCCandidate(ASTContext &Ctx) const;
     679             : 
     680             :   /// \brief Returns true if this expression is a bound member function.
     681             :   bool isBoundMemberFunction(ASTContext &Ctx) const;
     682             : 
     683             :   /// \brief Given an expression of bound-member type, find the type
     684             :   /// of the member.  Returns null if this is an *overloaded* bound
     685             :   /// member expression.
     686             :   static QualType findBoundMemberType(const Expr *expr);
     687             : 
     688             :   /// IgnoreImpCasts - Skip past any implicit casts which might
     689             :   /// surround this expression.  Only skips ImplicitCastExprs.
     690             :   Expr *IgnoreImpCasts() LLVM_READONLY;
     691             : 
     692             :   /// IgnoreImplicit - Skip past any implicit AST nodes which might
     693             :   /// surround this expression.
     694             :   Expr *IgnoreImplicit() LLVM_READONLY {
     695             :     return cast<Expr>(Stmt::IgnoreImplicit());
     696             :   }
     697             : 
     698             :   const Expr *IgnoreImplicit() const LLVM_READONLY {
     699             :     return const_cast<Expr*>(this)->IgnoreImplicit();
     700             :   }
     701             : 
     702             :   /// IgnoreParens - Ignore parentheses.  If this Expr is a ParenExpr, return
     703             :   ///  its subexpression.  If that subexpression is also a ParenExpr,
     704             :   ///  then this method recursively returns its subexpression, and so forth.
     705             :   ///  Otherwise, the method returns the current Expr.
     706             :   Expr *IgnoreParens() LLVM_READONLY;
     707             : 
     708             :   /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
     709             :   /// or CastExprs, returning their operand.
     710             :   Expr *IgnoreParenCasts() LLVM_READONLY;
     711             : 
     712             :   /// Ignore casts.  Strip off any CastExprs, returning their operand.
     713             :   Expr *IgnoreCasts() LLVM_READONLY;
     714             : 
     715             :   /// IgnoreParenImpCasts - Ignore parentheses and implicit casts.  Strip off
     716             :   /// any ParenExpr or ImplicitCastExprs, returning their operand.
     717             :   Expr *IgnoreParenImpCasts() LLVM_READONLY;
     718             : 
     719             :   /// IgnoreConversionOperator - Ignore conversion operator. If this Expr is a
     720             :   /// call to a conversion operator, return the argument.
     721             :   Expr *IgnoreConversionOperator() LLVM_READONLY;
     722             : 
     723             :   const Expr *IgnoreConversionOperator() const LLVM_READONLY {
     724             :     return const_cast<Expr*>(this)->IgnoreConversionOperator();
     725             :   }
     726             : 
     727             :   const Expr *IgnoreParenImpCasts() const LLVM_READONLY {
     728             :     return const_cast<Expr*>(this)->IgnoreParenImpCasts();
     729             :   }
     730             : 
     731             :   /// Ignore parentheses and lvalue casts.  Strip off any ParenExpr and
     732             :   /// CastExprs that represent lvalue casts, returning their operand.
     733             :   Expr *IgnoreParenLValueCasts() LLVM_READONLY;
     734             : 
     735             :   const Expr *IgnoreParenLValueCasts() const LLVM_READONLY {
     736             :     return const_cast<Expr*>(this)->IgnoreParenLValueCasts();
     737             :   }
     738             : 
     739             :   /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
     740             :   /// value (including ptr->int casts of the same size).  Strip off any
     741             :   /// ParenExpr or CastExprs, returning their operand.
     742             :   Expr *IgnoreParenNoopCasts(ASTContext &Ctx) LLVM_READONLY;
     743             : 
     744             :   /// Ignore parentheses and derived-to-base casts.
     745             :   Expr *ignoreParenBaseCasts() LLVM_READONLY;
     746             : 
     747             :   const Expr *ignoreParenBaseCasts() const LLVM_READONLY {
     748             :     return const_cast<Expr*>(this)->ignoreParenBaseCasts();
     749             :   }
     750             : 
     751             :   /// \brief Determine whether this expression is a default function argument.
     752             :   ///
     753             :   /// Default arguments are implicitly generated in the abstract syntax tree
     754             :   /// by semantic analysis for function calls, object constructions, etc. in
     755             :   /// C++. Default arguments are represented by \c CXXDefaultArgExpr nodes;
     756             :   /// this routine also looks through any implicit casts to determine whether
     757             :   /// the expression is a default argument.
     758             :   bool isDefaultArgument() const;
     759             : 
     760             :   /// \brief Determine whether the result of this expression is a
     761             :   /// temporary object of the given class type.
     762             :   bool isTemporaryObject(ASTContext &Ctx, const CXXRecordDecl *TempTy) const;
     763             : 
     764             :   /// \brief Whether this expression is an implicit reference to 'this' in C++.
     765             :   bool isImplicitCXXThis() const;
     766             : 
     767             :   const Expr *IgnoreImpCasts() const LLVM_READONLY {
     768             :     return const_cast<Expr*>(this)->IgnoreImpCasts();
     769             :   }
     770             :   const Expr *IgnoreParens() const LLVM_READONLY {
     771             :     return const_cast<Expr*>(this)->IgnoreParens();
     772             :   }
     773             :   const Expr *IgnoreParenCasts() const LLVM_READONLY {
     774             :     return const_cast<Expr*>(this)->IgnoreParenCasts();
     775             :   }
     776             :   /// Strip off casts, but keep parentheses.
     777             :   const Expr *IgnoreCasts() const LLVM_READONLY {
     778             :     return const_cast<Expr*>(this)->IgnoreCasts();
     779             :   }
     780             : 
     781             :   const Expr *IgnoreParenNoopCasts(ASTContext &Ctx) const LLVM_READONLY {
     782             :     return const_cast<Expr*>(this)->IgnoreParenNoopCasts(Ctx);
     783             :   }
     784             : 
     785             :   static bool hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs);
     786             : 
     787             :   /// \brief For an expression of class type or pointer to class type,
     788             :   /// return the most derived class decl the expression is known to refer to.
     789             :   ///
     790             :   /// If this expression is a cast, this method looks through it to find the
     791             :   /// most derived decl that can be inferred from the expression.
     792             :   /// This is valid because derived-to-base conversions have undefined
     793             :   /// behavior if the object isn't dynamically of the derived type.
     794             :   const CXXRecordDecl *getBestDynamicClassType() const;
     795             : 
     796             :   /// Walk outwards from an expression we want to bind a reference to and
     797             :   /// find the expression whose lifetime needs to be extended. Record
     798             :   /// the LHSs of comma expressions and adjustments needed along the path.
     799             :   const Expr *skipRValueSubobjectAdjustments(
     800             :       SmallVectorImpl<const Expr *> &CommaLHS,
     801             :       SmallVectorImpl<SubobjectAdjustment> &Adjustments) const;
     802             : 
     803             :   static bool classof(const Stmt *T) {
     804           0 :     return T->getStmtClass() >= firstExprConstant &&
     805           0 :            T->getStmtClass() <= lastExprConstant;
     806             :   }
     807             : };
     808             : 
     809             : 
     810             : //===----------------------------------------------------------------------===//
     811             : // Primary Expressions.
     812             : //===----------------------------------------------------------------------===//
     813             : 
     814             : /// OpaqueValueExpr - An expression referring to an opaque object of a
     815             : /// fixed type and value class.  These don't correspond to concrete
     816             : /// syntax; instead they're used to express operations (usually copy
     817             : /// operations) on values whose source is generally obvious from
     818             : /// context.
     819             : class OpaqueValueExpr : public Expr {
     820             :   friend class ASTStmtReader;
     821             :   Expr *SourceExpr;
     822             :   SourceLocation Loc;
     823             : 
     824             : public:
     825             :   OpaqueValueExpr(SourceLocation Loc, QualType T, ExprValueKind VK,
     826             :                   ExprObjectKind OK = OK_Ordinary,
     827             :                   Expr *SourceExpr = nullptr)
     828             :     : Expr(OpaqueValueExprClass, T, VK, OK,
     829             :            T->isDependentType(), 
     830             :            T->isDependentType() || 
     831             :            (SourceExpr && SourceExpr->isValueDependent()),
     832             :            T->isInstantiationDependentType(),
     833             :            false),
     834             :       SourceExpr(SourceExpr), Loc(Loc) {
     835             :   }
     836             : 
     837             :   /// Given an expression which invokes a copy constructor --- i.e.  a
     838             :   /// CXXConstructExpr, possibly wrapped in an ExprWithCleanups ---
     839             :   /// find the OpaqueValueExpr that's the source of the construction.
     840             :   static const OpaqueValueExpr *findInCopyConstruct(const Expr *expr);
     841             : 
     842             :   explicit OpaqueValueExpr(EmptyShell Empty)
     843             :     : Expr(OpaqueValueExprClass, Empty) { }
     844             : 
     845             :   /// \brief Retrieve the location of this expression.
     846             :   SourceLocation getLocation() const { return Loc; }
     847             : 
     848             :   SourceLocation getLocStart() const LLVM_READONLY {
     849             :     return SourceExpr ? SourceExpr->getLocStart() : Loc;
     850             :   }
     851             :   SourceLocation getLocEnd() const LLVM_READONLY {
     852             :     return SourceExpr ? SourceExpr->getLocEnd() : Loc;
     853             :   }
     854             :   SourceLocation getExprLoc() const LLVM_READONLY {
     855             :     if (SourceExpr) return SourceExpr->getExprLoc();
     856             :     return Loc;
     857             :   }
     858             : 
     859           0 :   child_range children() { return child_range(); }
     860             : 
     861             :   /// The source expression of an opaque value expression is the
     862             :   /// expression which originally generated the value.  This is
     863             :   /// provided as a convenience for analyses that don't wish to
     864             :   /// precisely model the execution behavior of the program.
     865             :   ///
     866             :   /// The source expression is typically set when building the
     867             :   /// expression which binds the opaque value expression in the first
     868             :   /// place.
     869           0 :   Expr *getSourceExpr() const { return SourceExpr; }
     870             : 
     871             :   static bool classof(const Stmt *T) {
     872           0 :     return T->getStmtClass() == OpaqueValueExprClass;
     873             :   }
     874             : };
     875             : 
     876             : /// \brief A reference to a declared variable, function, enum, etc.
     877             : /// [C99 6.5.1p2]
     878             : ///
     879             : /// This encodes all the information about how a declaration is referenced
     880             : /// within an expression.
     881             : ///
     882             : /// There are several optional constructs attached to DeclRefExprs only when
     883             : /// they apply in order to conserve memory. These are laid out past the end of
     884             : /// the object, and flags in the DeclRefExprBitfield track whether they exist:
     885             : ///
     886             : ///   DeclRefExprBits.HasQualifier:
     887             : ///       Specifies when this declaration reference expression has a C++
     888             : ///       nested-name-specifier.
     889             : ///   DeclRefExprBits.HasFoundDecl:
     890             : ///       Specifies when this declaration reference expression has a record of
     891             : ///       a NamedDecl (different from the referenced ValueDecl) which was found
     892             : ///       during name lookup and/or overload resolution.
     893             : ///   DeclRefExprBits.HasTemplateKWAndArgsInfo:
     894             : ///       Specifies when this declaration reference expression has an explicit
     895             : ///       C++ template keyword and/or template argument list.
     896             : ///   DeclRefExprBits.RefersToEnclosingVariableOrCapture
     897             : ///       Specifies when this declaration reference expression (validly)
     898             : ///       refers to an enclosed local or a captured variable.
     899             : class DeclRefExpr : public Expr {
     900             :   /// \brief The declaration that we are referencing.
     901             :   ValueDecl *D;
     902             : 
     903             :   /// \brief The location of the declaration name itself.
     904             :   SourceLocation Loc;
     905             : 
     906             :   /// \brief Provides source/type location info for the declaration name
     907             :   /// embedded in D.
     908             :   DeclarationNameLoc DNLoc;
     909             : 
     910             :   /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
     911             :   NestedNameSpecifierLoc &getInternalQualifierLoc() {
     912           2 :     assert(hasQualifier());
     913           1 :     return *reinterpret_cast<NestedNameSpecifierLoc *>(this + 1);
     914             :   }
     915             : 
     916             :   /// \brief Helper to retrieve the optional NestedNameSpecifierLoc.
     917             :   const NestedNameSpecifierLoc &getInternalQualifierLoc() const {
     918           1 :     return const_cast<DeclRefExpr *>(this)->getInternalQualifierLoc();
     919             :   }
     920             : 
     921             :   /// \brief Test whether there is a distinct FoundDecl attached to the end of
     922             :   /// this DRE.
     923           0 :   bool hasFoundDecl() const { return DeclRefExprBits.HasFoundDecl; }
     924             : 
     925             :   /// \brief Helper to retrieve the optional NamedDecl through which this
     926             :   /// reference occurred.
     927             :   NamedDecl *&getInternalFoundDecl() {
     928           0 :     assert(hasFoundDecl());
     929           0 :     if (hasQualifier())
     930           0 :       return *reinterpret_cast<NamedDecl **>(&getInternalQualifierLoc() + 1);
     931           0 :     return *reinterpret_cast<NamedDecl **>(this + 1);
     932           0 :   }
     933             : 
     934             :   /// \brief Helper to retrieve the optional NamedDecl through which this
     935             :   /// reference occurred.
     936             :   NamedDecl *getInternalFoundDecl() const {
     937             :     return const_cast<DeclRefExpr *>(this)->getInternalFoundDecl();
     938             :   }
     939             : 
     940             :   DeclRefExpr(const ASTContext &Ctx,
     941             :               NestedNameSpecifierLoc QualifierLoc,
     942             :               SourceLocation TemplateKWLoc,
     943             :               ValueDecl *D, bool RefersToEnlosingVariableOrCapture,
     944             :               const DeclarationNameInfo &NameInfo,
     945             :               NamedDecl *FoundD,
     946             :               const TemplateArgumentListInfo *TemplateArgs,
     947             :               QualType T, ExprValueKind VK);
     948             : 
     949             :   /// \brief Construct an empty declaration reference expression.
     950             :   explicit DeclRefExpr(EmptyShell Empty)
     951             :     : Expr(DeclRefExprClass, Empty) { }
     952             : 
     953             :   /// \brief Computes the type- and value-dependence flags for this
     954             :   /// declaration reference expression.
     955             :   void computeDependence(const ASTContext &C);
     956             : 
     957             : public:
     958             :   DeclRefExpr(ValueDecl *D, bool RefersToEnclosingVariableOrCapture, QualType T,
     959             :               ExprValueKind VK, SourceLocation L,
     960             :               const DeclarationNameLoc &LocInfo = DeclarationNameLoc())
     961             :     : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
     962             :       D(D), Loc(L), DNLoc(LocInfo) {
     963             :     DeclRefExprBits.HasQualifier = 0;
     964             :     DeclRefExprBits.HasTemplateKWAndArgsInfo = 0;
     965             :     DeclRefExprBits.HasFoundDecl = 0;
     966             :     DeclRefExprBits.HadMultipleCandidates = 0;
     967             :     DeclRefExprBits.RefersToEnclosingVariableOrCapture =
     968             :         RefersToEnclosingVariableOrCapture;
     969             :     computeDependence(D->getASTContext());
     970             :   }
     971             : 
     972             :   static DeclRefExpr *
     973             :   Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
     974             :          SourceLocation TemplateKWLoc, ValueDecl *D,
     975             :          bool RefersToEnclosingVariableOrCapture, SourceLocation NameLoc,
     976             :          QualType T, ExprValueKind VK, NamedDecl *FoundD = nullptr,
     977             :          const TemplateArgumentListInfo *TemplateArgs = nullptr);
     978             : 
     979             :   static DeclRefExpr *
     980             :   Create(const ASTContext &Context, NestedNameSpecifierLoc QualifierLoc,
     981             :          SourceLocation TemplateKWLoc, ValueDecl *D,
     982             :          bool RefersToEnclosingVariableOrCapture,
     983             :          const DeclarationNameInfo &NameInfo, QualType T, ExprValueKind VK,
     984             :          NamedDecl *FoundD = nullptr,
     985             :          const TemplateArgumentListInfo *TemplateArgs = nullptr);
     986             : 
     987             :   /// \brief Construct an empty declaration reference expression.
     988             :   static DeclRefExpr *CreateEmpty(const ASTContext &Context,
     989             :                                   bool HasQualifier,
     990             :                                   bool HasFoundDecl,
     991             :                                   bool HasTemplateKWAndArgsInfo,
     992             :                                   unsigned NumTemplateArgs);
     993             : 
     994           9 :   ValueDecl *getDecl() { return D; }
     995           9 :   const ValueDecl *getDecl() const { return D; }
     996             :   void setDecl(ValueDecl *NewD) { D = NewD; }
     997             : 
     998             :   DeclarationNameInfo getNameInfo() const {
     999           9 :     return DeclarationNameInfo(getDecl()->getDeclName(), Loc, DNLoc);
    1000             :   }
    1001             : 
    1002           2 :   SourceLocation getLocation() const { return Loc; }
    1003             :   void setLocation(SourceLocation L) { Loc = L; }
    1004             :   SourceLocation getLocStart() const LLVM_READONLY;
    1005             :   SourceLocation getLocEnd() const LLVM_READONLY;
    1006             : 
    1007             :   /// \brief Determine whether this declaration reference was preceded by a
    1008             :   /// C++ nested-name-specifier, e.g., \c N::foo.
    1009          10 :   bool hasQualifier() const { return DeclRefExprBits.HasQualifier; }
    1010             : 
    1011             :   /// \brief If the name was qualified, retrieves the nested-name-specifier
    1012             :   /// that precedes the name. Otherwise, returns NULL.
    1013             :   NestedNameSpecifier *getQualifier() const {
    1014             :     if (!hasQualifier())
    1015             :       return nullptr;
    1016             : 
    1017             :     return getInternalQualifierLoc().getNestedNameSpecifier();
    1018             :   }
    1019             : 
    1020             :   /// \brief If the name was qualified, retrieves the nested-name-specifier
    1021             :   /// that precedes the name, with source-location information.
    1022             :   NestedNameSpecifierLoc getQualifierLoc() const {
    1023           9 :     if (!hasQualifier())
    1024           8 :       return NestedNameSpecifierLoc();
    1025             : 
    1026           1 :     return getInternalQualifierLoc();
    1027           9 :   }
    1028             : 
    1029             :   /// \brief Get the NamedDecl through which this reference occurred.
    1030             :   ///
    1031             :   /// This Decl may be different from the ValueDecl actually referred to in the
    1032             :   /// presence of using declarations, etc. It always returns non-NULL, and may
    1033             :   /// simple return the ValueDecl when appropriate.
    1034             :   NamedDecl *getFoundDecl() {
    1035             :     return hasFoundDecl() ? getInternalFoundDecl() : D;
    1036             :   }
    1037             : 
    1038             :   /// \brief Get the NamedDecl through which this reference occurred.
    1039             :   /// See non-const variant.
    1040             :   const NamedDecl *getFoundDecl() const {
    1041             :     return hasFoundDecl() ? getInternalFoundDecl() : D;
    1042             :   }
    1043             : 
    1044             :   bool hasTemplateKWAndArgsInfo() const {
    1045          18 :     return DeclRefExprBits.HasTemplateKWAndArgsInfo;
    1046             :   }
    1047             : 
    1048             :   /// \brief Return the optional template keyword and arguments info.
    1049             :   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
    1050           0 :     if (!hasTemplateKWAndArgsInfo())
    1051           0 :       return nullptr;
    1052             : 
    1053           0 :     if (hasFoundDecl())
    1054           0 :       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
    1055           0 :         &getInternalFoundDecl() + 1);
    1056             : 
    1057           0 :     if (hasQualifier())
    1058           0 :       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
    1059           0 :         &getInternalQualifierLoc() + 1);
    1060             : 
    1061           0 :     return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
    1062           0 :   }
    1063             : 
    1064             :   /// \brief Return the optional template keyword and arguments info.
    1065             :   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
    1066           0 :     return const_cast<DeclRefExpr*>(this)->getTemplateKWAndArgsInfo();
    1067             :   }
    1068             : 
    1069             :   /// \brief Retrieve the location of the template keyword preceding
    1070             :   /// this name, if any.
    1071             :   SourceLocation getTemplateKeywordLoc() const {
    1072             :     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    1073             :     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
    1074             :   }
    1075             : 
    1076             :   /// \brief Retrieve the location of the left angle bracket starting the
    1077             :   /// explicit template argument list following the name, if any.
    1078             :   SourceLocation getLAngleLoc() const {
    1079          36 :     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    1080           0 :     return getTemplateKWAndArgsInfo()->LAngleLoc;
    1081          18 :   }
    1082             : 
    1083             :   /// \brief Retrieve the location of the right angle bracket ending the
    1084             :   /// explicit template argument list following the name, if any.
    1085             :   SourceLocation getRAngleLoc() const {
    1086             :     if (!hasTemplateKWAndArgsInfo()) return SourceLocation();
    1087             :     return getTemplateKWAndArgsInfo()->RAngleLoc;
    1088             :   }
    1089             : 
    1090             :   /// \brief Determines whether the name in this declaration reference
    1091             :   /// was preceded by the template keyword.
    1092             :   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
    1093             : 
    1094             :   /// \brief Determines whether this declaration reference was followed by an
    1095             :   /// explicit template argument list.
    1096          18 :   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
    1097             : 
    1098             :   /// \brief Retrieve the explicit template argument list that followed the
    1099             :   /// member template name.
    1100             :   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    1101           0 :     assert(hasExplicitTemplateArgs());
    1102           0 :     return *getTemplateKWAndArgsInfo();
    1103             :   }
    1104             : 
    1105             :   /// \brief Retrieve the explicit template argument list that followed the
    1106             :   /// member template name.
    1107             :   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    1108           0 :     return const_cast<DeclRefExpr *>(this)->getExplicitTemplateArgs();
    1109             :   }
    1110             : 
    1111             :   /// \brief Retrieves the optional explicit template arguments.
    1112             :   /// This points to the same data as getExplicitTemplateArgs(), but
    1113             :   /// returns null if there are no explicit template arguments.
    1114             :   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
    1115             :     if (!hasExplicitTemplateArgs()) return nullptr;
    1116             :     return &getExplicitTemplateArgs();
    1117             :   }
    1118             : 
    1119             :   /// \brief Copies the template arguments (if present) into the given
    1120             :   /// structure.
    1121             :   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    1122             :     if (hasExplicitTemplateArgs())
    1123             :       getExplicitTemplateArgs().copyInto(List);
    1124             :   }
    1125             : 
    1126             :   /// \brief Retrieve the template arguments provided as part of this
    1127             :   /// template-id.
    1128             :   const TemplateArgumentLoc *getTemplateArgs() const {
    1129           9 :     if (!hasExplicitTemplateArgs())
    1130           9 :       return nullptr;
    1131             : 
    1132           0 :     return getExplicitTemplateArgs().getTemplateArgs();
    1133           9 :   }
    1134             : 
    1135             :   /// \brief Retrieve the number of template arguments provided as part of this
    1136             :   /// template-id.
    1137             :   unsigned getNumTemplateArgs() const {
    1138           9 :     if (!hasExplicitTemplateArgs())
    1139           9 :       return 0;
    1140             : 
    1141           0 :     return getExplicitTemplateArgs().NumTemplateArgs;
    1142           9 :   }
    1143             : 
    1144             :   /// \brief Returns true if this expression refers to a function that
    1145             :   /// was resolved from an overloaded set having size greater than 1.
    1146             :   bool hadMultipleCandidates() const {
    1147             :     return DeclRefExprBits.HadMultipleCandidates;
    1148             :   }
    1149             :   /// \brief Sets the flag telling whether this expression refers to
    1150             :   /// a function that was resolved from an overloaded set having size
    1151             :   /// greater than 1.
    1152             :   void setHadMultipleCandidates(bool V = true) {
    1153             :     DeclRefExprBits.HadMultipleCandidates = V;
    1154             :   }
    1155             : 
    1156             :   /// \brief Does this DeclRefExpr refer to an enclosing local or a captured
    1157             :   /// variable?
    1158             :   bool refersToEnclosingVariableOrCapture() const {
    1159             :     return DeclRefExprBits.RefersToEnclosingVariableOrCapture;
    1160             :   }
    1161             : 
    1162             :   static bool classof(const Stmt *T) {
    1163             :     return T->getStmtClass() == DeclRefExprClass;
    1164             :   }
    1165             : 
    1166             :   // Iterators
    1167           9 :   child_range children() { return child_range(); }
    1168             : 
    1169             :   friend class ASTStmtReader;
    1170             :   friend class ASTStmtWriter;
    1171             : };
    1172             : 
    1173             : /// \brief [C99 6.4.2.2] - A predefined identifier such as __func__.
    1174             : class PredefinedExpr : public Expr {
    1175             : public:
    1176             :   enum IdentType {
    1177             :     Func,
    1178             :     Function,
    1179             :     LFunction,  // Same as Function, but as wide string.
    1180             :     FuncDName,
    1181             :     FuncSig,
    1182             :     PrettyFunction,
    1183             :     /// \brief The same as PrettyFunction, except that the
    1184             :     /// 'virtual' keyword is omitted for virtual member functions.
    1185             :     PrettyFunctionNoVirtual
    1186             :   };
    1187             : 
    1188             : private:
    1189             :   SourceLocation Loc;
    1190             :   IdentType Type;
    1191             :   Stmt *FnName;
    1192             : 
    1193             : public:
    1194             :   PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
    1195             :                  StringLiteral *SL);
    1196             : 
    1197             :   /// \brief Construct an empty predefined expression.
    1198             :   explicit PredefinedExpr(EmptyShell Empty)
    1199             :       : Expr(PredefinedExprClass, Empty), Loc(), Type(Func), FnName(nullptr) {}
    1200             : 
    1201             :   IdentType getIdentType() const { return Type; }
    1202             : 
    1203             :   SourceLocation getLocation() const { return Loc; }
    1204             :   void setLocation(SourceLocation L) { Loc = L; }
    1205             : 
    1206             :   StringLiteral *getFunctionName();
    1207             :   const StringLiteral *getFunctionName() const {
    1208             :     return const_cast<PredefinedExpr *>(this)->getFunctionName();
    1209             :   }
    1210             : 
    1211             :   static StringRef getIdentTypeName(IdentType IT);
    1212             :   static std::string ComputeName(IdentType IT, const Decl *CurrentDecl);
    1213             : 
    1214             :   SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
    1215             :   SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
    1216             : 
    1217             :   static bool classof(const Stmt *T) {
    1218             :     return T->getStmtClass() == PredefinedExprClass;
    1219             :   }
    1220             : 
    1221             :   // Iterators
    1222           0 :   child_range children() { return child_range(&FnName, &FnName + 1); }
    1223             : 
    1224             :   friend class ASTStmtReader;
    1225             : };
    1226             : 
    1227             : /// \brief Used by IntegerLiteral/FloatingLiteral to store the numeric without
    1228             : /// leaking memory.
    1229             : ///
    1230             : /// For large floats/integers, APFloat/APInt will allocate memory from the heap
    1231             : /// to represent these numbers.  Unfortunately, when we use a BumpPtrAllocator
    1232             : /// to allocate IntegerLiteral/FloatingLiteral nodes the memory associated with
    1233             : /// the APFloat/APInt values will never get freed. APNumericStorage uses
    1234             : /// ASTContext's allocator for memory allocation.
    1235             : class APNumericStorage {
    1236             :   union {
    1237             :     uint64_t VAL;    ///< Used to store the <= 64 bits integer value.
    1238             :     uint64_t *pVal;  ///< Used to store the >64 bits integer value.
    1239             :   };
    1240             :   unsigned BitWidth;
    1241             : 
    1242             :   bool hasAllocation() const { return llvm::APInt::getNumWords(BitWidth) > 1; }
    1243             : 
    1244             :   APNumericStorage(const APNumericStorage &) = delete;
    1245             :   void operator=(const APNumericStorage &) = delete;
    1246             : 
    1247             : protected:
    1248             :   APNumericStorage() : VAL(0), BitWidth(0) { }
    1249             : 
    1250             :   llvm::APInt getIntValue() const {
    1251             :     unsigned NumWords = llvm::APInt::getNumWords(BitWidth);
    1252             :     if (NumWords > 1)
    1253             :       return llvm::APInt(BitWidth, NumWords, pVal);
    1254             :     else
    1255             :       return llvm::APInt(BitWidth, VAL);
    1256             :   }
    1257             :   void setIntValue(const ASTContext &C, const llvm::APInt &Val);
    1258             : };
    1259             : 
    1260             : class APIntStorage : private APNumericStorage {
    1261             : public:
    1262             :   llvm::APInt getValue() const { return getIntValue(); }
    1263             :   void setValue(const ASTContext &C, const llvm::APInt &Val) {
    1264             :     setIntValue(C, Val);
    1265             :   }
    1266             : };
    1267             : 
    1268             : class APFloatStorage : private APNumericStorage {
    1269             : public:
    1270             :   llvm::APFloat getValue(const llvm::fltSemantics &Semantics) const {
    1271             :     return llvm::APFloat(Semantics, getIntValue());
    1272             :   }
    1273             :   void setValue(const ASTContext &C, const llvm::APFloat &Val) {
    1274             :     setIntValue(C, Val.bitcastToAPInt());
    1275             :   }
    1276             : };
    1277             : 
    1278             : class IntegerLiteral : public Expr, public APIntStorage {
    1279             :   SourceLocation Loc;
    1280             : 
    1281             :   /// \brief Construct an empty integer literal.
    1282             :   explicit IntegerLiteral(EmptyShell Empty)
    1283             :     : Expr(IntegerLiteralClass, Empty) { }
    1284             : 
    1285             : public:
    1286             :   // type should be IntTy, LongTy, LongLongTy, UnsignedIntTy, UnsignedLongTy,
    1287             :   // or UnsignedLongLongTy
    1288             :   IntegerLiteral(const ASTContext &C, const llvm::APInt &V, QualType type,
    1289             :                  SourceLocation l);
    1290             : 
    1291             :   /// \brief Returns a new integer literal with value 'V' and type 'type'.
    1292             :   /// \param type - either IntTy, LongTy, LongLongTy, UnsignedIntTy,
    1293             :   /// UnsignedLongTy, or UnsignedLongLongTy which should match the size of V
    1294             :   /// \param V - the value that the returned integer literal contains.
    1295             :   static IntegerLiteral *Create(const ASTContext &C, const llvm::APInt &V,
    1296             :                                 QualType type, SourceLocation l);
    1297             :   /// \brief Returns a new empty integer literal.
    1298             :   static IntegerLiteral *Create(const ASTContext &C, EmptyShell Empty);
    1299             : 
    1300             :   SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
    1301             :   SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
    1302             : 
    1303             :   /// \brief Retrieve the location of the literal.
    1304             :   SourceLocation getLocation() const { return Loc; }
    1305             : 
    1306             :   void setLocation(SourceLocation Location) { Loc = Location; }
    1307             : 
    1308             :   static bool classof(const Stmt *T) {
    1309             :     return T->getStmtClass() == IntegerLiteralClass;
    1310             :   }
    1311             : 
    1312             :   // Iterators
    1313           9 :   child_range children() { return child_range(); }
    1314             : };
    1315             : 
    1316             : class CharacterLiteral : public Expr {
    1317             : public:
    1318             :   enum CharacterKind {
    1319             :     Ascii,
    1320             :     Wide,
    1321             :     UTF16,
    1322             :     UTF32
    1323             :   };
    1324             : 
    1325             : private:
    1326             :   unsigned Value;
    1327             :   SourceLocation Loc;
    1328             : public:
    1329             :   // type should be IntTy
    1330             :   CharacterLiteral(unsigned value, CharacterKind kind, QualType type,
    1331             :                    SourceLocation l)
    1332             :     : Expr(CharacterLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
    1333             :            false, false),
    1334             :       Value(value), Loc(l) {
    1335             :     CharacterLiteralBits.Kind = kind;
    1336             :   }
    1337             : 
    1338             :   /// \brief Construct an empty character literal.
    1339             :   CharacterLiteral(EmptyShell Empty) : Expr(CharacterLiteralClass, Empty) { }
    1340             : 
    1341             :   SourceLocation getLocation() const { return Loc; }
    1342             :   CharacterKind getKind() const {
    1343             :     return static_cast<CharacterKind>(CharacterLiteralBits.Kind);
    1344             :   }
    1345             : 
    1346             :   SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
    1347             :   SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
    1348             : 
    1349             :   unsigned getValue() const { return Value; }
    1350             : 
    1351             :   void setLocation(SourceLocation Location) { Loc = Location; }
    1352             :   void setKind(CharacterKind kind) { CharacterLiteralBits.Kind = kind; }
    1353             :   void setValue(unsigned Val) { Value = Val; }
    1354             : 
    1355             :   static bool classof(const Stmt *T) {
    1356             :     return T->getStmtClass() == CharacterLiteralClass;
    1357             :   }
    1358             : 
    1359             :   // Iterators
    1360           0 :   child_range children() { return child_range(); }
    1361             : };
    1362             : 
    1363             : class FloatingLiteral : public Expr, private APFloatStorage {
    1364             :   SourceLocation Loc;
    1365             : 
    1366             :   FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, bool isexact,
    1367             :                   QualType Type, SourceLocation L);
    1368             : 
    1369             :   /// \brief Construct an empty floating-point literal.
    1370             :   explicit FloatingLiteral(const ASTContext &C, EmptyShell Empty);
    1371             : 
    1372             : public:
    1373             :   static FloatingLiteral *Create(const ASTContext &C, const llvm::APFloat &V,
    1374             :                                  bool isexact, QualType Type, SourceLocation L);
    1375             :   static FloatingLiteral *Create(const ASTContext &C, EmptyShell Empty);
    1376             : 
    1377             :   llvm::APFloat getValue() const {
    1378             :     return APFloatStorage::getValue(getSemantics());
    1379             :   }
    1380             :   void setValue(const ASTContext &C, const llvm::APFloat &Val) {
    1381             :     assert(&getSemantics() == &Val.getSemantics() && "Inconsistent semantics");
    1382             :     APFloatStorage::setValue(C, Val);
    1383             :   }
    1384             : 
    1385             :   /// Get a raw enumeration value representing the floating-point semantics of
    1386             :   /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
    1387             :   APFloatSemantics getRawSemantics() const {
    1388             :     return static_cast<APFloatSemantics>(FloatingLiteralBits.Semantics);
    1389             :   }
    1390             : 
    1391             :   /// Set the raw enumeration value representing the floating-point semantics of
    1392             :   /// this literal (32-bit IEEE, x87, ...), suitable for serialisation.
    1393             :   void setRawSemantics(APFloatSemantics Sem) {
    1394             :     FloatingLiteralBits.Semantics = Sem;
    1395             :   }
    1396             : 
    1397             :   /// Return the APFloat semantics this literal uses.
    1398             :   const llvm::fltSemantics &getSemantics() const;
    1399             : 
    1400             :   /// Set the APFloat semantics this literal uses.
    1401             :   void setSemantics(const llvm::fltSemantics &Sem);
    1402             : 
    1403             :   bool isExact() const { return FloatingLiteralBits.IsExact; }
    1404             :   void setExact(bool E) { FloatingLiteralBits.IsExact = E; }
    1405             : 
    1406             :   /// getValueAsApproximateDouble - This returns the value as an inaccurate
    1407             :   /// double.  Note that this may cause loss of precision, but is useful for
    1408             :   /// debugging dumps, etc.
    1409             :   double getValueAsApproximateDouble() const;
    1410             : 
    1411             :   SourceLocation getLocation() const { return Loc; }
    1412             :   void setLocation(SourceLocation L) { Loc = L; }
    1413             : 
    1414             :   SourceLocation getLocStart() const LLVM_READONLY { return Loc; }
    1415             :   SourceLocation getLocEnd() const LLVM_READONLY { return Loc; }
    1416             : 
    1417             :   static bool classof(const Stmt *T) {
    1418             :     return T->getStmtClass() == FloatingLiteralClass;
    1419             :   }
    1420             : 
    1421             :   // Iterators
    1422           0 :   child_range children() { return child_range(); }
    1423             : };
    1424             : 
    1425             : /// ImaginaryLiteral - We support imaginary integer and floating point literals,
    1426             : /// like "1.0i".  We represent these as a wrapper around FloatingLiteral and
    1427             : /// IntegerLiteral classes.  Instances of this class always have a Complex type
    1428             : /// whose element type matches the subexpression.
    1429             : ///
    1430             : class ImaginaryLiteral : public Expr {
    1431             :   Stmt *Val;
    1432             : public:
    1433             :   ImaginaryLiteral(Expr *val, QualType Ty)
    1434             :     : Expr(ImaginaryLiteralClass, Ty, VK_RValue, OK_Ordinary, false, false,
    1435             :            false, false),
    1436             :       Val(val) {}
    1437             : 
    1438             :   /// \brief Build an empty imaginary literal.
    1439             :   explicit ImaginaryLiteral(EmptyShell Empty)
    1440             :     : Expr(ImaginaryLiteralClass, Empty) { }
    1441             : 
    1442             :   const Expr *getSubExpr() const { return cast<Expr>(Val); }
    1443             :   Expr *getSubExpr() { return cast<Expr>(Val); }
    1444             :   void setSubExpr(Expr *E) { Val = E; }
    1445             : 
    1446             :   SourceLocation getLocStart() const LLVM_READONLY { return Val->getLocStart(); }
    1447             :   SourceLocation getLocEnd() const LLVM_READONLY { return Val->getLocEnd(); }
    1448             : 
    1449             :   static bool classof(const Stmt *T) {
    1450             :     return T->getStmtClass() == ImaginaryLiteralClass;
    1451             :   }
    1452             : 
    1453             :   // Iterators
    1454           0 :   child_range children() { return child_range(&Val, &Val+1); }
    1455             : };
    1456             : 
    1457             : /// StringLiteral - This represents a string literal expression, e.g. "foo"
    1458             : /// or L"bar" (wide strings).  The actual string is returned by getBytes()
    1459             : /// is NOT null-terminated, and the length of the string is determined by
    1460             : /// calling getByteLength().  The C type for a string is always a
    1461             : /// ConstantArrayType.  In C++, the char type is const qualified, in C it is
    1462             : /// not.
    1463             : ///
    1464             : /// Note that strings in C can be formed by concatenation of multiple string
    1465             : /// literal pptokens in translation phase #6.  This keeps track of the locations
    1466             : /// of each of these pieces.
    1467             : ///
    1468             : /// Strings in C can also be truncated and extended by assigning into arrays,
    1469             : /// e.g. with constructs like:
    1470             : ///   char X[2] = "foobar";
    1471             : /// In this case, getByteLength() will return 6, but the string literal will
    1472             : /// have type "char[2]".
    1473             : class StringLiteral : public Expr {
    1474             : public:
    1475             :   enum StringKind {
    1476             :     Ascii,
    1477             :     Wide,
    1478             :     UTF8,
    1479             :     UTF16,
    1480             :     UTF32
    1481             :   };
    1482             : 
    1483             : private:
    1484             :   friend class ASTStmtReader;
    1485             : 
    1486             :   union {
    1487             :     const char *asChar;
    1488             :     const uint16_t *asUInt16;
    1489             :     const uint32_t *asUInt32;
    1490             :   } StrData;
    1491             :   unsigned Length;
    1492             :   unsigned CharByteWidth : 4;
    1493             :   unsigned Kind : 3;
    1494             :   unsigned IsPascal : 1;
    1495             :   unsigned NumConcatenated;
    1496             :   SourceLocation TokLocs[1];
    1497             : 
    1498             :   StringLiteral(QualType Ty) :
    1499             :     Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary, false, false, false,
    1500             :          false) {}
    1501             : 
    1502             :   static int mapCharByteWidth(TargetInfo const &target,StringKind k);
    1503             : 
    1504             : public:
    1505             :   /// This is the "fully general" constructor that allows representation of
    1506             :   /// strings formed from multiple concatenated tokens.
    1507             :   static StringLiteral *Create(const ASTContext &C, StringRef Str,
    1508             :                                StringKind Kind, bool Pascal, QualType Ty,
    1509             :                                const SourceLocation *Loc, unsigned NumStrs);
    1510             : 
    1511             :   /// Simple constructor for string literals made from one token.
    1512             :   static StringLiteral *Create(const ASTContext &C, StringRef Str,
    1513             :                                StringKind Kind, bool Pascal, QualType Ty,
    1514             :                                SourceLocation Loc) {
    1515             :     return Create(C, Str, Kind, Pascal, Ty, &Loc, 1);
    1516             :   }
    1517             : 
    1518             :   /// \brief Construct an empty string literal.
    1519             :   static StringLiteral *CreateEmpty(const ASTContext &C, unsigned NumStrs);
    1520             : 
    1521             :   StringRef getString() const {
    1522             :     assert(CharByteWidth==1
    1523             :            && "This function is used in places that assume strings use char");
    1524             :     return StringRef(StrData.asChar, getByteLength());
    1525             :   }
    1526             : 
    1527             :   /// Allow access to clients that need the byte representation, such as
    1528             :   /// ASTWriterStmt::VisitStringLiteral().
    1529             :   StringRef getBytes() const {
    1530             :     // FIXME: StringRef may not be the right type to use as a result for this.
    1531             :     if (CharByteWidth == 1)
    1532             :       return StringRef(StrData.asChar, getByteLength());
    1533             :     if (CharByteWidth == 4)
    1534             :       return StringRef(reinterpret_cast<const char*>(StrData.asUInt32),
    1535             :                        getByteLength());
    1536             :     assert(CharByteWidth == 2 && "unsupported CharByteWidth");
    1537             :     return StringRef(reinterpret_cast<const char*>(StrData.asUInt16),
    1538             :                      getByteLength());
    1539             :   }
    1540             : 
    1541             :   void outputString(raw_ostream &OS) const;
    1542             : 
    1543             :   uint32_t getCodeUnit(size_t i) const {
    1544             :     assert(i < Length && "out of bounds access");
    1545             :     if (CharByteWidth == 1)
    1546             :       return static_cast<unsigned char>(StrData.asChar[i]);
    1547             :     if (CharByteWidth == 4)
    1548             :       return StrData.asUInt32[i];
    1549             :     assert(CharByteWidth == 2 && "unsupported CharByteWidth");
    1550             :     return StrData.asUInt16[i];
    1551             :   }
    1552             : 
    1553             :   unsigned getByteLength() const { return CharByteWidth*Length; }
    1554             :   unsigned getLength() const { return Length; }
    1555             :   unsigned getCharByteWidth() const { return CharByteWidth; }
    1556             : 
    1557             :   /// \brief Sets the string data to the given string data.
    1558             :   void setString(const ASTContext &C, StringRef Str,
    1559             :                  StringKind Kind, bool IsPascal);
    1560             : 
    1561             :   StringKind getKind() const { return static_cast<StringKind>(Kind); }
    1562             : 
    1563             : 
    1564             :   bool isAscii() const { return Kind == Ascii; }
    1565             :   bool isWide() const { return Kind == Wide; }
    1566             :   bool isUTF8() const { return Kind == UTF8; }
    1567             :   bool isUTF16() const { return Kind == UTF16; }
    1568             :   bool isUTF32() const { return Kind == UTF32; }
    1569             :   bool isPascal() const { return IsPascal; }
    1570             : 
    1571             :   bool containsNonAsciiOrNull() const {
    1572             :     StringRef Str = getString();
    1573             :     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    1574             :       if (!isASCII(Str[i]) || !Str[i])
    1575             :         return true;
    1576             :     return false;
    1577             :   }
    1578             : 
    1579             :   /// getNumConcatenated - Get the number of string literal tokens that were
    1580             :   /// concatenated in translation phase #6 to form this string literal.
    1581             :   unsigned getNumConcatenated() const { return NumConcatenated; }
    1582             : 
    1583             :   SourceLocation getStrTokenLoc(unsigned TokNum) const {
    1584             :     assert(TokNum < NumConcatenated && "Invalid tok number");
    1585             :     return TokLocs[TokNum];
    1586             :   }
    1587             :   void setStrTokenLoc(unsigned TokNum, SourceLocation L) {
    1588             :     assert(TokNum < NumConcatenated && "Invalid tok number");
    1589             :     TokLocs[TokNum] = L;
    1590             :   }
    1591             : 
    1592             :   /// getLocationOfByte - Return a source location that points to the specified
    1593             :   /// byte of this string literal.
    1594             :   ///
    1595             :   /// Strings are amazingly complex.  They can be formed from multiple tokens
    1596             :   /// and can have escape sequences in them in addition to the usual trigraph
    1597             :   /// and escaped newline business.  This routine handles this complexity.
    1598             :   ///
    1599             :   SourceLocation getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
    1600             :                                    const LangOptions &Features,
    1601             :                                    const TargetInfo &Target) const;
    1602             : 
    1603             :   typedef const SourceLocation *tokloc_iterator;
    1604             :   tokloc_iterator tokloc_begin() const { return TokLocs; }
    1605             :   tokloc_iterator tokloc_end() const { return TokLocs+NumConcatenated; }
    1606             : 
    1607             :   SourceLocation getLocStart() const LLVM_READONLY { return TokLocs[0]; }
    1608             :   SourceLocation getLocEnd() const LLVM_READONLY {
    1609             :     return TokLocs[NumConcatenated - 1];
    1610             :   }
    1611             : 
    1612             :   static bool classof(const Stmt *T) {
    1613             :     return T->getStmtClass() == StringLiteralClass;
    1614             :   }
    1615             : 
    1616             :   // Iterators
    1617           0 :   child_range children() { return child_range(); }
    1618             : };
    1619             : 
    1620             : /// ParenExpr - This represents a parethesized expression, e.g. "(1)".  This
    1621             : /// AST node is only formed if full location information is requested.
    1622             : class ParenExpr : public Expr {
    1623             :   SourceLocation L, R;
    1624             :   Stmt *Val;
    1625             : public:
    1626             :   ParenExpr(SourceLocation l, SourceLocation r, Expr *val)
    1627             :     : Expr(ParenExprClass, val->getType(),
    1628             :            val->getValueKind(), val->getObjectKind(),
    1629             :            val->isTypeDependent(), val->isValueDependent(),
    1630             :            val->isInstantiationDependent(),
    1631             :            val->containsUnexpandedParameterPack()),
    1632             :       L(l), R(r), Val(val) {}
    1633             : 
    1634             :   /// \brief Construct an empty parenthesized expression.
    1635             :   explicit ParenExpr(EmptyShell Empty)
    1636             :     : Expr(ParenExprClass, Empty) { }
    1637             : 
    1638             :   const Expr *getSubExpr() const { return cast<Expr>(Val); }
    1639             :   Expr *getSubExpr() { return cast<Expr>(Val); }
    1640             :   void setSubExpr(Expr *E) { Val = E; }
    1641             : 
    1642             :   SourceLocation getLocStart() const LLVM_READONLY { return L; }
    1643             :   SourceLocation getLocEnd() const LLVM_READONLY { return R; }
    1644             : 
    1645             :   /// \brief Get the location of the left parentheses '('.
    1646             :   SourceLocation getLParen() const { return L; }
    1647             :   void setLParen(SourceLocation Loc) { L = Loc; }
    1648             : 
    1649             :   /// \brief Get the location of the right parentheses ')'.
    1650             :   SourceLocation getRParen() const { return R; }
    1651             :   void setRParen(SourceLocation Loc) { R = Loc; }
    1652             : 
    1653             :   static bool classof(const Stmt *T) {
    1654             :     return T->getStmtClass() == ParenExprClass;
    1655             :   }
    1656             : 
    1657             :   // Iterators
    1658           0 :   child_range children() { return child_range(&Val, &Val+1); }
    1659             : };
    1660             : 
    1661             : 
    1662             : /// UnaryOperator - This represents the unary-expression's (except sizeof and
    1663             : /// alignof), the postinc/postdec operators from postfix-expression, and various
    1664             : /// extensions.
    1665             : ///
    1666             : /// Notes on various nodes:
    1667             : ///
    1668             : /// Real/Imag - These return the real/imag part of a complex operand.  If
    1669             : ///   applied to a non-complex value, the former returns its operand and the
    1670             : ///   later returns zero in the type of the operand.
    1671             : ///
    1672             : class UnaryOperator : public Expr {
    1673             : public:
    1674             :   typedef UnaryOperatorKind Opcode;
    1675             : 
    1676             : private:
    1677             :   unsigned Opc : 5;
    1678             :   SourceLocation Loc;
    1679             :   Stmt *Val;
    1680             : public:
    1681             : 
    1682             :   UnaryOperator(Expr *input, Opcode opc, QualType type,
    1683             :                 ExprValueKind VK, ExprObjectKind OK, SourceLocation l)
    1684             :     : Expr(UnaryOperatorClass, type, VK, OK,
    1685             :            input->isTypeDependent() || type->isDependentType(),
    1686             :            input->isValueDependent(),
    1687             :            (input->isInstantiationDependent() ||
    1688             :             type->isInstantiationDependentType()),
    1689             :            input->containsUnexpandedParameterPack()),
    1690             :       Opc(opc), Loc(l), Val(input) {}
    1691             : 
    1692             :   /// \brief Build an empty unary operator.
    1693             :   explicit UnaryOperator(EmptyShell Empty)
    1694             :     : Expr(UnaryOperatorClass, Empty), Opc(UO_AddrOf) { }
    1695             : 
    1696           1 :   Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
    1697             :   void setOpcode(Opcode O) { Opc = O; }
    1698             : 
    1699           0 :   Expr *getSubExpr() const { return cast<Expr>(Val); }
    1700             :   void setSubExpr(Expr *E) { Val = E; }
    1701             : 
    1702             :   /// getOperatorLoc - Return the location of the operator.
    1703             :   SourceLocation getOperatorLoc() const { return Loc; }
    1704             :   void setOperatorLoc(SourceLocation L) { Loc = L; }
    1705             : 
    1706             :   /// isPostfix - Return true if this is a postfix operation, like x++.
    1707             :   static bool isPostfix(Opcode Op) {
    1708             :     return Op == UO_PostInc || Op == UO_PostDec;
    1709             :   }
    1710             : 
    1711             :   /// isPrefix - Return true if this is a prefix operation, like --x.
    1712             :   static bool isPrefix(Opcode Op) {
    1713             :     return Op == UO_PreInc || Op == UO_PreDec;
    1714             :   }
    1715             : 
    1716             :   bool isPrefix() const { return isPrefix(getOpcode()); }
    1717             :   bool isPostfix() const { return isPostfix(getOpcode()); }
    1718             : 
    1719             :   static bool isIncrementOp(Opcode Op) {
    1720             :     return Op == UO_PreInc || Op == UO_PostInc;
    1721             :   }
    1722             :   bool isIncrementOp() const {
    1723             :     return isIncrementOp(getOpcode());
    1724             :   }
    1725             : 
    1726             :   static bool isDecrementOp(Opcode Op) {
    1727             :     return Op == UO_PreDec || Op == UO_PostDec;
    1728             :   }
    1729             :   bool isDecrementOp() const {
    1730             :     return isDecrementOp(getOpcode());
    1731             :   }
    1732             : 
    1733             :   static bool isIncrementDecrementOp(Opcode Op) { return Op <= UO_PreDec; }
    1734             :   bool isIncrementDecrementOp() const {
    1735             :     return isIncrementDecrementOp(getOpcode());
    1736             :   }
    1737             : 
    1738             :   static bool isArithmeticOp(Opcode Op) {
    1739             :     return Op >= UO_Plus && Op <= UO_LNot;
    1740             :   }
    1741             :   bool isArithmeticOp() const { return isArithmeticOp(getOpcode()); }
    1742             : 
    1743             :   /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
    1744             :   /// corresponds to, e.g. "sizeof" or "[pre]++"
    1745             :   static StringRef getOpcodeStr(Opcode Op);
    1746             : 
    1747             :   /// \brief Retrieve the unary opcode that corresponds to the given
    1748             :   /// overloaded operator.
    1749             :   static Opcode getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix);
    1750             : 
    1751             :   /// \brief Retrieve the overloaded operator kind that corresponds to
    1752             :   /// the given unary opcode.
    1753             :   static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
    1754             : 
    1755             :   SourceLocation getLocStart() const LLVM_READONLY {
    1756             :     return isPostfix() ? Val->getLocStart() : Loc;
    1757             :   }
    1758             :   SourceLocation getLocEnd() const LLVM_READONLY {
    1759             :     return isPostfix() ? Loc : Val->getLocEnd();
    1760             :   }
    1761             :   SourceLocation getExprLoc() const LLVM_READONLY { return Loc; }
    1762             : 
    1763             :   static bool classof(const Stmt *T) {
    1764         148 :     return T->getStmtClass() == UnaryOperatorClass;
    1765             :   }
    1766             : 
    1767             :   // Iterators
    1768           0 :   child_range children() { return child_range(&Val, &Val+1); }
    1769             : };
    1770             : 
    1771             : /// OffsetOfExpr - [C99 7.17] - This represents an expression of the form
    1772             : /// offsetof(record-type, member-designator). For example, given:
    1773             : /// @code
    1774             : /// struct S {
    1775             : ///   float f;
    1776             : ///   double d;
    1777             : /// };
    1778             : /// struct T {
    1779             : ///   int i;
    1780             : ///   struct S s[10];
    1781             : /// };
    1782             : /// @endcode
    1783             : /// we can represent and evaluate the expression @c offsetof(struct T, s[2].d).
    1784             : 
    1785             : class OffsetOfExpr : public Expr {
    1786             : public:
    1787             :   // __builtin_offsetof(type, identifier(.identifier|[expr])*)
    1788             :   class OffsetOfNode {
    1789             :   public:
    1790             :     /// \brief The kind of offsetof node we have.
    1791             :     enum Kind {
    1792             :       /// \brief An index into an array.
    1793             :       Array = 0x00,
    1794             :       /// \brief A field.
    1795             :       Field = 0x01,
    1796             :       /// \brief A field in a dependent type, known only by its name.
    1797             :       Identifier = 0x02,
    1798             :       /// \brief An implicit indirection through a C++ base class, when the
    1799             :       /// field found is in a base class.
    1800             :       Base = 0x03
    1801             :     };
    1802             : 
    1803             :   private:
    1804             :     enum { MaskBits = 2, Mask = 0x03 };
    1805             : 
    1806             :     /// \brief The source range that covers this part of the designator.
    1807             :     SourceRange Range;
    1808             : 
    1809             :     /// \brief The data describing the designator, which comes in three
    1810             :     /// different forms, depending on the lower two bits.
    1811             :     ///   - An unsigned index into the array of Expr*'s stored after this node
    1812             :     ///     in memory, for [constant-expression] designators.
    1813             :     ///   - A FieldDecl*, for references to a known field.
    1814             :     ///   - An IdentifierInfo*, for references to a field with a given name
    1815             :     ///     when the class type is dependent.
    1816             :     ///   - A CXXBaseSpecifier*, for references that look at a field in a
    1817             :     ///     base class.
    1818             :     uintptr_t Data;
    1819             : 
    1820             :   public:
    1821             :     /// \brief Create an offsetof node that refers to an array element.
    1822             :     OffsetOfNode(SourceLocation LBracketLoc, unsigned Index,
    1823             :                  SourceLocation RBracketLoc)
    1824             :       : Range(LBracketLoc, RBracketLoc), Data((Index << 2) | Array) { }
    1825             : 
    1826             :     /// \brief Create an offsetof node that refers to a field.
    1827             :     OffsetOfNode(SourceLocation DotLoc, FieldDecl *Field,
    1828             :                  SourceLocation NameLoc)
    1829             :       : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
    1830             :         Data(reinterpret_cast<uintptr_t>(Field) | OffsetOfNode::Field) { }
    1831             : 
    1832             :     /// \brief Create an offsetof node that refers to an identifier.
    1833             :     OffsetOfNode(SourceLocation DotLoc, IdentifierInfo *Name,
    1834             :                  SourceLocation NameLoc)
    1835             :       : Range(DotLoc.isValid()? DotLoc : NameLoc, NameLoc),
    1836             :         Data(reinterpret_cast<uintptr_t>(Name) | Identifier) { }
    1837             : 
    1838             :     /// \brief Create an offsetof node that refers into a C++ base class.
    1839             :     explicit OffsetOfNode(const CXXBaseSpecifier *Base)
    1840             :       : Range(), Data(reinterpret_cast<uintptr_t>(Base) | OffsetOfNode::Base) {}
    1841             : 
    1842             :     /// \brief Determine what kind of offsetof node this is.
    1843             :     Kind getKind() const {
    1844             :       return static_cast<Kind>(Data & Mask);
    1845             :     }
    1846             : 
    1847             :     /// \brief For an array element node, returns the index into the array
    1848             :     /// of expressions.
    1849             :     unsigned getArrayExprIndex() const {
    1850             :       assert(getKind() == Array);
    1851             :       return Data >> 2;
    1852             :     }
    1853             : 
    1854             :     /// \brief For a field offsetof node, returns the field.
    1855             :     FieldDecl *getField() const {
    1856             :       assert(getKind() == Field);
    1857             :       return reinterpret_cast<FieldDecl *>(Data & ~(uintptr_t)Mask);
    1858             :     }
    1859             : 
    1860             :     /// \brief For a field or identifier offsetof node, returns the name of
    1861             :     /// the field.
    1862             :     IdentifierInfo *getFieldName() const;
    1863             : 
    1864             :     /// \brief For a base class node, returns the base specifier.
    1865             :     CXXBaseSpecifier *getBase() const {
    1866             :       assert(getKind() == Base);
    1867             :       return reinterpret_cast<CXXBaseSpecifier *>(Data & ~(uintptr_t)Mask);
    1868             :     }
    1869             : 
    1870             :     /// \brief Retrieve the source range that covers this offsetof node.
    1871             :     ///
    1872             :     /// For an array element node, the source range contains the locations of
    1873             :     /// the square brackets. For a field or identifier node, the source range
    1874             :     /// contains the location of the period (if there is one) and the
    1875             :     /// identifier.
    1876             :     SourceRange getSourceRange() const LLVM_READONLY { return Range; }
    1877             :     SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
    1878             :     SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
    1879             :   };
    1880             : 
    1881             : private:
    1882             : 
    1883             :   SourceLocation OperatorLoc, RParenLoc;
    1884             :   // Base type;
    1885             :   TypeSourceInfo *TSInfo;
    1886             :   // Number of sub-components (i.e. instances of OffsetOfNode).
    1887             :   unsigned NumComps;
    1888             :   // Number of sub-expressions (i.e. array subscript expressions).
    1889             :   unsigned NumExprs;
    1890             : 
    1891             :   OffsetOfExpr(const ASTContext &C, QualType type,
    1892             :                SourceLocation OperatorLoc, TypeSourceInfo *tsi,
    1893             :                ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
    1894             :                SourceLocation RParenLoc);
    1895             : 
    1896             :   explicit OffsetOfExpr(unsigned numComps, unsigned numExprs)
    1897             :     : Expr(OffsetOfExprClass, EmptyShell()),
    1898             :       TSInfo(nullptr), NumComps(numComps), NumExprs(numExprs) {}
    1899             : 
    1900             : public:
    1901             : 
    1902             :   static OffsetOfExpr *Create(const ASTContext &C, QualType type,
    1903             :                               SourceLocation OperatorLoc, TypeSourceInfo *tsi,
    1904             :                               ArrayRef<OffsetOfNode> comps,
    1905             :                               ArrayRef<Expr*> exprs, SourceLocation RParenLoc);
    1906             : 
    1907             :   static OffsetOfExpr *CreateEmpty(const ASTContext &C,
    1908             :                                    unsigned NumComps, unsigned NumExprs);
    1909             : 
    1910             :   /// getOperatorLoc - Return the location of the operator.
    1911             :   SourceLocation getOperatorLoc() const { return OperatorLoc; }
    1912             :   void setOperatorLoc(SourceLocation L) { OperatorLoc = L; }
    1913             : 
    1914             :   /// \brief Return the location of the right parentheses.
    1915             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    1916             :   void setRParenLoc(SourceLocation R) { RParenLoc = R; }
    1917             : 
    1918             :   TypeSourceInfo *getTypeSourceInfo() const {
    1919           0 :     return TSInfo;
    1920             :   }
    1921             :   void setTypeSourceInfo(TypeSourceInfo *tsi) {
    1922             :     TSInfo = tsi;
    1923             :   }
    1924             : 
    1925             :   const OffsetOfNode &getComponent(unsigned Idx) const {
    1926             :     assert(Idx < NumComps && "Subscript out of range");
    1927             :     return reinterpret_cast<const OffsetOfNode *> (this + 1)[Idx];
    1928             :   }
    1929             : 
    1930             :   void setComponent(unsigned Idx, OffsetOfNode ON) {
    1931             :     assert(Idx < NumComps && "Subscript out of range");
    1932             :     reinterpret_cast<OffsetOfNode *> (this + 1)[Idx] = ON;
    1933             :   }
    1934             : 
    1935             :   unsigned getNumComponents() const {
    1936             :     return NumComps;
    1937             :   }
    1938             : 
    1939             :   Expr* getIndexExpr(unsigned Idx) {
    1940             :     assert(Idx < NumExprs && "Subscript out of range");
    1941             :     return reinterpret_cast<Expr **>(
    1942             :                     reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx];
    1943             :   }
    1944             :   const Expr *getIndexExpr(unsigned Idx) const {
    1945             :     return const_cast<OffsetOfExpr*>(this)->getIndexExpr(Idx);
    1946             :   }
    1947             : 
    1948             :   void setIndexExpr(unsigned Idx, Expr* E) {
    1949             :     assert(Idx < NumComps && "Subscript out of range");
    1950             :     reinterpret_cast<Expr **>(
    1951             :                 reinterpret_cast<OffsetOfNode *>(this+1) + NumComps)[Idx] = E;
    1952             :   }
    1953             : 
    1954             :   unsigned getNumExpressions() const {
    1955             :     return NumExprs;
    1956             :   }
    1957             : 
    1958             :   SourceLocation getLocStart() const LLVM_READONLY { return OperatorLoc; }
    1959             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    1960             : 
    1961             :   static bool classof(const Stmt *T) {
    1962             :     return T->getStmtClass() == OffsetOfExprClass;
    1963             :   }
    1964             : 
    1965             :   // Iterators
    1966             :   child_range children() {
    1967           0 :     Stmt **begin =
    1968           0 :       reinterpret_cast<Stmt**>(reinterpret_cast<OffsetOfNode*>(this + 1)
    1969           0 :                                + NumComps);
    1970           0 :     return child_range(begin, begin + NumExprs);
    1971             :   }
    1972             : };
    1973             : 
    1974             : /// UnaryExprOrTypeTraitExpr - expression with either a type or (unevaluated)
    1975             : /// expression operand.  Used for sizeof/alignof (C99 6.5.3.4) and
    1976             : /// vec_step (OpenCL 1.1 6.11.12).
    1977             : class UnaryExprOrTypeTraitExpr : public Expr {
    1978             :   union {
    1979             :     TypeSourceInfo *Ty;
    1980             :     Stmt *Ex;
    1981             :   } Argument;
    1982             :   SourceLocation OpLoc, RParenLoc;
    1983             : 
    1984             : public:
    1985             :   UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, TypeSourceInfo *TInfo,
    1986             :                            QualType resultType, SourceLocation op,
    1987             :                            SourceLocation rp) :
    1988             :       Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
    1989             :            false, // Never type-dependent (C++ [temp.dep.expr]p3).
    1990             :            // Value-dependent if the argument is type-dependent.
    1991             :            TInfo->getType()->isDependentType(),
    1992             :            TInfo->getType()->isInstantiationDependentType(),
    1993             :            TInfo->getType()->containsUnexpandedParameterPack()),
    1994             :       OpLoc(op), RParenLoc(rp) {
    1995             :     UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
    1996             :     UnaryExprOrTypeTraitExprBits.IsType = true;
    1997             :     Argument.Ty = TInfo;
    1998             :   }
    1999             : 
    2000             :   UnaryExprOrTypeTraitExpr(UnaryExprOrTypeTrait ExprKind, Expr *E,
    2001             :                            QualType resultType, SourceLocation op,
    2002             :                            SourceLocation rp);
    2003             : 
    2004             :   /// \brief Construct an empty sizeof/alignof expression.
    2005             :   explicit UnaryExprOrTypeTraitExpr(EmptyShell Empty)
    2006             :     : Expr(UnaryExprOrTypeTraitExprClass, Empty) { }
    2007             : 
    2008             :   UnaryExprOrTypeTrait getKind() const {
    2009             :     return static_cast<UnaryExprOrTypeTrait>(UnaryExprOrTypeTraitExprBits.Kind);
    2010             :   }
    2011             :   void setKind(UnaryExprOrTypeTrait K) { UnaryExprOrTypeTraitExprBits.Kind = K;}
    2012             : 
    2013           0 :   bool isArgumentType() const { return UnaryExprOrTypeTraitExprBits.IsType; }
    2014             :   QualType getArgumentType() const {
    2015             :     return getArgumentTypeInfo()->getType();
    2016             :   }
    2017             :   TypeSourceInfo *getArgumentTypeInfo() const {
    2018           0 :     assert(isArgumentType() && "calling getArgumentType() when arg is expr");
    2019           0 :     return Argument.Ty;
    2020             :   }
    2021             :   Expr *getArgumentExpr() {
    2022             :     assert(!isArgumentType() && "calling getArgumentExpr() when arg is type");
    2023             :     return static_cast<Expr*>(Argument.Ex);
    2024             :   }
    2025             :   const Expr *getArgumentExpr() const {
    2026             :     return const_cast<UnaryExprOrTypeTraitExpr*>(this)->getArgumentExpr();
    2027             :   }
    2028             : 
    2029             :   void setArgument(Expr *E) {
    2030             :     Argument.Ex = E;
    2031             :     UnaryExprOrTypeTraitExprBits.IsType = false;
    2032             :   }
    2033             :   void setArgument(TypeSourceInfo *TInfo) {
    2034             :     Argument.Ty = TInfo;
    2035             :     UnaryExprOrTypeTraitExprBits.IsType = true;
    2036             :   }
    2037             : 
    2038             :   /// Gets the argument type, or the type of the argument expression, whichever
    2039             :   /// is appropriate.
    2040             :   QualType getTypeOfArgument() const {
    2041             :     return isArgumentType() ? getArgumentType() : getArgumentExpr()->getType();
    2042             :   }
    2043             : 
    2044             :   SourceLocation getOperatorLoc() const { return OpLoc; }
    2045             :   void setOperatorLoc(SourceLocation L) { OpLoc = L; }
    2046             : 
    2047             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    2048             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    2049             : 
    2050             :   SourceLocation getLocStart() const LLVM_READONLY { return OpLoc; }
    2051             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    2052             : 
    2053             :   static bool classof(const Stmt *T) {
    2054             :     return T->getStmtClass() == UnaryExprOrTypeTraitExprClass;
    2055             :   }
    2056             : 
    2057             :   // Iterators
    2058             :   child_range children();
    2059             : };
    2060             : 
    2061             : //===----------------------------------------------------------------------===//
    2062             : // Postfix Operators.
    2063             : //===----------------------------------------------------------------------===//
    2064             : 
    2065             : /// ArraySubscriptExpr - [C99 6.5.2.1] Array Subscripting.
    2066             : class ArraySubscriptExpr : public Expr {
    2067             :   enum { LHS, RHS, END_EXPR=2 };
    2068             :   Stmt* SubExprs[END_EXPR];
    2069             :   SourceLocation RBracketLoc;
    2070             : public:
    2071             :   ArraySubscriptExpr(Expr *lhs, Expr *rhs, QualType t,
    2072             :                      ExprValueKind VK, ExprObjectKind OK,
    2073             :                      SourceLocation rbracketloc)
    2074             :   : Expr(ArraySubscriptExprClass, t, VK, OK,
    2075             :          lhs->isTypeDependent() || rhs->isTypeDependent(),
    2076             :          lhs->isValueDependent() || rhs->isValueDependent(),
    2077             :          (lhs->isInstantiationDependent() ||
    2078             :           rhs->isInstantiationDependent()),
    2079             :          (lhs->containsUnexpandedParameterPack() ||
    2080             :           rhs->containsUnexpandedParameterPack())),
    2081             :     RBracketLoc(rbracketloc) {
    2082             :     SubExprs[LHS] = lhs;
    2083             :     SubExprs[RHS] = rhs;
    2084             :   }
    2085             : 
    2086             :   /// \brief Create an empty array subscript expression.
    2087             :   explicit ArraySubscriptExpr(EmptyShell Shell)
    2088             :     : Expr(ArraySubscriptExprClass, Shell) { }
    2089             : 
    2090             :   /// An array access can be written A[4] or 4[A] (both are equivalent).
    2091             :   /// - getBase() and getIdx() always present the normalized view: A[4].
    2092             :   ///    In this case getBase() returns "A" and getIdx() returns "4".
    2093             :   /// - getLHS() and getRHS() present the syntactic view. e.g. for
    2094             :   ///    4[A] getLHS() returns "4".
    2095             :   /// Note: Because vector element access is also written A[4] we must
    2096             :   /// predicate the format conversion in getBase and getIdx only on the
    2097             :   /// the type of the RHS, as it is possible for the LHS to be a vector of
    2098             :   /// integer type
    2099             :   Expr *getLHS() { return cast<Expr>(SubExprs[LHS]); }
    2100             :   const Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
    2101             :   void setLHS(Expr *E) { SubExprs[LHS] = E; }
    2102             : 
    2103             :   Expr *getRHS() { return cast<Expr>(SubExprs[RHS]); }
    2104             :   const Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
    2105             :   void setRHS(Expr *E) { SubExprs[RHS] = E; }
    2106             : 
    2107             :   Expr *getBase() {
    2108             :     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
    2109             :   }
    2110             : 
    2111             :   const Expr *getBase() const {
    2112             :     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getLHS():getRHS());
    2113             :   }
    2114             : 
    2115             :   Expr *getIdx() {
    2116             :     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
    2117             :   }
    2118             : 
    2119             :   const Expr *getIdx() const {
    2120             :     return cast<Expr>(getRHS()->getType()->isIntegerType() ? getRHS():getLHS());
    2121             :   }
    2122             : 
    2123             :   SourceLocation getLocStart() const LLVM_READONLY {
    2124             :     return getLHS()->getLocStart();
    2125             :   }
    2126             :   SourceLocation getLocEnd() const LLVM_READONLY { return RBracketLoc; }
    2127             : 
    2128             :   SourceLocation getRBracketLoc() const { return RBracketLoc; }
    2129             :   void setRBracketLoc(SourceLocation L) { RBracketLoc = L; }
    2130             : 
    2131             :   SourceLocation getExprLoc() const LLVM_READONLY {
    2132             :     return getBase()->getExprLoc();
    2133             :   }
    2134             : 
    2135             :   static bool classof(const Stmt *T) {
    2136             :     return T->getStmtClass() == ArraySubscriptExprClass;
    2137             :   }
    2138             : 
    2139             :   // Iterators
    2140             :   child_range children() {
    2141           0 :     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
    2142             :   }
    2143             : };
    2144             : 
    2145             : 
    2146             : /// CallExpr - Represents a function call (C99 6.5.2.2, C++ [expr.call]).
    2147             : /// CallExpr itself represents a normal function call, e.g., "f(x, 2)",
    2148             : /// while its subclasses may represent alternative syntax that (semantically)
    2149             : /// results in a function call. For example, CXXOperatorCallExpr is
    2150             : /// a subclass for overloaded operator calls that use operator syntax, e.g.,
    2151             : /// "str1 + str2" to resolve to a function call.
    2152             : class CallExpr : public Expr {
    2153             :   enum { FN=0, PREARGS_START=1 };
    2154             :   Stmt **SubExprs;
    2155             :   unsigned NumArgs;
    2156             :   SourceLocation RParenLoc;
    2157             : 
    2158             : protected:
    2159             :   // These versions of the constructor are for derived classes.
    2160             :   CallExpr(const ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
    2161             :            ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
    2162             :            SourceLocation rparenloc);
    2163             :   CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
    2164             :            EmptyShell Empty);
    2165             : 
    2166             :   Stmt *getPreArg(unsigned i) {
    2167             :     assert(i < getNumPreArgs() && "Prearg access out of range!");
    2168             :     return SubExprs[PREARGS_START+i];
    2169             :   }
    2170             :   const Stmt *getPreArg(unsigned i) const {
    2171             :     assert(i < getNumPreArgs() && "Prearg access out of range!");
    2172             :     return SubExprs[PREARGS_START+i];
    2173             :   }
    2174             :   void setPreArg(unsigned i, Stmt *PreArg) {
    2175             :     assert(i < getNumPreArgs() && "Prearg access out of range!");
    2176             :     SubExprs[PREARGS_START+i] = PreArg;
    2177             :   }
    2178             : 
    2179           5 :   unsigned getNumPreArgs() const { return CallExprBits.NumPreArgs; }
    2180             : 
    2181             : public:
    2182             :   CallExpr(const ASTContext& C, Expr *fn, ArrayRef<Expr*> args, QualType t,
    2183             :            ExprValueKind VK, SourceLocation rparenloc);
    2184             : 
    2185             :   /// \brief Build an empty call expression.
    2186             :   CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty);
    2187             : 
    2188             :   const Expr *getCallee() const { return cast<Expr>(SubExprs[FN]); }
    2189             :   Expr *getCallee() { return cast<Expr>(SubExprs[FN]); }
    2190             :   void setCallee(Expr *F) { SubExprs[FN] = F; }
    2191             : 
    2192             :   Decl *getCalleeDecl();
    2193             :   const Decl *getCalleeDecl() const {
    2194             :     return const_cast<CallExpr*>(this)->getCalleeDecl();
    2195             :   }
    2196             : 
    2197             :   /// \brief If the callee is a FunctionDecl, return it. Otherwise return 0.
    2198             :   FunctionDecl *getDirectCallee();
    2199             :   const FunctionDecl *getDirectCallee() const {
    2200             :     return const_cast<CallExpr*>(this)->getDirectCallee();
    2201             :   }
    2202             : 
    2203             :   /// getNumArgs - Return the number of actual arguments to this call.
    2204             :   ///
    2205             :   unsigned getNumArgs() const { return NumArgs; }
    2206             : 
    2207             :   /// \brief Retrieve the call arguments.
    2208             :   Expr **getArgs() {
    2209             :     return reinterpret_cast<Expr **>(SubExprs+getNumPreArgs()+PREARGS_START);
    2210             :   }
    2211             :   const Expr *const *getArgs() const {
    2212             :     return const_cast<CallExpr*>(this)->getArgs();
    2213             :   }
    2214             : 
    2215             :   /// getArg - Return the specified argument.
    2216             :   Expr *getArg(unsigned Arg) {
    2217             :     assert(Arg < NumArgs && "Arg access out of range!");
    2218             :     return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
    2219             :   }
    2220             :   const Expr *getArg(unsigned Arg) const {
    2221             :     assert(Arg < NumArgs && "Arg access out of range!");
    2222             :     return cast_or_null<Expr>(SubExprs[Arg + getNumPreArgs() + PREARGS_START]);
    2223             :   }
    2224             : 
    2225             :   /// setArg - Set the specified argument.
    2226             :   void setArg(unsigned Arg, Expr *ArgExpr) {
    2227             :     assert(Arg < NumArgs && "Arg access out of range!");
    2228             :     SubExprs[Arg+getNumPreArgs()+PREARGS_START] = ArgExpr;
    2229             :   }
    2230             : 
    2231             :   /// setNumArgs - This changes the number of arguments present in this call.
    2232             :   /// Any orphaned expressions are deleted by this, and any new operands are set
    2233             :   /// to null.
    2234             :   void setNumArgs(const ASTContext& C, unsigned NumArgs);
    2235             : 
    2236             :   typedef ExprIterator arg_iterator;
    2237             :   typedef ConstExprIterator const_arg_iterator;
    2238             :   typedef llvm::iterator_range<arg_iterator> arg_range;
    2239             :   typedef llvm::iterator_range<const_arg_iterator> arg_const_range;
    2240             : 
    2241             :   arg_range arguments() { return arg_range(arg_begin(), arg_end()); }
    2242             :   arg_const_range arguments() const {
    2243             :     return arg_const_range(arg_begin(), arg_end());
    2244             :   }
    2245             : 
    2246             :   arg_iterator arg_begin() { return SubExprs+PREARGS_START+getNumPreArgs(); }
    2247             :   arg_iterator arg_end() {
    2248             :     return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
    2249             :   }
    2250             :   const_arg_iterator arg_begin() const {
    2251             :     return SubExprs+PREARGS_START+getNumPreArgs();
    2252             :   }
    2253             :   const_arg_iterator arg_end() const {
    2254             :     return SubExprs+PREARGS_START+getNumPreArgs()+getNumArgs();
    2255             :   }
    2256             : 
    2257             :   /// This method provides fast access to all the subexpressions of
    2258             :   /// a CallExpr without going through the slower virtual child_iterator
    2259             :   /// interface.  This provides efficient reverse iteration of the
    2260             :   /// subexpressions.  This is currently used for CFG construction.
    2261             :   ArrayRef<Stmt*> getRawSubExprs() {
    2262             :     return llvm::makeArrayRef(SubExprs,
    2263             :                               getNumPreArgs() + PREARGS_START + getNumArgs());
    2264             :   }
    2265             : 
    2266             :   /// getNumCommas - Return the number of commas that must have been present in
    2267             :   /// this function call.
    2268             :   unsigned getNumCommas() const { return NumArgs ? NumArgs - 1 : 0; }
    2269             : 
    2270             :   /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID
    2271             :   /// of the callee. If not, return 0.
    2272             :   unsigned getBuiltinCallee() const;
    2273             : 
    2274             :   /// \brief Returns \c true if this is a call to a builtin which does not
    2275             :   /// evaluate side-effects within its arguments.
    2276             :   bool isUnevaluatedBuiltinCall(const ASTContext &Ctx) const;
    2277             : 
    2278             :   /// getCallReturnType - Get the return type of the call expr. This is not
    2279             :   /// always the type of the expr itself, if the return type is a reference
    2280             :   /// type.
    2281             :   QualType getCallReturnType(const ASTContext &Ctx) const;
    2282             : 
    2283             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    2284             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    2285             : 
    2286             :   SourceLocation getLocStart() const LLVM_READONLY;
    2287             :   SourceLocation getLocEnd() const LLVM_READONLY;
    2288             : 
    2289             :   static bool classof(const Stmt *T) {
    2290             :     return T->getStmtClass() >= firstCallExprConstant &&
    2291             :            T->getStmtClass() <= lastCallExprConstant;
    2292             :   }
    2293             : 
    2294             :   // Iterators
    2295             :   child_range children() {
    2296          10 :     return child_range(&SubExprs[0],
    2297           5 :                        &SubExprs[0]+NumArgs+getNumPreArgs()+PREARGS_START);
    2298             :   }
    2299             : };
    2300             : 
    2301             : /// MemberExpr - [C99 6.5.2.3] Structure and Union Members.  X->F and X.F.
    2302             : ///
    2303             : class MemberExpr : public Expr {
    2304             :   /// Extra data stored in some member expressions.
    2305             :   struct MemberNameQualifier {
    2306             :     /// \brief The nested-name-specifier that qualifies the name, including
    2307             :     /// source-location information.
    2308             :     NestedNameSpecifierLoc QualifierLoc;
    2309             : 
    2310             :     /// \brief The DeclAccessPair through which the MemberDecl was found due to
    2311             :     /// name qualifiers.
    2312             :     DeclAccessPair FoundDecl;
    2313             :   };
    2314             : 
    2315             :   /// Base - the expression for the base pointer or structure references.  In
    2316             :   /// X.F, this is "X".
    2317             :   Stmt *Base;
    2318             : 
    2319             :   /// MemberDecl - This is the decl being referenced by the field/member name.
    2320             :   /// In X.F, this is the decl referenced by F.
    2321             :   ValueDecl *MemberDecl;
    2322             : 
    2323             :   /// MemberDNLoc - Provides source/type location info for the
    2324             :   /// declaration name embedded in MemberDecl.
    2325             :   DeclarationNameLoc MemberDNLoc;
    2326             : 
    2327             :   /// MemberLoc - This is the location of the member name.
    2328             :   SourceLocation MemberLoc;
    2329             : 
    2330             :   /// This is the location of the -> or . in the expression.
    2331             :   SourceLocation OperatorLoc;
    2332             : 
    2333             :   /// IsArrow - True if this is "X->F", false if this is "X.F".
    2334             :   bool IsArrow : 1;
    2335             : 
    2336             :   /// \brief True if this member expression used a nested-name-specifier to
    2337             :   /// refer to the member, e.g., "x->Base::f", or found its member via a using
    2338             :   /// declaration.  When true, a MemberNameQualifier
    2339             :   /// structure is allocated immediately after the MemberExpr.
    2340             :   bool HasQualifierOrFoundDecl : 1;
    2341             : 
    2342             :   /// \brief True if this member expression specified a template keyword
    2343             :   /// and/or a template argument list explicitly, e.g., x->f<int>,
    2344             :   /// x->template f, x->template f<int>.
    2345             :   /// When true, an ASTTemplateKWAndArgsInfo structure and its
    2346             :   /// TemplateArguments (if any) are allocated immediately after
    2347             :   /// the MemberExpr or, if the member expression also has a qualifier,
    2348             :   /// after the MemberNameQualifier structure.
    2349             :   bool HasTemplateKWAndArgsInfo : 1;
    2350             : 
    2351             :   /// \brief True if this member expression refers to a method that
    2352             :   /// was resolved from an overloaded set having size greater than 1.
    2353             :   bool HadMultipleCandidates : 1;
    2354             : 
    2355             :   /// \brief Retrieve the qualifier that preceded the member name, if any.
    2356             :   MemberNameQualifier *getMemberQualifier() {
    2357           0 :     assert(HasQualifierOrFoundDecl);
    2358           0 :     return reinterpret_cast<MemberNameQualifier *> (this + 1);
    2359             :   }
    2360             : 
    2361             :   /// \brief Retrieve the qualifier that preceded the member name, if any.
    2362             :   const MemberNameQualifier *getMemberQualifier() const {
    2363           0 :     return const_cast<MemberExpr *>(this)->getMemberQualifier();
    2364             :   }
    2365             : 
    2366             : public:
    2367             :   MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
    2368             :              ValueDecl *memberdecl, const DeclarationNameInfo &NameInfo,
    2369             :              QualType ty, ExprValueKind VK, ExprObjectKind OK)
    2370             :       : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
    2371             :              base->isValueDependent(), base->isInstantiationDependent(),
    2372             :              base->containsUnexpandedParameterPack()),
    2373             :         Base(base), MemberDecl(memberdecl), MemberDNLoc(NameInfo.getInfo()),
    2374             :         MemberLoc(NameInfo.getLoc()), OperatorLoc(operatorloc),
    2375             :         IsArrow(isarrow), HasQualifierOrFoundDecl(false),
    2376             :         HasTemplateKWAndArgsInfo(false), HadMultipleCandidates(false) {
    2377             :     assert(memberdecl->getDeclName() == NameInfo.getName());
    2378             :   }
    2379             : 
    2380             :   // NOTE: this constructor should be used only when it is known that
    2381             :   // the member name can not provide additional syntactic info
    2382             :   // (i.e., source locations for C++ operator names or type source info
    2383             :   // for constructors, destructors and conversion operators).
    2384             :   MemberExpr(Expr *base, bool isarrow, SourceLocation operatorloc,
    2385             :              ValueDecl *memberdecl, SourceLocation l, QualType ty,
    2386             :              ExprValueKind VK, ExprObjectKind OK)
    2387             :       : Expr(MemberExprClass, ty, VK, OK, base->isTypeDependent(),
    2388             :              base->isValueDependent(), base->isInstantiationDependent(),
    2389             :              base->containsUnexpandedParameterPack()),
    2390             :         Base(base), MemberDecl(memberdecl), MemberDNLoc(), MemberLoc(l),
    2391             :         OperatorLoc(operatorloc), IsArrow(isarrow),
    2392             :         HasQualifierOrFoundDecl(false), HasTemplateKWAndArgsInfo(false),
    2393             :         HadMultipleCandidates(false) {}
    2394             : 
    2395             :   static MemberExpr *Create(const ASTContext &C, Expr *base, bool isarrow,
    2396             :                             SourceLocation OperatorLoc,
    2397             :                             NestedNameSpecifierLoc QualifierLoc,
    2398             :                             SourceLocation TemplateKWLoc, ValueDecl *memberdecl,
    2399             :                             DeclAccessPair founddecl,
    2400             :                             DeclarationNameInfo MemberNameInfo,
    2401             :                             const TemplateArgumentListInfo *targs, QualType ty,
    2402             :                             ExprValueKind VK, ExprObjectKind OK);
    2403             : 
    2404             :   void setBase(Expr *E) { Base = E; }
    2405             :   Expr *getBase() const { return cast<Expr>(Base); }
    2406             : 
    2407             :   /// \brief Retrieve the member declaration to which this expression refers.
    2408             :   ///
    2409             :   /// The returned declaration will either be a FieldDecl or (in C++)
    2410             :   /// a CXXMethodDecl.
    2411           6 :   ValueDecl *getMemberDecl() const { return MemberDecl; }
    2412             :   void setMemberDecl(ValueDecl *D) { MemberDecl = D; }
    2413             : 
    2414             :   /// \brief Retrieves the declaration found by lookup.
    2415             :   DeclAccessPair getFoundDecl() const {
    2416             :     if (!HasQualifierOrFoundDecl)
    2417             :       return DeclAccessPair::make(getMemberDecl(),
    2418             :                                   getMemberDecl()->getAccess());
    2419             :     return getMemberQualifier()->FoundDecl;
    2420             :   }
    2421             : 
    2422             :   /// \brief Determines whether this member expression actually had
    2423             :   /// a C++ nested-name-specifier prior to the name of the member, e.g.,
    2424             :   /// x->Base::foo.
    2425           6 :   bool hasQualifier() const { return getQualifier() != nullptr; }
    2426             : 
    2427             :   /// \brief If the member name was qualified, retrieves the
    2428             :   /// nested-name-specifier that precedes the member name. Otherwise, returns
    2429             :   /// NULL.
    2430             :   NestedNameSpecifier *getQualifier() const {
    2431           6 :     if (!HasQualifierOrFoundDecl)
    2432           6 :       return nullptr;
    2433             : 
    2434           0 :     return getMemberQualifier()->QualifierLoc.getNestedNameSpecifier();
    2435           6 :   }
    2436             : 
    2437             :   /// \brief If the member name was qualified, retrieves the
    2438             :   /// nested-name-specifier that precedes the member name, with source-location
    2439             :   /// information.
    2440             :   NestedNameSpecifierLoc getQualifierLoc() const {
    2441           6 :     if (!hasQualifier())
    2442           6 :       return NestedNameSpecifierLoc();
    2443             : 
    2444           0 :     return getMemberQualifier()->QualifierLoc;
    2445           6 :   }
    2446             : 
    2447             :   /// \brief Return the optional template keyword and arguments info.
    2448             :   ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() {
    2449           0 :     if (!HasTemplateKWAndArgsInfo)
    2450           0 :       return nullptr;
    2451             : 
    2452           0 :     if (!HasQualifierOrFoundDecl)
    2453           0 :       return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(this + 1);
    2454             : 
    2455           0 :     return reinterpret_cast<ASTTemplateKWAndArgsInfo *>(
    2456           0 :                                                       getMemberQualifier() + 1);
    2457           0 :   }
    2458             : 
    2459             :   /// \brief Return the optional template keyword and arguments info.
    2460             :   const ASTTemplateKWAndArgsInfo *getTemplateKWAndArgsInfo() const {
    2461           0 :     return const_cast<MemberExpr*>(this)->getTemplateKWAndArgsInfo();
    2462             :   }
    2463             : 
    2464             :   /// \brief Retrieve the location of the template keyword preceding
    2465             :   /// the member name, if any.
    2466             :   SourceLocation getTemplateKeywordLoc() const {
    2467             :     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    2468             :     return getTemplateKWAndArgsInfo()->getTemplateKeywordLoc();
    2469             :   }
    2470             : 
    2471             :   /// \brief Retrieve the location of the left angle bracket starting the
    2472             :   /// explicit template argument list following the member name, if any.
    2473             :   SourceLocation getLAngleLoc() const {
    2474          24 :     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    2475           0 :     return getTemplateKWAndArgsInfo()->LAngleLoc;
    2476          12 :   }
    2477             : 
    2478             :   /// \brief Retrieve the location of the right angle bracket ending the
    2479             :   /// explicit template argument list following the member name, if any.
    2480             :   SourceLocation getRAngleLoc() const {
    2481             :     if (!HasTemplateKWAndArgsInfo) return SourceLocation();
    2482             :     return getTemplateKWAndArgsInfo()->RAngleLoc;
    2483             :   }
    2484             : 
    2485             :   /// Determines whether the member name was preceded by the template keyword.
    2486             :   bool hasTemplateKeyword() const { return getTemplateKeywordLoc().isValid(); }
    2487             : 
    2488             :   /// \brief Determines whether the member name was followed by an
    2489             :   /// explicit template argument list.
    2490          12 :   bool hasExplicitTemplateArgs() const { return getLAngleLoc().isValid(); }
    2491             : 
    2492             :   /// \brief Copies the template arguments (if present) into the given
    2493             :   /// structure.
    2494             :   void copyTemplateArgumentsInto(TemplateArgumentListInfo &List) const {
    2495             :     if (hasExplicitTemplateArgs())
    2496             :       getExplicitTemplateArgs().copyInto(List);
    2497             :   }
    2498             : 
    2499             :   /// \brief Retrieve the explicit template argument list that
    2500             :   /// follow the member template name.  This must only be called on an
    2501             :   /// expression with explicit template arguments.
    2502             :   ASTTemplateArgumentListInfo &getExplicitTemplateArgs() {
    2503           0 :     assert(hasExplicitTemplateArgs());
    2504           0 :     return *getTemplateKWAndArgsInfo();
    2505             :   }
    2506             : 
    2507             :   /// \brief Retrieve the explicit template argument list that
    2508             :   /// followed the member template name.  This must only be called on
    2509             :   /// an expression with explicit template arguments.
    2510             :   const ASTTemplateArgumentListInfo &getExplicitTemplateArgs() const {
    2511           0 :     return const_cast<MemberExpr *>(this)->getExplicitTemplateArgs();
    2512             :   }
    2513             : 
    2514             :   /// \brief Retrieves the optional explicit template arguments.
    2515             :   /// This points to the same data as getExplicitTemplateArgs(), but
    2516             :   /// returns null if there are no explicit template arguments.
    2517             :   const ASTTemplateArgumentListInfo *getOptionalExplicitTemplateArgs() const {
    2518             :     if (!hasExplicitTemplateArgs()) return nullptr;
    2519             :     return &getExplicitTemplateArgs();
    2520             :   }
    2521             : 
    2522             :   /// \brief Retrieve the template arguments provided as part of this
    2523             :   /// template-id.
    2524             :   const TemplateArgumentLoc *getTemplateArgs() const {
    2525           6 :     if (!hasExplicitTemplateArgs())
    2526           6 :       return nullptr;
    2527             : 
    2528           0 :     return getExplicitTemplateArgs().getTemplateArgs();
    2529           6 :   }
    2530             : 
    2531             :   /// \brief Retrieve the number of template arguments provided as part of this
    2532             :   /// template-id.
    2533             :   unsigned getNumTemplateArgs() const {
    2534           6 :     if (!hasExplicitTemplateArgs())
    2535           6 :       return 0;
    2536             : 
    2537           0 :     return getExplicitTemplateArgs().NumTemplateArgs;
    2538           6 :   }
    2539             : 
    2540             :   /// \brief Retrieve the member declaration name info.
    2541             :   DeclarationNameInfo getMemberNameInfo() const {
    2542          12 :     return DeclarationNameInfo(MemberDecl->getDeclName(),
    2543           6 :                                MemberLoc, MemberDNLoc);
    2544             :   }
    2545             : 
    2546             :   SourceLocation getOperatorLoc() const LLVM_READONLY { return OperatorLoc; }
    2547             : 
    2548             :   bool isArrow() const { return IsArrow; }
    2549             :   void setArrow(bool A) { IsArrow = A; }
    2550             : 
    2551             :   /// getMemberLoc - Return the location of the "member", in X->F, it is the
    2552             :   /// location of 'F'.
    2553           8 :   SourceLocation getMemberLoc() const { return MemberLoc; }
    2554             :   void setMemberLoc(SourceLocation L) { MemberLoc = L; }
    2555             : 
    2556             :   SourceLocation getLocStart() const LLVM_READONLY;
    2557             :   SourceLocation getLocEnd() const LLVM_READONLY;
    2558             : 
    2559             :   SourceLocation getExprLoc() const LLVM_READONLY { return MemberLoc; }
    2560             : 
    2561             :   /// \brief Determine whether the base of this explicit is implicit.
    2562             :   bool isImplicitAccess() const {
    2563             :     return getBase() && getBase()->isImplicitCXXThis();
    2564             :   }
    2565             : 
    2566             :   /// \brief Returns true if this member expression refers to a method that
    2567             :   /// was resolved from an overloaded set having size greater than 1.
    2568             :   bool hadMultipleCandidates() const {
    2569             :     return HadMultipleCandidates;
    2570             :   }
    2571             :   /// \brief Sets the flag telling whether this expression refers to
    2572             :   /// a method that was resolved from an overloaded set having size
    2573             :   /// greater than 1.
    2574             :   void setHadMultipleCandidates(bool V = true) {
    2575             :     HadMultipleCandidates = V;
    2576             :   }
    2577             : 
    2578             :   static bool classof(const Stmt *T) {
    2579             :     return T->getStmtClass() == MemberExprClass;
    2580             :   }
    2581             : 
    2582             :   // Iterators
    2583           6 :   child_range children() { return child_range(&Base, &Base+1); }
    2584             : 
    2585             :   friend class ASTReader;
    2586             :   friend class ASTStmtWriter;
    2587             : };
    2588             : 
    2589             : /// CompoundLiteralExpr - [C99 6.5.2.5]
    2590             : ///
    2591             : class CompoundLiteralExpr : public Expr {
    2592             :   /// LParenLoc - If non-null, this is the location of the left paren in a
    2593             :   /// compound literal like "(int){4}".  This can be null if this is a
    2594             :   /// synthesized compound expression.
    2595             :   SourceLocation LParenLoc;
    2596             : 
    2597             :   /// The type as written.  This can be an incomplete array type, in
    2598             :   /// which case the actual expression type will be different.
    2599             :   /// The int part of the pair stores whether this expr is file scope.
    2600             :   llvm::PointerIntPair<TypeSourceInfo *, 1, bool> TInfoAndScope;
    2601             :   Stmt *Init;
    2602             : public:
    2603             :   CompoundLiteralExpr(SourceLocation lparenloc, TypeSourceInfo *tinfo,
    2604             :                       QualType T, ExprValueKind VK, Expr *init, bool fileScope)
    2605             :     : Expr(CompoundLiteralExprClass, T, VK, OK_Ordinary,
    2606             :            tinfo->getType()->isDependentType(),
    2607             :            init->isValueDependent(),
    2608             :            (init->isInstantiationDependent() ||
    2609             :             tinfo->getType()->isInstantiationDependentType()),
    2610             :            init->containsUnexpandedParameterPack()),
    2611             :       LParenLoc(lparenloc), TInfoAndScope(tinfo, fileScope), Init(init) {}
    2612             : 
    2613             :   /// \brief Construct an empty compound literal.
    2614             :   explicit CompoundLiteralExpr(EmptyShell Empty)
    2615             :     : Expr(CompoundLiteralExprClass, Empty) { }
    2616             : 
    2617             :   const Expr *getInitializer() const { return cast<Expr>(Init); }
    2618             :   Expr *getInitializer() { return cast<Expr>(Init); }
    2619             :   void setInitializer(Expr *E) { Init = E; }
    2620             : 
    2621             :   bool isFileScope() const { return TInfoAndScope.getInt(); }
    2622             :   void setFileScope(bool FS) { TInfoAndScope.setInt(FS); }
    2623             : 
    2624             :   SourceLocation getLParenLoc() const { return LParenLoc; }
    2625             :   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
    2626             : 
    2627             :   TypeSourceInfo *getTypeSourceInfo() const {
    2628           0 :     return TInfoAndScope.getPointer();
    2629             :   }
    2630             :   void setTypeSourceInfo(TypeSourceInfo *tinfo) {
    2631             :     TInfoAndScope.setPointer(tinfo);
    2632             :   }
    2633             : 
    2634             :   SourceLocation getLocStart() const LLVM_READONLY {
    2635             :     // FIXME: Init should never be null.
    2636             :     if (!Init)
    2637             :       return SourceLocation();
    2638             :     if (LParenLoc.isInvalid())
    2639             :       return Init->getLocStart();
    2640             :     return LParenLoc;
    2641             :   }
    2642             :   SourceLocation getLocEnd() const LLVM_READONLY {
    2643             :     // FIXME: Init should never be null.
    2644             :     if (!Init)
    2645             :       return SourceLocation();
    2646             :     return Init->getLocEnd();
    2647             :   }
    2648             : 
    2649             :   static bool classof(const Stmt *T) {
    2650             :     return T->getStmtClass() == CompoundLiteralExprClass;
    2651             :   }
    2652             : 
    2653             :   // Iterators
    2654           0 :   child_range children() { return child_range(&Init, &Init+1); }
    2655             : };
    2656             : 
    2657             : /// CastExpr - Base class for type casts, including both implicit
    2658             : /// casts (ImplicitCastExpr) and explicit casts that have some
    2659             : /// representation in the source code (ExplicitCastExpr's derived
    2660             : /// classes).
    2661             : class CastExpr : public Expr {
    2662             : private:
    2663             :   Stmt *Op;
    2664             : 
    2665             :   bool CastConsistency() const;
    2666             : 
    2667             :   const CXXBaseSpecifier * const *path_buffer() const {
    2668             :     return const_cast<CastExpr*>(this)->path_buffer();
    2669             :   }
    2670             :   CXXBaseSpecifier **path_buffer();
    2671             : 
    2672             :   void setBasePathSize(unsigned basePathSize) {
    2673             :     CastExprBits.BasePathSize = basePathSize;
    2674             :     assert(CastExprBits.BasePathSize == basePathSize &&
    2675             :            "basePathSize doesn't fit in bits of CastExprBits.BasePathSize!");
    2676             :   }
    2677             : 
    2678             : protected:
    2679             :   CastExpr(StmtClass SC, QualType ty, ExprValueKind VK, const CastKind kind,
    2680             :            Expr *op, unsigned BasePathSize)
    2681             :       : Expr(SC, ty, VK, OK_Ordinary,
    2682             :              // Cast expressions are type-dependent if the type is
    2683             :              // dependent (C++ [temp.dep.expr]p3).
    2684             :              ty->isDependentType(),
    2685             :              // Cast expressions are value-dependent if the type is
    2686             :              // dependent or if the subexpression is value-dependent.
    2687             :              ty->isDependentType() || (op && op->isValueDependent()),
    2688             :              (ty->isInstantiationDependentType() ||
    2689             :               (op && op->isInstantiationDependent())),
    2690             :              // An implicit cast expression doesn't (lexically) contain an
    2691             :              // unexpanded pack, even if its target type does.
    2692             :              ((SC != ImplicitCastExprClass &&
    2693             :                ty->containsUnexpandedParameterPack()) ||
    2694             :               (op && op->containsUnexpandedParameterPack()))),
    2695             :         Op(op) {
    2696             :     assert(kind != CK_Invalid && "creating cast with invalid cast kind");
    2697             :     CastExprBits.Kind = kind;
    2698             :     setBasePathSize(BasePathSize);
    2699             :     assert(CastConsistency());
    2700             :   }
    2701             : 
    2702             :   /// \brief Construct an empty cast.
    2703             :   CastExpr(StmtClass SC, EmptyShell Empty, unsigned BasePathSize)
    2704             :     : Expr(SC, Empty) {
    2705             :     setBasePathSize(BasePathSize);
    2706             :   }
    2707             : 
    2708             : public:
    2709             :   CastKind getCastKind() const { return (CastKind) CastExprBits.Kind; }
    2710             :   void setCastKind(CastKind K) { CastExprBits.Kind = K; }
    2711             :   const char *getCastKindName() const;
    2712             : 
    2713             :   Expr *getSubExpr() { return cast<Expr>(Op); }
    2714             :   const Expr *getSubExpr() const { return cast<Expr>(Op); }
    2715             :   void setSubExpr(Expr *E) { Op = E; }
    2716             : 
    2717             :   /// \brief Retrieve the cast subexpression as it was written in the source
    2718             :   /// code, looking through any implicit casts or other intermediate nodes
    2719             :   /// introduced by semantic analysis.
    2720             :   Expr *getSubExprAsWritten();
    2721             :   const Expr *getSubExprAsWritten() const {
    2722             :     return const_cast<CastExpr *>(this)->getSubExprAsWritten();
    2723             :   }
    2724             : 
    2725             :   typedef CXXBaseSpecifier **path_iterator;
    2726             :   typedef const CXXBaseSpecifier * const *path_const_iterator;
    2727             :   bool path_empty() const { return CastExprBits.BasePathSize == 0; }
    2728             :   unsigned path_size() const { return CastExprBits.BasePathSize; }
    2729             :   path_iterator path_begin() { return path_buffer(); }
    2730             :   path_iterator path_end() { return path_buffer() + path_size(); }
    2731             :   path_const_iterator path_begin() const { return path_buffer(); }
    2732             :   path_const_iterator path_end() const { return path_buffer() + path_size(); }
    2733             : 
    2734             :   void setCastPath(const CXXCastPath &Path);
    2735             : 
    2736             :   static bool classof(const Stmt *T) {
    2737             :     return T->getStmtClass() >= firstCastExprConstant &&
    2738             :            T->getStmtClass() <= lastCastExprConstant;
    2739             :   }
    2740             : 
    2741             :   // Iterators
    2742          13 :   child_range children() { return child_range(&Op, &Op+1); }
    2743             : };
    2744             : 
    2745             : /// ImplicitCastExpr - Allows us to explicitly represent implicit type
    2746             : /// conversions, which have no direct representation in the original
    2747             : /// source code. For example: converting T[]->T*, void f()->void
    2748             : /// (*f)(), float->double, short->int, etc.
    2749             : ///
    2750             : /// In C, implicit casts always produce rvalues. However, in C++, an
    2751             : /// implicit cast whose result is being bound to a reference will be
    2752             : /// an lvalue or xvalue. For example:
    2753             : ///
    2754             : /// @code
    2755             : /// class Base { };
    2756             : /// class Derived : public Base { };
    2757             : /// Derived &&ref();
    2758             : /// void f(Derived d) {
    2759             : ///   Base& b = d; // initializer is an ImplicitCastExpr
    2760             : ///                // to an lvalue of type Base
    2761             : ///   Base&& r = ref(); // initializer is an ImplicitCastExpr
    2762             : ///                     // to an xvalue of type Base
    2763             : /// }
    2764             : /// @endcode
    2765             : class ImplicitCastExpr : public CastExpr {
    2766             : private:
    2767             :   ImplicitCastExpr(QualType ty, CastKind kind, Expr *op,
    2768             :                    unsigned BasePathLength, ExprValueKind VK)
    2769             :     : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, BasePathLength) {
    2770             :   }
    2771             : 
    2772             :   /// \brief Construct an empty implicit cast.
    2773             :   explicit ImplicitCastExpr(EmptyShell Shell, unsigned PathSize)
    2774             :     : CastExpr(ImplicitCastExprClass, Shell, PathSize) { }
    2775             : 
    2776             : public:
    2777             :   enum OnStack_t { OnStack };
    2778             :   ImplicitCastExpr(OnStack_t _, QualType ty, CastKind kind, Expr *op,
    2779             :                    ExprValueKind VK)
    2780             :     : CastExpr(ImplicitCastExprClass, ty, VK, kind, op, 0) {
    2781             :   }
    2782             : 
    2783             :   static ImplicitCastExpr *Create(const ASTContext &Context, QualType T,
    2784             :                                   CastKind Kind, Expr *Operand,
    2785             :                                   const CXXCastPath *BasePath,
    2786             :                                   ExprValueKind Cat);
    2787             : 
    2788             :   static ImplicitCastExpr *CreateEmpty(const ASTContext &Context,
    2789             :                                        unsigned PathSize);
    2790             : 
    2791             :   SourceLocation getLocStart() const LLVM_READONLY {
    2792             :     return getSubExpr()->getLocStart();
    2793             :   }
    2794             :   SourceLocation getLocEnd() const LLVM_READONLY {
    2795             :     return getSubExpr()->getLocEnd();
    2796             :   }
    2797             : 
    2798             :   static bool classof(const Stmt *T) {
    2799             :     return T->getStmtClass() == ImplicitCastExprClass;
    2800             :   }
    2801             : };
    2802             : 
    2803             : inline Expr *Expr::IgnoreImpCasts() {
    2804             :   Expr *e = this;
    2805             :   while (ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
    2806             :     e = ice->getSubExpr();
    2807             :   return e;
    2808             : }
    2809             : 
    2810             : /// ExplicitCastExpr - An explicit cast written in the source
    2811             : /// code.
    2812             : ///
    2813             : /// This class is effectively an abstract class, because it provides
    2814             : /// the basic representation of an explicitly-written cast without
    2815             : /// specifying which kind of cast (C cast, functional cast, static
    2816             : /// cast, etc.) was written; specific derived classes represent the
    2817             : /// particular style of cast and its location information.
    2818             : ///
    2819             : /// Unlike implicit casts, explicit cast nodes have two different
    2820             : /// types: the type that was written into the source code, and the
    2821             : /// actual type of the expression as determined by semantic
    2822             : /// analysis. These types may differ slightly. For example, in C++ one
    2823             : /// can cast to a reference type, which indicates that the resulting
    2824             : /// expression will be an lvalue or xvalue. The reference type, however,
    2825             : /// will not be used as the type of the expression.
    2826             : class ExplicitCastExpr : public CastExpr {
    2827             :   /// TInfo - Source type info for the (written) type
    2828             :   /// this expression is casting to.
    2829             :   TypeSourceInfo *TInfo;
    2830             : 
    2831             : protected:
    2832             :   ExplicitCastExpr(StmtClass SC, QualType exprTy, ExprValueKind VK,
    2833             :                    CastKind kind, Expr *op, unsigned PathSize,
    2834             :                    TypeSourceInfo *writtenTy)
    2835             :     : CastExpr(SC, exprTy, VK, kind, op, PathSize), TInfo(writtenTy) {}
    2836             : 
    2837             :   /// \brief Construct an empty explicit cast.
    2838             :   ExplicitCastExpr(StmtClass SC, EmptyShell Shell, unsigned PathSize)
    2839             :     : CastExpr(SC, Shell, PathSize) { }
    2840             : 
    2841             : public:
    2842             :   /// getTypeInfoAsWritten - Returns the type source info for the type
    2843             :   /// that this expression is casting to.
    2844           4 :   TypeSourceInfo *getTypeInfoAsWritten() const { return TInfo; }
    2845             :   void setTypeInfoAsWritten(TypeSourceInfo *writtenTy) { TInfo = writtenTy; }
    2846             : 
    2847             :   /// getTypeAsWritten - Returns the type that this expression is
    2848             :   /// casting to, as written in the source code.
    2849             :   QualType getTypeAsWritten() const { return TInfo->getType(); }
    2850             : 
    2851             :   static bool classof(const Stmt *T) {
    2852             :      return T->getStmtClass() >= firstExplicitCastExprConstant &&
    2853             :             T->getStmtClass() <= lastExplicitCastExprConstant;
    2854             :   }
    2855             : };
    2856             : 
    2857             : /// CStyleCastExpr - An explicit cast in C (C99 6.5.4) or a C-style
    2858             : /// cast in C++ (C++ [expr.cast]), which uses the syntax
    2859             : /// (Type)expr. For example: @c (int)f.
    2860             : class CStyleCastExpr : public ExplicitCastExpr {
    2861             :   SourceLocation LPLoc; // the location of the left paren
    2862             :   SourceLocation RPLoc; // the location of the right paren
    2863             : 
    2864             :   CStyleCastExpr(QualType exprTy, ExprValueKind vk, CastKind kind, Expr *op,
    2865             :                  unsigned PathSize, TypeSourceInfo *writtenTy,
    2866             :                  SourceLocation l, SourceLocation r)
    2867             :     : ExplicitCastExpr(CStyleCastExprClass, exprTy, vk, kind, op, PathSize,
    2868             :                        writtenTy), LPLoc(l), RPLoc(r) {}
    2869             : 
    2870             :   /// \brief Construct an empty C-style explicit cast.
    2871             :   explicit CStyleCastExpr(EmptyShell Shell, unsigned PathSize)
    2872             :     : ExplicitCastExpr(CStyleCastExprClass, Shell, PathSize) { }
    2873             : 
    2874             : public:
    2875             :   static CStyleCastExpr *Create(const ASTContext &Context, QualType T,
    2876             :                                 ExprValueKind VK, CastKind K,
    2877             :                                 Expr *Op, const CXXCastPath *BasePath,
    2878             :                                 TypeSourceInfo *WrittenTy, SourceLocation L,
    2879             :                                 SourceLocation R);
    2880             : 
    2881             :   static CStyleCastExpr *CreateEmpty(const ASTContext &Context,
    2882             :                                      unsigned PathSize);
    2883             : 
    2884             :   SourceLocation getLParenLoc() const { return LPLoc; }
    2885             :   void setLParenLoc(SourceLocation L) { LPLoc = L; }
    2886             : 
    2887             :   SourceLocation getRParenLoc() const { return RPLoc; }
    2888             :   void setRParenLoc(SourceLocation L) { RPLoc = L; }
    2889             : 
    2890             :   SourceLocation getLocStart() const LLVM_READONLY { return LPLoc; }
    2891             :   SourceLocation getLocEnd() const LLVM_READONLY {
    2892             :     return getSubExpr()->getLocEnd();
    2893             :   }
    2894             : 
    2895             :   static bool classof(const Stmt *T) {
    2896             :     return T->getStmtClass() == CStyleCastExprClass;
    2897             :   }
    2898             : };
    2899             : 
    2900             : /// \brief A builtin binary operation expression such as "x + y" or "x <= y".
    2901             : ///
    2902             : /// This expression node kind describes a builtin binary operation,
    2903             : /// such as "x + y" for integer values "x" and "y". The operands will
    2904             : /// already have been converted to appropriate types (e.g., by
    2905             : /// performing promotions or conversions).
    2906             : ///
    2907             : /// In C++, where operators may be overloaded, a different kind of
    2908             : /// expression node (CXXOperatorCallExpr) is used to express the
    2909             : /// invocation of an overloaded operator with operator syntax. Within
    2910             : /// a C++ template, whether BinaryOperator or CXXOperatorCallExpr is
    2911             : /// used to store an expression "x + y" depends on the subexpressions
    2912             : /// for x and y. If neither x or y is type-dependent, and the "+"
    2913             : /// operator resolves to a built-in operation, BinaryOperator will be
    2914             : /// used to express the computation (x and y may still be
    2915             : /// value-dependent). If either x or y is type-dependent, or if the
    2916             : /// "+" resolves to an overloaded operator, CXXOperatorCallExpr will
    2917             : /// be used to express the computation.
    2918             : class BinaryOperator : public Expr {
    2919             : public:
    2920             :   typedef BinaryOperatorKind Opcode;
    2921             : 
    2922             : private:
    2923             :   unsigned Opc : 6;
    2924             : 
    2925             :   // Records the FP_CONTRACT pragma status at the point that this binary
    2926             :   // operator was parsed. This bit is only meaningful for operations on
    2927             :   // floating point types. For all other types it should default to
    2928             :   // false.
    2929             :   unsigned FPContractable : 1;
    2930             :   SourceLocation OpLoc;
    2931             : 
    2932             :   enum { LHS, RHS, END_EXPR };
    2933             :   Stmt* SubExprs[END_EXPR];
    2934             : public:
    2935             : 
    2936             :   BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
    2937             :                  ExprValueKind VK, ExprObjectKind OK,
    2938             :                  SourceLocation opLoc, bool fpContractable)
    2939             :     : Expr(BinaryOperatorClass, ResTy, VK, OK,
    2940             :            lhs->isTypeDependent() || rhs->isTypeDependent(),
    2941             :            lhs->isValueDependent() || rhs->isValueDependent(),
    2942             :            (lhs->isInstantiationDependent() ||
    2943             :             rhs->isInstantiationDependent()),
    2944             :            (lhs->containsUnexpandedParameterPack() ||
    2945             :             rhs->containsUnexpandedParameterPack())),
    2946             :       Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
    2947             :     SubExprs[LHS] = lhs;
    2948             :     SubExprs[RHS] = rhs;
    2949             :     assert(!isCompoundAssignmentOp() &&
    2950             :            "Use CompoundAssignOperator for compound assignments");
    2951             :   }
    2952             : 
    2953             :   /// \brief Construct an empty binary operator.
    2954             :   explicit BinaryOperator(EmptyShell Empty)
    2955             :     : Expr(BinaryOperatorClass, Empty), Opc(BO_Comma) { }
    2956             : 
    2957             :   SourceLocation getExprLoc() const LLVM_READONLY { return OpLoc; }
    2958             :   SourceLocation getOperatorLoc() const { return OpLoc; }
    2959             :   void setOperatorLoc(SourceLocation L) { OpLoc = L; }
    2960             : 
    2961           1 :   Opcode getOpcode() const { return static_cast<Opcode>(Opc); }
    2962             :   void setOpcode(Opcode O) { Opc = O; }
    2963             : 
    2964           0 :   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
    2965             :   void setLHS(Expr *E) { SubExprs[LHS] = E; }
    2966           0 :   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
    2967             :   void setRHS(Expr *E) { SubExprs[RHS] = E; }
    2968             : 
    2969             :   SourceLocation getLocStart() const LLVM_READONLY {
    2970             :     return getLHS()->getLocStart();
    2971             :   }
    2972             :   SourceLocation getLocEnd() const LLVM_READONLY {
    2973             :     return getRHS()->getLocEnd();
    2974             :   }
    2975             : 
    2976             :   /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
    2977             :   /// corresponds to, e.g. "<<=".
    2978             :   static StringRef getOpcodeStr(Opcode Op);
    2979             : 
    2980             :   StringRef getOpcodeStr() const { return getOpcodeStr(getOpcode()); }
    2981             : 
    2982             :   /// \brief Retrieve the binary opcode that corresponds to the given
    2983             :   /// overloaded operator.
    2984             :   static Opcode getOverloadedOpcode(OverloadedOperatorKind OO);
    2985             : 
    2986             :   /// \brief Retrieve the overloaded operator kind that corresponds to
    2987             :   /// the given binary opcode.
    2988             :   static OverloadedOperatorKind getOverloadedOperator(Opcode Opc);
    2989             : 
    2990             :   /// predicates to categorize the respective opcodes.
    2991             :   bool isPtrMemOp() const { return Opc == BO_PtrMemD || Opc == BO_PtrMemI; }
    2992             :   bool isMultiplicativeOp() const { return Opc >= BO_Mul && Opc <= BO_Rem; }
    2993             :   static bool isAdditiveOp(Opcode Opc) { return Opc == BO_Add || Opc==BO_Sub; }
    2994             :   bool isAdditiveOp() const { return isAdditiveOp(getOpcode()); }
    2995             :   static bool isShiftOp(Opcode Opc) { return Opc == BO_Shl || Opc == BO_Shr; }
    2996             :   bool isShiftOp() const { return isShiftOp(getOpcode()); }
    2997             : 
    2998             :   static bool isBitwiseOp(Opcode Opc) { return Opc >= BO_And && Opc <= BO_Or; }
    2999             :   bool isBitwiseOp() const { return isBitwiseOp(getOpcode()); }
    3000             : 
    3001             :   static bool isRelationalOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_GE; }
    3002             :   bool isRelationalOp() const { return isRelationalOp(getOpcode()); }
    3003             : 
    3004             :   static bool isEqualityOp(Opcode Opc) { return Opc == BO_EQ || Opc == BO_NE; }
    3005             :   bool isEqualityOp() const { return isEqualityOp(getOpcode()); }
    3006             : 
    3007             :   static bool isComparisonOp(Opcode Opc) { return Opc >= BO_LT && Opc<=BO_NE; }
    3008             :   bool isComparisonOp() const { return isComparisonOp(getOpcode()); }
    3009             : 
    3010             :   static Opcode negateComparisonOp(Opcode Opc) {
    3011             :     switch (Opc) {
    3012             :     default:
    3013             :       llvm_unreachable("Not a comparsion operator.");
    3014             :     case BO_LT: return BO_GE;
    3015             :     case BO_GT: return BO_LE;
    3016             :     case BO_LE: return BO_GT;
    3017             :     case BO_GE: return BO_LT;
    3018             :     case BO_EQ: return BO_NE;
    3019             :     case BO_NE: return BO_EQ;
    3020             :     }
    3021             :   }
    3022             : 
    3023             :   static Opcode reverseComparisonOp(Opcode Opc) {
    3024             :     switch (Opc) {
    3025             :     default:
    3026             :       llvm_unreachable("Not a comparsion operator.");
    3027             :     case BO_LT: return BO_GT;
    3028             :     case BO_GT: return BO_LT;
    3029             :     case BO_LE: return BO_GE;
    3030             :     case BO_GE: return BO_LE;
    3031             :     case BO_EQ:
    3032             :     case BO_NE:
    3033             :       return Opc;
    3034             :     }
    3035             :   }
    3036             : 
    3037             :   static bool isLogicalOp(Opcode Opc) { return Opc == BO_LAnd || Opc==BO_LOr; }
    3038             :   bool isLogicalOp() const { return isLogicalOp(getOpcode()); }
    3039             : 
    3040             :   static bool isAssignmentOp(Opcode Opc) {
    3041             :     return Opc >= BO_Assign && Opc <= BO_OrAssign;
    3042             :   }
    3043             :   bool isAssignmentOp() const { return isAssignmentOp(getOpcode()); }
    3044             : 
    3045             :   static bool isCompoundAssignmentOp(Opcode Opc) {
    3046             :     return Opc > BO_Assign && Opc <= BO_OrAssign;
    3047             :   }
    3048             :   bool isCompoundAssignmentOp() const {
    3049             :     return isCompoundAssignmentOp(getOpcode());
    3050             :   }
    3051             :   static Opcode getOpForCompoundAssignment(Opcode Opc) {
    3052             :     assert(isCompoundAssignmentOp(Opc));
    3053             :     if (Opc >= BO_AndAssign)
    3054             :       return Opcode(unsigned(Opc) - BO_AndAssign + BO_And);
    3055             :     else
    3056             :       return Opcode(unsigned(Opc) - BO_MulAssign + BO_Mul);
    3057             :   }
    3058             : 
    3059             :   static bool isShiftAssignOp(Opcode Opc) {
    3060             :     return Opc == BO_ShlAssign || Opc == BO_ShrAssign;
    3061             :   }
    3062             :   bool isShiftAssignOp() const {
    3063             :     return isShiftAssignOp(getOpcode());
    3064             :   }
    3065             : 
    3066             :   static bool classof(const Stmt *S) {
    3067         306 :     return S->getStmtClass() >= firstBinaryOperatorConstant &&
    3068         115 :            S->getStmtClass() <= lastBinaryOperatorConstant;
    3069             :   }
    3070             : 
    3071             :   // Iterators
    3072             :   child_range children() {
    3073           0 :     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
    3074             :   }
    3075             : 
    3076             :   // Set the FP contractability status of this operator. Only meaningful for
    3077             :   // operations on floating point types.
    3078             :   void setFPContractable(bool FPC) { FPContractable = FPC; }
    3079             : 
    3080             :   // Get the FP contractability status of this operator. Only meaningful for
    3081             :   // operations on floating point types.
    3082             :   bool isFPContractable() const { return FPContractable; }
    3083             : 
    3084             : protected:
    3085             :   BinaryOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResTy,
    3086             :                  ExprValueKind VK, ExprObjectKind OK,
    3087             :                  SourceLocation opLoc, bool fpContractable, bool dead2)
    3088             :     : Expr(CompoundAssignOperatorClass, ResTy, VK, OK,
    3089             :            lhs->isTypeDependent() || rhs->isTypeDependent(),
    3090             :            lhs->isValueDependent() || rhs->isValueDependent(),
    3091             :            (lhs->isInstantiationDependent() ||
    3092             :             rhs->isInstantiationDependent()),
    3093             :            (lhs->containsUnexpandedParameterPack() ||
    3094             :             rhs->containsUnexpandedParameterPack())),
    3095             :       Opc(opc), FPContractable(fpContractable), OpLoc(opLoc) {
    3096             :     SubExprs[LHS] = lhs;
    3097             :     SubExprs[RHS] = rhs;
    3098             :   }
    3099             : 
    3100             :   BinaryOperator(StmtClass SC, EmptyShell Empty)
    3101             :     : Expr(SC, Empty), Opc(BO_MulAssign) { }
    3102             : };
    3103             : 
    3104             : /// CompoundAssignOperator - For compound assignments (e.g. +=), we keep
    3105             : /// track of the type the operation is performed in.  Due to the semantics of
    3106             : /// these operators, the operands are promoted, the arithmetic performed, an
    3107             : /// implicit conversion back to the result type done, then the assignment takes
    3108             : /// place.  This captures the intermediate type which the computation is done
    3109             : /// in.
    3110             : class CompoundAssignOperator : public BinaryOperator {
    3111             :   QualType ComputationLHSType;
    3112             :   QualType ComputationResultType;
    3113             : public:
    3114             :   CompoundAssignOperator(Expr *lhs, Expr *rhs, Opcode opc, QualType ResType,
    3115             :                          ExprValueKind VK, ExprObjectKind OK,
    3116             :                          QualType CompLHSType, QualType CompResultType,
    3117             :                          SourceLocation OpLoc, bool fpContractable)
    3118             :     : BinaryOperator(lhs, rhs, opc, ResType, VK, OK, OpLoc, fpContractable,
    3119             :                      true),
    3120             :       ComputationLHSType(CompLHSType),
    3121             :       ComputationResultType(CompResultType) {
    3122             :     assert(isCompoundAssignmentOp() &&
    3123             :            "Only should be used for compound assignments");
    3124             :   }
    3125             : 
    3126             :   /// \brief Build an empty compound assignment operator expression.
    3127             :   explicit CompoundAssignOperator(EmptyShell Empty)
    3128             :     : BinaryOperator(CompoundAssignOperatorClass, Empty) { }
    3129             : 
    3130             :   // The two computation types are the type the LHS is converted
    3131             :   // to for the computation and the type of the result; the two are
    3132             :   // distinct in a few cases (specifically, int+=ptr and ptr-=ptr).
    3133             :   QualType getComputationLHSType() const { return ComputationLHSType; }
    3134             :   void setComputationLHSType(QualType T) { ComputationLHSType = T; }
    3135             : 
    3136             :   QualType getComputationResultType() const { return ComputationResultType; }
    3137             :   void setComputationResultType(QualType T) { ComputationResultType = T; }
    3138             : 
    3139             :   static bool classof(const Stmt *S) {
    3140             :     return S->getStmtClass() == CompoundAssignOperatorClass;
    3141             :   }
    3142             : };
    3143             : 
    3144             : /// AbstractConditionalOperator - An abstract base class for
    3145             : /// ConditionalOperator and BinaryConditionalOperator.
    3146             : class AbstractConditionalOperator : public Expr {
    3147             :   SourceLocation QuestionLoc, ColonLoc;
    3148             :   friend class ASTStmtReader;
    3149             : 
    3150             : protected:
    3151             :   AbstractConditionalOperator(StmtClass SC, QualType T,
    3152             :                               ExprValueKind VK, ExprObjectKind OK,
    3153             :                               bool TD, bool VD, bool ID,
    3154             :                               bool ContainsUnexpandedParameterPack,
    3155             :                               SourceLocation qloc,
    3156             :                               SourceLocation cloc)
    3157             :     : Expr(SC, T, VK, OK, TD, VD, ID, ContainsUnexpandedParameterPack),
    3158             :       QuestionLoc(qloc), ColonLoc(cloc) {}
    3159             : 
    3160             :   AbstractConditionalOperator(StmtClass SC, EmptyShell Empty)
    3161             :     : Expr(SC, Empty) { }
    3162             : 
    3163             : public:
    3164             :   // getCond - Return the expression representing the condition for
    3165             :   //   the ?: operator.
    3166             :   Expr *getCond() const;
    3167             : 
    3168             :   // getTrueExpr - Return the subexpression representing the value of
    3169             :   //   the expression if the condition evaluates to true.
    3170             :   Expr *getTrueExpr() const;
    3171             : 
    3172             :   // getFalseExpr - Return the subexpression representing the value of
    3173             :   //   the expression if the condition evaluates to false.  This is
    3174             :   //   the same as getRHS.
    3175             :   Expr *getFalseExpr() const;
    3176             : 
    3177             :   SourceLocation getQuestionLoc() const { return QuestionLoc; }
    3178             :   SourceLocation getColonLoc() const { return ColonLoc; }
    3179             : 
    3180             :   static bool classof(const Stmt *T) {
    3181             :     return T->getStmtClass() == ConditionalOperatorClass ||
    3182             :            T->getStmtClass() == BinaryConditionalOperatorClass;
    3183             :   }
    3184             : };
    3185             : 
    3186             : /// ConditionalOperator - The ?: ternary operator.  The GNU "missing
    3187             : /// middle" extension is a BinaryConditionalOperator.
    3188             : class ConditionalOperator : public AbstractConditionalOperator {
    3189             :   enum { COND, LHS, RHS, END_EXPR };
    3190             :   Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
    3191             : 
    3192             :   friend class ASTStmtReader;
    3193             : public:
    3194             :   ConditionalOperator(Expr *cond, SourceLocation QLoc, Expr *lhs,
    3195             :                       SourceLocation CLoc, Expr *rhs,
    3196             :                       QualType t, ExprValueKind VK, ExprObjectKind OK)
    3197             :     : AbstractConditionalOperator(ConditionalOperatorClass, t, VK, OK,
    3198             :            // FIXME: the type of the conditional operator doesn't
    3199             :            // depend on the type of the conditional, but the standard
    3200             :            // seems to imply that it could. File a bug!
    3201             :            (lhs->isTypeDependent() || rhs->isTypeDependent()),
    3202             :            (cond->isValueDependent() || lhs->isValueDependent() ||
    3203             :             rhs->isValueDependent()),
    3204             :            (cond->isInstantiationDependent() ||
    3205             :             lhs->isInstantiationDependent() ||
    3206             :             rhs->isInstantiationDependent()),
    3207             :            (cond->containsUnexpandedParameterPack() ||
    3208             :             lhs->containsUnexpandedParameterPack() ||
    3209             :             rhs->containsUnexpandedParameterPack()),
    3210             :                                   QLoc, CLoc) {
    3211             :     SubExprs[COND] = cond;
    3212             :     SubExprs[LHS] = lhs;
    3213             :     SubExprs[RHS] = rhs;
    3214             :   }
    3215             : 
    3216             :   /// \brief Build an empty conditional operator.
    3217             :   explicit ConditionalOperator(EmptyShell Empty)
    3218             :     : AbstractConditionalOperator(ConditionalOperatorClass, Empty) { }
    3219             : 
    3220             :   // getCond - Return the expression representing the condition for
    3221             :   //   the ?: operator.
    3222             :   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
    3223             : 
    3224             :   // getTrueExpr - Return the subexpression representing the value of
    3225             :   //   the expression if the condition evaluates to true.
    3226             :   Expr *getTrueExpr() const { return cast<Expr>(SubExprs[LHS]); }
    3227             : 
    3228             :   // getFalseExpr - Return the subexpression representing the value of
    3229             :   //   the expression if the condition evaluates to false.  This is
    3230             :   //   the same as getRHS.
    3231             :   Expr *getFalseExpr() const { return cast<Expr>(SubExprs[RHS]); }
    3232             : 
    3233             :   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
    3234             :   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
    3235             : 
    3236             :   SourceLocation getLocStart() const LLVM_READONLY {
    3237             :     return getCond()->getLocStart();
    3238             :   }
    3239             :   SourceLocation getLocEnd() const LLVM_READONLY {
    3240             :     return getRHS()->getLocEnd();
    3241             :   }
    3242             : 
    3243             :   static bool classof(const Stmt *T) {
    3244             :     return T->getStmtClass() == ConditionalOperatorClass;
    3245             :   }
    3246             : 
    3247             :   // Iterators
    3248             :   child_range children() {
    3249           0 :     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
    3250             :   }
    3251             : };
    3252             : 
    3253             : /// BinaryConditionalOperator - The GNU extension to the conditional
    3254             : /// operator which allows the middle operand to be omitted.
    3255             : ///
    3256             : /// This is a different expression kind on the assumption that almost
    3257             : /// every client ends up needing to know that these are different.
    3258             : class BinaryConditionalOperator : public AbstractConditionalOperator {
    3259             :   enum { COMMON, COND, LHS, RHS, NUM_SUBEXPRS };
    3260             : 
    3261             :   /// - the common condition/left-hand-side expression, which will be
    3262             :   ///   evaluated as the opaque value
    3263             :   /// - the condition, expressed in terms of the opaque value
    3264             :   /// - the left-hand-side, expressed in terms of the opaque value
    3265             :   /// - the right-hand-side
    3266             :   Stmt *SubExprs[NUM_SUBEXPRS];
    3267             :   OpaqueValueExpr *OpaqueValue;
    3268             : 
    3269             :   friend class ASTStmtReader;
    3270             : public:
    3271             :   BinaryConditionalOperator(Expr *common, OpaqueValueExpr *opaqueValue,
    3272             :                             Expr *cond, Expr *lhs, Expr *rhs,
    3273             :                             SourceLocation qloc, SourceLocation cloc,
    3274             :                             QualType t, ExprValueKind VK, ExprObjectKind OK)
    3275             :     : AbstractConditionalOperator(BinaryConditionalOperatorClass, t, VK, OK,
    3276             :            (common->isTypeDependent() || rhs->isTypeDependent()),
    3277             :            (common->isValueDependent() || rhs->isValueDependent()),
    3278             :            (common->isInstantiationDependent() ||
    3279             :             rhs->isInstantiationDependent()),
    3280             :            (common->containsUnexpandedParameterPack() ||
    3281             :             rhs->containsUnexpandedParameterPack()),
    3282             :                                   qloc, cloc),
    3283             :       OpaqueValue(opaqueValue) {
    3284             :     SubExprs[COMMON] = common;
    3285             :     SubExprs[COND] = cond;
    3286             :     SubExprs[LHS] = lhs;
    3287             :     SubExprs[RHS] = rhs;
    3288             :     assert(OpaqueValue->getSourceExpr() == common && "Wrong opaque value");
    3289             :   }
    3290             : 
    3291             :   /// \brief Build an empty conditional operator.
    3292             :   explicit BinaryConditionalOperator(EmptyShell Empty)
    3293             :     : AbstractConditionalOperator(BinaryConditionalOperatorClass, Empty) { }
    3294             : 
    3295             :   /// \brief getCommon - Return the common expression, written to the
    3296             :   ///   left of the condition.  The opaque value will be bound to the
    3297             :   ///   result of this expression.
    3298             :   Expr *getCommon() const { return cast<Expr>(SubExprs[COMMON]); }
    3299             : 
    3300             :   /// \brief getOpaqueValue - Return the opaque value placeholder.
    3301             :   OpaqueValueExpr *getOpaqueValue() const { return OpaqueValue; }
    3302             : 
    3303             :   /// \brief getCond - Return the condition expression; this is defined
    3304             :   ///   in terms of the opaque value.
    3305             :   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
    3306             : 
    3307             :   /// \brief getTrueExpr - Return the subexpression which will be
    3308             :   ///   evaluated if the condition evaluates to true;  this is defined
    3309             :   ///   in terms of the opaque value.
    3310             :   Expr *getTrueExpr() const {
    3311             :     return cast<Expr>(SubExprs[LHS]);
    3312             :   }
    3313             : 
    3314             :   /// \brief getFalseExpr - Return the subexpression which will be
    3315             :   ///   evaluated if the condnition evaluates to false; this is
    3316             :   ///   defined in terms of the opaque value.
    3317             :   Expr *getFalseExpr() const {
    3318             :     return cast<Expr>(SubExprs[RHS]);
    3319             :   }
    3320             : 
    3321             :   SourceLocation getLocStart() const LLVM_READONLY {
    3322             :     return getCommon()->getLocStart();
    3323             :   }
    3324             :   SourceLocation getLocEnd() const LLVM_READONLY {
    3325             :     return getFalseExpr()->getLocEnd();
    3326             :   }
    3327             : 
    3328             :   static bool classof(const Stmt *T) {
    3329             :     return T->getStmtClass() == BinaryConditionalOperatorClass;
    3330             :   }
    3331             : 
    3332             :   // Iterators
    3333             :   child_range children() {
    3334           0 :     return child_range(SubExprs, SubExprs + NUM_SUBEXPRS);
    3335             :   }
    3336             : };
    3337             : 
    3338             : inline Expr *AbstractConditionalOperator::getCond() const {
    3339             :   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    3340             :     return co->getCond();
    3341             :   return cast<BinaryConditionalOperator>(this)->getCond();
    3342             : }
    3343             : 
    3344             : inline Expr *AbstractConditionalOperator::getTrueExpr() const {
    3345             :   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    3346             :     return co->getTrueExpr();
    3347             :   return cast<BinaryConditionalOperator>(this)->getTrueExpr();
    3348             : }
    3349             : 
    3350             : inline Expr *AbstractConditionalOperator::getFalseExpr() const {
    3351             :   if (const ConditionalOperator *co = dyn_cast<ConditionalOperator>(this))
    3352             :     return co->getFalseExpr();
    3353             :   return cast<BinaryConditionalOperator>(this)->getFalseExpr();
    3354             : }
    3355             : 
    3356             : /// AddrLabelExpr - The GNU address of label extension, representing &&label.
    3357             : class AddrLabelExpr : public Expr {
    3358             :   SourceLocation AmpAmpLoc, LabelLoc;
    3359             :   LabelDecl *Label;
    3360             : public:
    3361             :   AddrLabelExpr(SourceLocation AALoc, SourceLocation LLoc, LabelDecl *L,
    3362             :                 QualType t)
    3363             :     : Expr(AddrLabelExprClass, t, VK_RValue, OK_Ordinary, false, false, false,
    3364             :            false),
    3365             :       AmpAmpLoc(AALoc), LabelLoc(LLoc), Label(L) {}
    3366             : 
    3367             :   /// \brief Build an empty address of a label expression.
    3368             :   explicit AddrLabelExpr(EmptyShell Empty)
    3369             :     : Expr(AddrLabelExprClass, Empty) { }
    3370             : 
    3371             :   SourceLocation getAmpAmpLoc() const { return AmpAmpLoc; }
    3372             :   void setAmpAmpLoc(SourceLocation L) { AmpAmpLoc = L; }
    3373             :   SourceLocation getLabelLoc() const { return LabelLoc; }
    3374             :   void setLabelLoc(SourceLocation L) { LabelLoc = L; }
    3375             : 
    3376             :   SourceLocation getLocStart() const LLVM_READONLY { return AmpAmpLoc; }
    3377             :   SourceLocation getLocEnd() const LLVM_READONLY { return LabelLoc; }
    3378             : 
    3379             :   LabelDecl *getLabel() const { return Label; }
    3380             :   void setLabel(LabelDecl *L) { Label = L; }
    3381             : 
    3382             :   static bool classof(const Stmt *T) {
    3383             :     return T->getStmtClass() == AddrLabelExprClass;
    3384             :   }
    3385             : 
    3386             :   // Iterators
    3387           0 :   child_range children() { return child_range(); }
    3388             : };
    3389             : 
    3390             : /// StmtExpr - This is the GNU Statement Expression extension: ({int X=4; X;}).
    3391             : /// The StmtExpr contains a single CompoundStmt node, which it evaluates and
    3392             : /// takes the value of the last subexpression.
    3393             : ///
    3394             : /// A StmtExpr is always an r-value; values "returned" out of a
    3395             : /// StmtExpr will be copied.
    3396             : class StmtExpr : public Expr {
    3397             :   Stmt *SubStmt;
    3398             :   SourceLocation LParenLoc, RParenLoc;
    3399             : public:
    3400             :   // FIXME: Does type-dependence need to be computed differently?
    3401             :   // FIXME: Do we need to compute instantiation instantiation-dependence for
    3402             :   // statements? (ugh!)
    3403             :   StmtExpr(CompoundStmt *substmt, QualType T,
    3404             :            SourceLocation lp, SourceLocation rp) :
    3405             :     Expr(StmtExprClass, T, VK_RValue, OK_Ordinary,
    3406             :          T->isDependentType(), false, false, false),
    3407             :     SubStmt(substmt), LParenLoc(lp), RParenLoc(rp) { }
    3408             : 
    3409             :   /// \brief Build an empty statement expression.
    3410             :   explicit StmtExpr(EmptyShell Empty) : Expr(StmtExprClass, Empty) { }
    3411             : 
    3412             :   CompoundStmt *getSubStmt() { return cast<CompoundStmt>(SubStmt); }
    3413             :   const CompoundStmt *getSubStmt() const { return cast<CompoundStmt>(SubStmt); }
    3414             :   void setSubStmt(CompoundStmt *S) { SubStmt = S; }
    3415             : 
    3416             :   SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
    3417             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    3418             : 
    3419             :   SourceLocation getLParenLoc() const { return LParenLoc; }
    3420             :   void setLParenLoc(SourceLocation L) { LParenLoc = L; }
    3421             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    3422             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    3423             : 
    3424             :   static bool classof(const Stmt *T) {
    3425             :     return T->getStmtClass() == StmtExprClass;
    3426             :   }
    3427             : 
    3428             :   // Iterators
    3429           0 :   child_range children() { return child_range(&SubStmt, &SubStmt+1); }
    3430             : };
    3431             : 
    3432             : 
    3433             : /// ShuffleVectorExpr - clang-specific builtin-in function
    3434             : /// __builtin_shufflevector.
    3435             : /// This AST node represents a operator that does a constant
    3436             : /// shuffle, similar to LLVM's shufflevector instruction. It takes
    3437             : /// two vectors and a variable number of constant indices,
    3438             : /// and returns the appropriately shuffled vector.
    3439             : class ShuffleVectorExpr : public Expr {
    3440             :   SourceLocation BuiltinLoc, RParenLoc;
    3441             : 
    3442             :   // SubExprs - the list of values passed to the __builtin_shufflevector
    3443             :   // function. The first two are vectors, and the rest are constant
    3444             :   // indices.  The number of values in this list is always
    3445             :   // 2+the number of indices in the vector type.
    3446             :   Stmt **SubExprs;
    3447             :   unsigned NumExprs;
    3448             : 
    3449             : public:
    3450             :   ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args, QualType Type,
    3451             :                     SourceLocation BLoc, SourceLocation RP);
    3452             : 
    3453             :   /// \brief Build an empty vector-shuffle expression.
    3454             :   explicit ShuffleVectorExpr(EmptyShell Empty)
    3455             :     : Expr(ShuffleVectorExprClass, Empty), SubExprs(nullptr) { }
    3456             : 
    3457             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    3458             :   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
    3459             : 
    3460             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    3461             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    3462             : 
    3463             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    3464             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    3465             : 
    3466             :   static bool classof(const Stmt *T) {
    3467             :     return T->getStmtClass() == ShuffleVectorExprClass;
    3468             :   }
    3469             : 
    3470             :   /// getNumSubExprs - Return the size of the SubExprs array.  This includes the
    3471             :   /// constant expression, the actual arguments passed in, and the function
    3472             :   /// pointers.
    3473             :   unsigned getNumSubExprs() const { return NumExprs; }
    3474             : 
    3475             :   /// \brief Retrieve the array of expressions.
    3476             :   Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
    3477             : 
    3478             :   /// getExpr - Return the Expr at the specified index.
    3479             :   Expr *getExpr(unsigned Index) {
    3480             :     assert((Index < NumExprs) && "Arg access out of range!");
    3481             :     return cast<Expr>(SubExprs[Index]);
    3482             :   }
    3483             :   const Expr *getExpr(unsigned Index) const {
    3484             :     assert((Index < NumExprs) && "Arg access out of range!");
    3485             :     return cast<Expr>(SubExprs[Index]);
    3486             :   }
    3487             : 
    3488             :   void setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs);
    3489             : 
    3490             :   llvm::APSInt getShuffleMaskIdx(const ASTContext &Ctx, unsigned N) const {
    3491             :     assert((N < NumExprs - 2) && "Shuffle idx out of range!");
    3492             :     return getExpr(N+2)->EvaluateKnownConstInt(Ctx);
    3493             :   }
    3494             : 
    3495             :   // Iterators
    3496             :   child_range children() {
    3497           0 :     return child_range(&SubExprs[0], &SubExprs[0]+NumExprs);
    3498             :   }
    3499             : };
    3500             : 
    3501             : /// ConvertVectorExpr - Clang builtin function __builtin_convertvector
    3502             : /// This AST node provides support for converting a vector type to another
    3503             : /// vector type of the same arity.
    3504             : class ConvertVectorExpr : public Expr {
    3505             : private:
    3506             :   Stmt *SrcExpr;
    3507             :   TypeSourceInfo *TInfo;
    3508             :   SourceLocation BuiltinLoc, RParenLoc;
    3509             : 
    3510             :   friend class ASTReader;
    3511             :   friend class ASTStmtReader;
    3512             :   explicit ConvertVectorExpr(EmptyShell Empty) : Expr(ConvertVectorExprClass, Empty) {}
    3513             : 
    3514             : public:
    3515             :   ConvertVectorExpr(Expr* SrcExpr, TypeSourceInfo *TI, QualType DstType,
    3516             :              ExprValueKind VK, ExprObjectKind OK,
    3517             :              SourceLocation BuiltinLoc, SourceLocation RParenLoc)
    3518             :     : Expr(ConvertVectorExprClass, DstType, VK, OK,
    3519             :            DstType->isDependentType(),
    3520             :            DstType->isDependentType() || SrcExpr->isValueDependent(),
    3521             :            (DstType->isInstantiationDependentType() ||
    3522             :             SrcExpr->isInstantiationDependent()),
    3523             :            (DstType->containsUnexpandedParameterPack() ||
    3524             :             SrcExpr->containsUnexpandedParameterPack())),
    3525             :   SrcExpr(SrcExpr), TInfo(TI), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
    3526             : 
    3527             :   /// getSrcExpr - Return the Expr to be converted.
    3528             :   Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
    3529             : 
    3530             :   /// getTypeSourceInfo - Return the destination type.
    3531             :   TypeSourceInfo *getTypeSourceInfo() const {
    3532             :     return TInfo;
    3533             :   }
    3534             :   void setTypeSourceInfo(TypeSourceInfo *ti) {
    3535             :     TInfo = ti;
    3536             :   }
    3537             : 
    3538             :   /// getBuiltinLoc - Return the location of the __builtin_convertvector token.
    3539             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    3540             : 
    3541             :   /// getRParenLoc - Return the location of final right parenthesis.
    3542             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    3543             : 
    3544             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    3545             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    3546             : 
    3547             :   static bool classof(const Stmt *T) {
    3548             :     return T->getStmtClass() == ConvertVectorExprClass;
    3549             :   }
    3550             : 
    3551             :   // Iterators
    3552           0 :   child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
    3553             : };
    3554             : 
    3555             : /// ChooseExpr - GNU builtin-in function __builtin_choose_expr.
    3556             : /// This AST node is similar to the conditional operator (?:) in C, with
    3557             : /// the following exceptions:
    3558             : /// - the test expression must be a integer constant expression.
    3559             : /// - the expression returned acts like the chosen subexpression in every
    3560             : ///   visible way: the type is the same as that of the chosen subexpression,
    3561             : ///   and all predicates (whether it's an l-value, whether it's an integer
    3562             : ///   constant expression, etc.) return the same result as for the chosen
    3563             : ///   sub-expression.
    3564             : class ChooseExpr : public Expr {
    3565             :   enum { COND, LHS, RHS, END_EXPR };
    3566             :   Stmt* SubExprs[END_EXPR]; // Left/Middle/Right hand sides.
    3567             :   SourceLocation BuiltinLoc, RParenLoc;
    3568             :   bool CondIsTrue;
    3569             : public:
    3570             :   ChooseExpr(SourceLocation BLoc, Expr *cond, Expr *lhs, Expr *rhs,
    3571             :              QualType t, ExprValueKind VK, ExprObjectKind OK,
    3572             :              SourceLocation RP, bool condIsTrue,
    3573             :              bool TypeDependent, bool ValueDependent)
    3574             :     : Expr(ChooseExprClass, t, VK, OK, TypeDependent, ValueDependent,
    3575             :            (cond->isInstantiationDependent() ||
    3576             :             lhs->isInstantiationDependent() ||
    3577             :             rhs->isInstantiationDependent()),
    3578             :            (cond->containsUnexpandedParameterPack() ||
    3579             :             lhs->containsUnexpandedParameterPack() ||
    3580             :             rhs->containsUnexpandedParameterPack())),
    3581             :       BuiltinLoc(BLoc), RParenLoc(RP), CondIsTrue(condIsTrue) {
    3582             :       SubExprs[COND] = cond;
    3583             :       SubExprs[LHS] = lhs;
    3584             :       SubExprs[RHS] = rhs;
    3585             :     }
    3586             : 
    3587             :   /// \brief Build an empty __builtin_choose_expr.
    3588             :   explicit ChooseExpr(EmptyShell Empty) : Expr(ChooseExprClass, Empty) { }
    3589             : 
    3590             :   /// isConditionTrue - Return whether the condition is true (i.e. not
    3591             :   /// equal to zero).
    3592             :   bool isConditionTrue() const {
    3593             :     assert(!isConditionDependent() &&
    3594             :            "Dependent condition isn't true or false");
    3595             :     return CondIsTrue;
    3596             :   }
    3597             :   void setIsConditionTrue(bool isTrue) { CondIsTrue = isTrue; }
    3598             : 
    3599             :   bool isConditionDependent() const {
    3600             :     return getCond()->isTypeDependent() || getCond()->isValueDependent();
    3601             :   }
    3602             : 
    3603             :   /// getChosenSubExpr - Return the subexpression chosen according to the
    3604             :   /// condition.
    3605             :   Expr *getChosenSubExpr() const {
    3606             :     return isConditionTrue() ? getLHS() : getRHS();
    3607             :   }
    3608             : 
    3609             :   Expr *getCond() const { return cast<Expr>(SubExprs[COND]); }
    3610             :   void setCond(Expr *E) { SubExprs[COND] = E; }
    3611             :   Expr *getLHS() const { return cast<Expr>(SubExprs[LHS]); }
    3612             :   void setLHS(Expr *E) { SubExprs[LHS] = E; }
    3613             :   Expr *getRHS() const { return cast<Expr>(SubExprs[RHS]); }
    3614             :   void setRHS(Expr *E) { SubExprs[RHS] = E; }
    3615             : 
    3616             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    3617             :   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
    3618             : 
    3619             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    3620             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    3621             : 
    3622             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    3623             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    3624             : 
    3625             :   static bool classof(const Stmt *T) {
    3626             :     return T->getStmtClass() == ChooseExprClass;
    3627             :   }
    3628             : 
    3629             :   // Iterators
    3630             :   child_range children() {
    3631           0 :     return child_range(&SubExprs[0], &SubExprs[0]+END_EXPR);
    3632             :   }
    3633             : };
    3634             : 
    3635             : /// GNUNullExpr - Implements the GNU __null extension, which is a name
    3636             : /// for a null pointer constant that has integral type (e.g., int or
    3637             : /// long) and is the same size and alignment as a pointer. The __null
    3638             : /// extension is typically only used by system headers, which define
    3639             : /// NULL as __null in C++ rather than using 0 (which is an integer
    3640             : /// that may not match the size of a pointer).
    3641             : class GNUNullExpr : public Expr {
    3642             :   /// TokenLoc - The location of the __null keyword.
    3643             :   SourceLocation TokenLoc;
    3644             : 
    3645             : public:
    3646             :   GNUNullExpr(QualType Ty, SourceLocation Loc)
    3647             :     : Expr(GNUNullExprClass, Ty, VK_RValue, OK_Ordinary, false, false, false,
    3648             :            false),
    3649             :       TokenLoc(Loc) { }
    3650             : 
    3651             :   /// \brief Build an empty GNU __null expression.
    3652             :   explicit GNUNullExpr(EmptyShell Empty) : Expr(GNUNullExprClass, Empty) { }
    3653             : 
    3654             :   /// getTokenLocation - The location of the __null token.
    3655             :   SourceLocation getTokenLocation() const { return TokenLoc; }
    3656             :   void setTokenLocation(SourceLocation L) { TokenLoc = L; }
    3657             : 
    3658             :   SourceLocation getLocStart() const LLVM_READONLY { return TokenLoc; }
    3659             :   SourceLocation getLocEnd() const LLVM_READONLY { return TokenLoc; }
    3660             : 
    3661             :   static bool classof(const Stmt *T) {
    3662             :     return T->getStmtClass() == GNUNullExprClass;
    3663             :   }
    3664             : 
    3665             :   // Iterators
    3666           0 :   child_range children() { return child_range(); }
    3667             : };
    3668             : 
    3669             : /// VAArgExpr, used for the builtin function __builtin_va_arg.
    3670             : class VAArgExpr : public Expr {
    3671             :   Stmt *Val;
    3672             :   TypeSourceInfo *TInfo;
    3673             :   SourceLocation BuiltinLoc, RParenLoc;
    3674             : public:
    3675             :   VAArgExpr(SourceLocation BLoc, Expr* e, TypeSourceInfo *TInfo,
    3676             :             SourceLocation RPLoc, QualType t)
    3677             :     : Expr(VAArgExprClass, t, VK_RValue, OK_Ordinary,
    3678             :            t->isDependentType(), false,
    3679             :            (TInfo->getType()->isInstantiationDependentType() ||
    3680             :             e->isInstantiationDependent()),
    3681             :            (TInfo->getType()->containsUnexpandedParameterPack() ||
    3682             :             e->containsUnexpandedParameterPack())),
    3683             :       Val(e), TInfo(TInfo),
    3684             :       BuiltinLoc(BLoc),
    3685             :       RParenLoc(RPLoc) { }
    3686             : 
    3687             :   /// \brief Create an empty __builtin_va_arg expression.
    3688             :   explicit VAArgExpr(EmptyShell Empty) : Expr(VAArgExprClass, Empty) { }
    3689             : 
    3690             :   const Expr *getSubExpr() const { return cast<Expr>(Val); }
    3691             :   Expr *getSubExpr() { return cast<Expr>(Val); }
    3692             :   void setSubExpr(Expr *E) { Val = E; }
    3693             : 
    3694           0 :   TypeSourceInfo *getWrittenTypeInfo() const { return TInfo; }
    3695             :   void setWrittenTypeInfo(TypeSourceInfo *TI) { TInfo = TI; }
    3696             : 
    3697             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    3698             :   void setBuiltinLoc(SourceLocation L) { BuiltinLoc = L; }
    3699             : 
    3700             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    3701             :   void setRParenLoc(SourceLocation L) { RParenLoc = L; }
    3702             : 
    3703             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    3704             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    3705             : 
    3706             :   static bool classof(const Stmt *T) {
    3707             :     return T->getStmtClass() == VAArgExprClass;
    3708             :   }
    3709             : 
    3710             :   // Iterators
    3711           0 :   child_range children() { return child_range(&Val, &Val+1); }
    3712             : };
    3713             : 
    3714             : /// @brief Describes an C or C++ initializer list.
    3715             : ///
    3716             : /// InitListExpr describes an initializer list, which can be used to
    3717             : /// initialize objects of different types, including
    3718             : /// struct/class/union types, arrays, and vectors. For example:
    3719             : ///
    3720             : /// @code
    3721             : /// struct foo x = { 1, { 2, 3 } };
    3722             : /// @endcode
    3723             : ///
    3724             : /// Prior to semantic analysis, an initializer list will represent the
    3725             : /// initializer list as written by the user, but will have the
    3726             : /// placeholder type "void". This initializer list is called the
    3727             : /// syntactic form of the initializer, and may contain C99 designated
    3728             : /// initializers (represented as DesignatedInitExprs), initializations
    3729             : /// of subobject members without explicit braces, and so on. Clients
    3730             : /// interested in the original syntax of the initializer list should
    3731             : /// use the syntactic form of the initializer list.
    3732             : ///
    3733             : /// After semantic analysis, the initializer list will represent the
    3734             : /// semantic form of the initializer, where the initializations of all
    3735             : /// subobjects are made explicit with nested InitListExpr nodes and
    3736             : /// C99 designators have been eliminated by placing the designated
    3737             : /// initializations into the subobject they initialize. Additionally,
    3738             : /// any "holes" in the initialization, where no initializer has been
    3739             : /// specified for a particular subobject, will be replaced with
    3740             : /// implicitly-generated ImplicitValueInitExpr expressions that
    3741             : /// value-initialize the subobjects. Note, however, that the
    3742             : /// initializer lists may still have fewer initializers than there are
    3743             : /// elements to initialize within the object.
    3744             : ///
    3745             : /// After semantic analysis has completed, given an initializer list,
    3746             : /// method isSemanticForm() returns true if and only if this is the
    3747             : /// semantic form of the initializer list (note: the same AST node
    3748             : /// may at the same time be the syntactic form).
    3749             : /// Given the semantic form of the initializer list, one can retrieve
    3750             : /// the syntactic form of that initializer list (when different)
    3751             : /// using method getSyntacticForm(); the method returns null if applied
    3752             : /// to a initializer list which is already in syntactic form.
    3753             : /// Similarly, given the syntactic form (i.e., an initializer list such
    3754             : /// that isSemanticForm() returns false), one can retrieve the semantic
    3755             : /// form using method getSemanticForm().
    3756             : /// Since many initializer lists have the same syntactic and semantic forms,
    3757             : /// getSyntacticForm() may return NULL, indicating that the current
    3758             : /// semantic initializer list also serves as its syntactic form.
    3759             : class InitListExpr : public Expr {
    3760             :   // FIXME: Eliminate this vector in favor of ASTContext allocation
    3761             :   typedef ASTVector<Stmt *> InitExprsTy;
    3762             :   InitExprsTy InitExprs;
    3763             :   SourceLocation LBraceLoc, RBraceLoc;
    3764             : 
    3765             :   /// The alternative form of the initializer list (if it exists).
    3766             :   /// The int part of the pair stores whether this initializer list is
    3767             :   /// in semantic form. If not null, the pointer points to:
    3768             :   ///   - the syntactic form, if this is in semantic form;
    3769             :   ///   - the semantic form, if this is in syntactic form.
    3770             :   llvm::PointerIntPair<InitListExpr *, 1, bool> AltForm;
    3771             : 
    3772             :   /// \brief Either:
    3773             :   ///  If this initializer list initializes an array with more elements than
    3774             :   ///  there are initializers in the list, specifies an expression to be used
    3775             :   ///  for value initialization of the rest of the elements.
    3776             :   /// Or
    3777             :   ///  If this initializer list initializes a union, specifies which
    3778             :   ///  field within the union will be initialized.
    3779             :   llvm::PointerUnion<Expr *, FieldDecl *> ArrayFillerOrUnionFieldInit;
    3780             : 
    3781             : public:
    3782             :   InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
    3783             :                ArrayRef<Expr*> initExprs, SourceLocation rbraceloc);
    3784             : 
    3785             :   /// \brief Build an empty initializer list.
    3786             :   explicit InitListExpr(EmptyShell Empty)
    3787             :     : Expr(InitListExprClass, Empty) { }
    3788             : 
    3789             :   unsigned getNumInits() const { return InitExprs.size(); }
    3790             : 
    3791             :   /// \brief Retrieve the set of initializers.
    3792             :   Expr **getInits() { return reinterpret_cast<Expr **>(InitExprs.data()); }
    3793             : 
    3794             :   const Expr *getInit(unsigned Init) const {
    3795             :     assert(Init < getNumInits() && "Initializer access out of range!");
    3796             :     return cast_or_null<Expr>(InitExprs[Init]);
    3797             :   }
    3798             : 
    3799             :   Expr *getInit(unsigned Init) {
    3800             :     assert(Init < getNumInits() && "Initializer access out of range!");
    3801             :     return cast_or_null<Expr>(InitExprs[Init]);
    3802             :   }
    3803             : 
    3804             :   void setInit(unsigned Init, Expr *expr) {
    3805             :     assert(Init < getNumInits() && "Initializer access out of range!");
    3806             :     InitExprs[Init] = expr;
    3807             : 
    3808             :     if (expr) {
    3809             :       ExprBits.TypeDependent |= expr->isTypeDependent();
    3810             :       ExprBits.ValueDependent |= expr->isValueDependent();
    3811             :       ExprBits.InstantiationDependent |= expr->isInstantiationDependent();
    3812             :       ExprBits.ContainsUnexpandedParameterPack |=
    3813             :           expr->containsUnexpandedParameterPack();
    3814             :     }
    3815             :   }
    3816             : 
    3817             :   /// \brief Reserve space for some number of initializers.
    3818             :   void reserveInits(const ASTContext &C, unsigned NumInits);
    3819             : 
    3820             :   /// @brief Specify the number of initializers
    3821             :   ///
    3822             :   /// If there are more than @p NumInits initializers, the remaining
    3823             :   /// initializers will be destroyed. If there are fewer than @p
    3824             :   /// NumInits initializers, NULL expressions will be added for the
    3825             :   /// unknown initializers.
    3826             :   void resizeInits(const ASTContext &Context, unsigned NumInits);
    3827             : 
    3828             :   /// @brief Updates the initializer at index @p Init with the new
    3829             :   /// expression @p expr, and returns the old expression at that
    3830             :   /// location.
    3831             :   ///
    3832             :   /// When @p Init is out of range for this initializer list, the
    3833             :   /// initializer list will be extended with NULL expressions to
    3834             :   /// accommodate the new entry.
    3835             :   Expr *updateInit(const ASTContext &C, unsigned Init, Expr *expr);
    3836             : 
    3837             :   /// \brief If this initializer list initializes an array with more elements
    3838             :   /// than there are initializers in the list, specifies an expression to be
    3839             :   /// used for value initialization of the rest of the elements.
    3840             :   Expr *getArrayFiller() {
    3841             :     return ArrayFillerOrUnionFieldInit.dyn_cast<Expr *>();
    3842             :   }
    3843             :   const Expr *getArrayFiller() const {
    3844             :     return const_cast<InitListExpr *>(this)->getArrayFiller();
    3845             :   }
    3846             :   void setArrayFiller(Expr *filler);
    3847             : 
    3848             :   /// \brief Return true if this is an array initializer and its array "filler"
    3849             :   /// has been set.
    3850             :   bool hasArrayFiller() const { return getArrayFiller(); }
    3851             : 
    3852             :   /// \brief If this initializes a union, specifies which field in the
    3853             :   /// union to initialize.
    3854             :   ///
    3855             :   /// Typically, this field is the first named field within the
    3856             :   /// union. However, a designated initializer can specify the
    3857             :   /// initialization of a different field within the union.
    3858             :   FieldDecl *getInitializedFieldInUnion() {
    3859             :     return ArrayFillerOrUnionFieldInit.dyn_cast<FieldDecl *>();
    3860             :   }
    3861             :   const FieldDecl *getInitializedFieldInUnion() const {
    3862             :     return const_cast<InitListExpr *>(this)->getInitializedFieldInUnion();
    3863             :   }
    3864             :   void setInitializedFieldInUnion(FieldDecl *FD) {
    3865             :     assert((FD == nullptr
    3866             :             || getInitializedFieldInUnion() == nullptr
    3867             :             || getInitializedFieldInUnion() == FD)
    3868             :            && "Only one field of a union may be initialized at a time!");
    3869             :     ArrayFillerOrUnionFieldInit = FD;
    3870             :   }
    3871             : 
    3872             :   // Explicit InitListExpr's originate from source code (and have valid source
    3873             :   // locations). Implicit InitListExpr's are created by the semantic analyzer.
    3874             :   bool isExplicit() {
    3875             :     return LBraceLoc.isValid() && RBraceLoc.isValid();
    3876             :   }
    3877             : 
    3878             :   // Is this an initializer for an array of characters, initialized by a string
    3879             :   // literal or an @encode?
    3880             :   bool isStringLiteralInit() const;
    3881             : 
    3882             :   SourceLocation getLBraceLoc() const { return LBraceLoc; }
    3883             :   void setLBraceLoc(SourceLocation Loc) { LBraceLoc = Loc; }
    3884             :   SourceLocation getRBraceLoc() const { return RBraceLoc; }
    3885             :   void setRBraceLoc(SourceLocation Loc) { RBraceLoc = Loc; }
    3886             : 
    3887           0 :   bool isSemanticForm() const { return AltForm.getInt(); }
    3888             :   InitListExpr *getSemanticForm() const {
    3889           0 :     return isSemanticForm() ? nullptr : AltForm.getPointer();
    3890             :   }
    3891             :   InitListExpr *getSyntacticForm() const {
    3892           0 :     return isSemanticForm() ? AltForm.getPointer() : nullptr;
    3893             :   }
    3894             : 
    3895             :   void setSyntacticForm(InitListExpr *Init) {
    3896             :     AltForm.setPointer(Init);
    3897             :     AltForm.setInt(true);
    3898             :     Init->AltForm.setPointer(this);
    3899             :     Init->AltForm.setInt(false);
    3900             :   }
    3901             : 
    3902             :   bool hadArrayRangeDesignator() const {
    3903             :     return InitListExprBits.HadArrayRangeDesignator != 0;
    3904             :   }
    3905             :   void sawArrayRangeDesignator(bool ARD = true) {
    3906             :     InitListExprBits.HadArrayRangeDesignator = ARD;
    3907             :   }
    3908             : 
    3909             :   SourceLocation getLocStart() const LLVM_READONLY;
    3910             :   SourceLocation getLocEnd() const LLVM_READONLY;
    3911             : 
    3912             :   static bool classof(const Stmt *T) {
    3913             :     return T->getStmtClass() == InitListExprClass;
    3914             :   }
    3915             : 
    3916             :   // Iterators
    3917             :   child_range children() {
    3918             :     // FIXME: This does not include the array filler expression.
    3919           0 :     if (InitExprs.empty()) return child_range();
    3920           0 :     return child_range(&InitExprs[0], &InitExprs[0] + InitExprs.size());
    3921           0 :   }
    3922             : 
    3923             :   typedef InitExprsTy::iterator iterator;
    3924             :   typedef InitExprsTy::const_iterator const_iterator;
    3925             :   typedef InitExprsTy::reverse_iterator reverse_iterator;
    3926             :   typedef InitExprsTy::const_reverse_iterator const_reverse_iterator;
    3927             : 
    3928             :   iterator begin() { return InitExprs.begin(); }
    3929             :   const_iterator begin() const { return InitExprs.begin(); }
    3930             :   iterator end() { return InitExprs.end(); }
    3931             :   const_iterator end() const { return InitExprs.end(); }
    3932             :   reverse_iterator rbegin() { return InitExprs.rbegin(); }
    3933             :   const_reverse_iterator rbegin() const { return InitExprs.rbegin(); }
    3934             :   reverse_iterator rend() { return InitExprs.rend(); }
    3935             :   const_reverse_iterator rend() const { return InitExprs.rend(); }
    3936             : 
    3937             :   friend class ASTStmtReader;
    3938             :   friend class ASTStmtWriter;
    3939             : };
    3940             : 
    3941             : /// @brief Represents a C99 designated initializer expression.
    3942             : ///
    3943             : /// A designated initializer expression (C99 6.7.8) contains one or
    3944             : /// more designators (which can be field designators, array
    3945             : /// designators, or GNU array-range designators) followed by an
    3946             : /// expression that initializes the field or element(s) that the
    3947             : /// designators refer to. For example, given:
    3948             : ///
    3949             : /// @code
    3950             : /// struct point {
    3951             : ///   double x;
    3952             : ///   double y;
    3953             : /// };
    3954             : /// struct point ptarray[10] = { [2].y = 1.0, [2].x = 2.0, [0].x = 1.0 };
    3955             : /// @endcode
    3956             : ///
    3957             : /// The InitListExpr contains three DesignatedInitExprs, the first of
    3958             : /// which covers @c [2].y=1.0. This DesignatedInitExpr will have two
    3959             : /// designators, one array designator for @c [2] followed by one field
    3960             : /// designator for @c .y. The initialization expression will be 1.0.
    3961             : class DesignatedInitExpr : public Expr {
    3962             : public:
    3963             :   /// \brief Forward declaration of the Designator class.
    3964             :   class Designator;
    3965             : 
    3966             : private:
    3967             :   /// The location of the '=' or ':' prior to the actual initializer
    3968             :   /// expression.
    3969             :   SourceLocation EqualOrColonLoc;
    3970             : 
    3971             :   /// Whether this designated initializer used the GNU deprecated
    3972             :   /// syntax rather than the C99 '=' syntax.
    3973             :   bool GNUSyntax : 1;
    3974             : 
    3975             :   /// The number of designators in this initializer expression.
    3976             :   unsigned NumDesignators : 15;
    3977             : 
    3978             :   /// The number of subexpressions of this initializer expression,
    3979             :   /// which contains both the initializer and any additional
    3980             :   /// expressions used by array and array-range designators.
    3981             :   unsigned NumSubExprs : 16;
    3982             : 
    3983             :   /// \brief The designators in this designated initialization
    3984             :   /// expression.
    3985             :   Designator *Designators;
    3986             : 
    3987             : 
    3988             :   DesignatedInitExpr(const ASTContext &C, QualType Ty, unsigned NumDesignators,
    3989             :                      const Designator *Designators,
    3990             :                      SourceLocation EqualOrColonLoc, bool GNUSyntax,
    3991             :                      ArrayRef<Expr*> IndexExprs, Expr *Init);
    3992             : 
    3993             :   explicit DesignatedInitExpr(unsigned NumSubExprs)
    3994             :     : Expr(DesignatedInitExprClass, EmptyShell()),
    3995             :       NumDesignators(0), NumSubExprs(NumSubExprs), Designators(nullptr) { }
    3996             : 
    3997             : public:
    3998             :   /// A field designator, e.g., ".x".
    3999             :   struct FieldDesignator {
    4000             :     /// Refers to the field that is being initialized. The low bit
    4001             :     /// of this field determines whether this is actually a pointer
    4002             :     /// to an IdentifierInfo (if 1) or a FieldDecl (if 0). When
    4003             :     /// initially constructed, a field designator will store an
    4004             :     /// IdentifierInfo*. After semantic analysis has resolved that
    4005             :     /// name, the field designator will instead store a FieldDecl*.
    4006             :     uintptr_t NameOrField;
    4007             : 
    4008             :     /// The location of the '.' in the designated initializer.
    4009             :     unsigned DotLoc;
    4010             : 
    4011             :     /// The location of the field name in the designated initializer.
    4012             :     unsigned FieldLoc;
    4013             :   };
    4014             : 
    4015             :   /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
    4016             :   struct ArrayOrRangeDesignator {
    4017             :     /// Location of the first index expression within the designated
    4018             :     /// initializer expression's list of subexpressions.
    4019             :     unsigned Index;
    4020             :     /// The location of the '[' starting the array range designator.
    4021             :     unsigned LBracketLoc;
    4022             :     /// The location of the ellipsis separating the start and end
    4023             :     /// indices. Only valid for GNU array-range designators.
    4024             :     unsigned EllipsisLoc;
    4025             :     /// The location of the ']' terminating the array range designator.
    4026             :     unsigned RBracketLoc;
    4027             :   };
    4028             : 
    4029             :   /// @brief Represents a single C99 designator.
    4030             :   ///
    4031             :   /// @todo This class is infuriatingly similar to clang::Designator,
    4032             :   /// but minor differences (storing indices vs. storing pointers)
    4033             :   /// keep us from reusing it. Try harder, later, to rectify these
    4034             :   /// differences.
    4035             :   class Designator {
    4036             :     /// @brief The kind of designator this describes.
    4037             :     enum {
    4038             :       FieldDesignator,
    4039             :       ArrayDesignator,
    4040             :       ArrayRangeDesignator
    4041             :     } Kind;
    4042             : 
    4043             :     union {
    4044             :       /// A field designator, e.g., ".x".
    4045             :       struct FieldDesignator Field;
    4046             :       /// An array or GNU array-range designator, e.g., "[9]" or "[10..15]".
    4047             :       struct ArrayOrRangeDesignator ArrayOrRange;
    4048             :     };
    4049             :     friend class DesignatedInitExpr;
    4050             : 
    4051             :   public:
    4052             :     Designator() {}
    4053             : 
    4054             :     /// @brief Initializes a field designator.
    4055             :     Designator(const IdentifierInfo *FieldName, SourceLocation DotLoc,
    4056             :                SourceLocation FieldLoc)
    4057             :       : Kind(FieldDesignator) {
    4058             :       Field.NameOrField = reinterpret_cast<uintptr_t>(FieldName) | 0x01;
    4059             :       Field.DotLoc = DotLoc.getRawEncoding();
    4060             :       Field.FieldLoc = FieldLoc.getRawEncoding();
    4061             :     }
    4062             : 
    4063             :     /// @brief Initializes an array designator.
    4064             :     Designator(unsigned Index, SourceLocation LBracketLoc,
    4065             :                SourceLocation RBracketLoc)
    4066             :       : Kind(ArrayDesignator) {
    4067             :       ArrayOrRange.Index = Index;
    4068             :       ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
    4069             :       ArrayOrRange.EllipsisLoc = SourceLocation().getRawEncoding();
    4070             :       ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    4071             :     }
    4072             : 
    4073             :     /// @brief Initializes a GNU array-range designator.
    4074             :     Designator(unsigned Index, SourceLocation LBracketLoc,
    4075             :                SourceLocation EllipsisLoc, SourceLocation RBracketLoc)
    4076             :       : Kind(ArrayRangeDesignator) {
    4077             :       ArrayOrRange.Index = Index;
    4078             :       ArrayOrRange.LBracketLoc = LBracketLoc.getRawEncoding();
    4079             :       ArrayOrRange.EllipsisLoc = EllipsisLoc.getRawEncoding();
    4080             :       ArrayOrRange.RBracketLoc = RBracketLoc.getRawEncoding();
    4081             :     }
    4082             : 
    4083             :     bool isFieldDesignator() const { return Kind == FieldDesignator; }
    4084             :     bool isArrayDesignator() const { return Kind == ArrayDesignator; }
    4085             :     bool isArrayRangeDesignator() const { return Kind == ArrayRangeDesignator; }
    4086             : 
    4087             :     IdentifierInfo *getFieldName() const;
    4088             : 
    4089             :     FieldDecl *getField() const {
    4090             :       assert(Kind == FieldDesignator && "Only valid on a field designator");
    4091             :       if (Field.NameOrField & 0x01)
    4092             :         return nullptr;
    4093             :       else
    4094             :         return reinterpret_cast<FieldDecl *>(Field.NameOrField);
    4095             :     }
    4096             : 
    4097             :     void setField(FieldDecl *FD) {
    4098             :       assert(Kind == FieldDesignator && "Only valid on a field designator");
    4099             :       Field.NameOrField = reinterpret_cast<uintptr_t>(FD);
    4100             :     }
    4101             : 
    4102             :     SourceLocation getDotLoc() const {
    4103             :       assert(Kind == FieldDesignator && "Only valid on a field designator");
    4104             :       return SourceLocation::getFromRawEncoding(Field.DotLoc);
    4105             :     }
    4106             : 
    4107             :     SourceLocation getFieldLoc() const {
    4108             :       assert(Kind == FieldDesignator && "Only valid on a field designator");
    4109             :       return SourceLocation::getFromRawEncoding(Field.FieldLoc);
    4110             :     }
    4111             : 
    4112             :     SourceLocation getLBracketLoc() const {
    4113             :       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
    4114             :              "Only valid on an array or array-range designator");
    4115             :       return SourceLocation::getFromRawEncoding(ArrayOrRange.LBracketLoc);
    4116             :     }
    4117             : 
    4118             :     SourceLocation getRBracketLoc() const {
    4119             :       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
    4120             :              "Only valid on an array or array-range designator");
    4121             :       return SourceLocation::getFromRawEncoding(ArrayOrRange.RBracketLoc);
    4122             :     }
    4123             : 
    4124             :     SourceLocation getEllipsisLoc() const {
    4125             :       assert(Kind == ArrayRangeDesignator &&
    4126             :              "Only valid on an array-range designator");
    4127             :       return SourceLocation::getFromRawEncoding(ArrayOrRange.EllipsisLoc);
    4128             :     }
    4129             : 
    4130             :     unsigned getFirstExprIndex() const {
    4131             :       assert((Kind == ArrayDesignator || Kind == ArrayRangeDesignator) &&
    4132             :              "Only valid on an array or array-range designator");
    4133             :       return ArrayOrRange.Index;
    4134             :     }
    4135             : 
    4136             :     SourceLocation getLocStart() const LLVM_READONLY {
    4137             :       if (Kind == FieldDesignator)
    4138             :         return getDotLoc().isInvalid()? getFieldLoc() : getDotLoc();
    4139             :       else
    4140             :         return getLBracketLoc();
    4141             :     }
    4142             :     SourceLocation getLocEnd() const LLVM_READONLY {
    4143             :       return Kind == FieldDesignator ? getFieldLoc() : getRBracketLoc();
    4144             :     }
    4145             :     SourceRange getSourceRange() const LLVM_READONLY {
    4146             :       return SourceRange(getLocStart(), getLocEnd());
    4147             :     }
    4148             :   };
    4149             : 
    4150             :   static DesignatedInitExpr *Create(const ASTContext &C,
    4151             :                                     Designator *Designators,
    4152             :                                     unsigned NumDesignators,
    4153             :                                     ArrayRef<Expr*> IndexExprs,
    4154             :                                     SourceLocation EqualOrColonLoc,
    4155             :                                     bool GNUSyntax, Expr *Init);
    4156             : 
    4157             :   static DesignatedInitExpr *CreateEmpty(const ASTContext &C,
    4158             :                                          unsigned NumIndexExprs);
    4159             : 
    4160             :   /// @brief Returns the number of designators in this initializer.
    4161             :   unsigned size() const { return NumDesignators; }
    4162             : 
    4163             :   // Iterator access to the designators.
    4164             :   typedef Designator *designators_iterator;
    4165             :   designators_iterator designators_begin() { return Designators; }
    4166             :   designators_iterator designators_end() {
    4167             :     return Designators + NumDesignators;
    4168             :   }
    4169             : 
    4170             :   typedef const Designator *const_designators_iterator;
    4171             :   const_designators_iterator designators_begin() const { return Designators; }
    4172             :   const_designators_iterator designators_end() const {
    4173             :     return Designators + NumDesignators;
    4174             :   }
    4175             : 
    4176             :   typedef llvm::iterator_range<designators_iterator> designators_range;
    4177             :   designators_range designators() {
    4178             :     return designators_range(designators_begin(), designators_end());
    4179             :   }
    4180             : 
    4181             :   typedef llvm::iterator_range<const_designators_iterator>
    4182             :           designators_const_range;
    4183             :   designators_const_range designators() const {
    4184             :     return designators_const_range(designators_begin(), designators_end());
    4185             :   }
    4186             : 
    4187             :   typedef std::reverse_iterator<designators_iterator>
    4188             :           reverse_designators_iterator;
    4189             :   reverse_designators_iterator designators_rbegin() {
    4190             :     return reverse_designators_iterator(designators_end());
    4191             :   }
    4192             :   reverse_designators_iterator designators_rend() {
    4193             :     return reverse_designators_iterator(designators_begin());
    4194             :   }
    4195             : 
    4196             :   typedef std::reverse_iterator<const_designators_iterator>
    4197             :           const_reverse_designators_iterator;
    4198             :   const_reverse_designators_iterator designators_rbegin() const {
    4199             :     return const_reverse_designators_iterator(designators_end());
    4200             :   }
    4201             :   const_reverse_designators_iterator designators_rend() const {
    4202             :     return const_reverse_designators_iterator(designators_begin());
    4203             :   }
    4204             : 
    4205             :   Designator *getDesignator(unsigned Idx) { return &designators_begin()[Idx]; }
    4206             : 
    4207             :   void setDesignators(const ASTContext &C, const Designator *Desigs,
    4208             :                       unsigned NumDesigs);
    4209             : 
    4210             :   Expr *getArrayIndex(const Designator &D) const;
    4211             :   Expr *getArrayRangeStart(const Designator &D) const;
    4212             :   Expr *getArrayRangeEnd(const Designator &D) const;
    4213             : 
    4214             :   /// @brief Retrieve the location of the '=' that precedes the
    4215             :   /// initializer value itself, if present.
    4216             :   SourceLocation getEqualOrColonLoc() const { return EqualOrColonLoc; }
    4217             :   void setEqualOrColonLoc(SourceLocation L) { EqualOrColonLoc = L; }
    4218             : 
    4219             :   /// @brief Determines whether this designated initializer used the
    4220             :   /// deprecated GNU syntax for designated initializers.
    4221             :   bool usesGNUSyntax() const { return GNUSyntax; }
    4222             :   void setGNUSyntax(bool GNU) { GNUSyntax = GNU; }
    4223             : 
    4224             :   /// @brief Retrieve the initializer value.
    4225             :   Expr *getInit() const {
    4226             :     return cast<Expr>(*const_cast<DesignatedInitExpr*>(this)->child_begin());
    4227             :   }
    4228             : 
    4229             :   void setInit(Expr *init) {
    4230             :     *child_begin() = init;
    4231             :   }
    4232             : 
    4233             :   /// \brief Retrieve the total number of subexpressions in this
    4234             :   /// designated initializer expression, including the actual
    4235             :   /// initialized value and any expressions that occur within array
    4236             :   /// and array-range designators.
    4237             :   unsigned getNumSubExprs() const { return NumSubExprs; }
    4238             : 
    4239             :   Expr *getSubExpr(unsigned Idx) const {
    4240             :     assert(Idx < NumSubExprs && "Subscript out of range");
    4241             :     return cast<Expr>(reinterpret_cast<Stmt *const *>(this + 1)[Idx]);
    4242             :   }
    4243             : 
    4244             :   void setSubExpr(unsigned Idx, Expr *E) {
    4245             :     assert(Idx < NumSubExprs && "Subscript out of range");
    4246             :     reinterpret_cast<Stmt **>(this + 1)[Idx] = E;
    4247             :   }
    4248             : 
    4249             :   /// \brief Replaces the designator at index @p Idx with the series
    4250             :   /// of designators in [First, Last).
    4251             :   void ExpandDesignator(const ASTContext &C, unsigned Idx,
    4252             :                         const Designator *First, const Designator *Last);
    4253             : 
    4254             :   SourceRange getDesignatorsSourceRange() const;
    4255             : 
    4256             :   SourceLocation getLocStart() const LLVM_READONLY;
    4257             :   SourceLocation getLocEnd() const LLVM_READONLY;
    4258             : 
    4259             :   static bool classof(const Stmt *T) {
    4260             :     return T->getStmtClass() == DesignatedInitExprClass;
    4261             :   }
    4262             : 
    4263             :   // Iterators
    4264             :   child_range children() {
    4265           0 :     Stmt **begin = reinterpret_cast<Stmt**>(this + 1);
    4266           0 :     return child_range(begin, begin + NumSubExprs);
    4267             :   }
    4268             : };
    4269             : 
    4270             : /// \brief Represents a place-holder for an object not to be initialized by
    4271             : /// anything.
    4272             : ///
    4273             : /// This only makes sense when it appears as part of an updater of a
    4274             : /// DesignatedInitUpdateExpr (see below). The base expression of a DIUE
    4275             : /// initializes a big object, and the NoInitExpr's mark the spots within the
    4276             : /// big object not to be overwritten by the updater.
    4277             : ///
    4278             : /// \see DesignatedInitUpdateExpr
    4279             : class NoInitExpr : public Expr {
    4280             : public:
    4281             :   explicit NoInitExpr(QualType ty)
    4282             :     : Expr(NoInitExprClass, ty, VK_RValue, OK_Ordinary,
    4283             :            false, false, ty->isInstantiationDependentType(), false) { }
    4284             : 
    4285             :   explicit NoInitExpr(EmptyShell Empty)
    4286             :     : Expr(NoInitExprClass, Empty) { }
    4287             : 
    4288             :   static bool classof(const Stmt *T) {
    4289             :     return T->getStmtClass() == NoInitExprClass;
    4290             :   }
    4291             : 
    4292             :   SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
    4293             :   SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
    4294             : 
    4295             :   // Iterators
    4296           0 :   child_range children() { return child_range(); }
    4297             : };
    4298             : 
    4299             : // In cases like:
    4300             : //   struct Q { int a, b, c; };
    4301             : //   Q *getQ();
    4302             : //   void foo() {
    4303             : //     struct A { Q q; } a = { *getQ(), .q.b = 3 };
    4304             : //   }
    4305             : //
    4306             : // We will have an InitListExpr for a, with type A, and then a
    4307             : // DesignatedInitUpdateExpr for "a.q" with type Q. The "base" for this DIUE
    4308             : // is the call expression *getQ(); the "updater" for the DIUE is ".q.b = 3"
    4309             : //
    4310             : class DesignatedInitUpdateExpr : public Expr {
    4311             :   // BaseAndUpdaterExprs[0] is the base expression;
    4312             :   // BaseAndUpdaterExprs[1] is an InitListExpr overwriting part of the base.
    4313             :   Stmt *BaseAndUpdaterExprs[2];
    4314             : 
    4315             : public:
    4316             :   DesignatedInitUpdateExpr(const ASTContext &C, SourceLocation lBraceLoc,
    4317             :                            Expr *baseExprs, SourceLocation rBraceLoc);
    4318             : 
    4319             :   explicit DesignatedInitUpdateExpr(EmptyShell Empty)
    4320             :     : Expr(DesignatedInitUpdateExprClass, Empty) { }
    4321             : 
    4322             :   SourceLocation getLocStart() const LLVM_READONLY;
    4323             :   SourceLocation getLocEnd() const LLVM_READONLY;
    4324             : 
    4325             :   static bool classof(const Stmt *T) {
    4326             :     return T->getStmtClass() == DesignatedInitUpdateExprClass;
    4327             :   }
    4328             : 
    4329             :   Expr *getBase() const { return cast<Expr>(BaseAndUpdaterExprs[0]); }
    4330             :   void setBase(Expr *Base) { BaseAndUpdaterExprs[0] = Base; }
    4331             : 
    4332             :   InitListExpr *getUpdater() const {
    4333             :     return cast<InitListExpr>(BaseAndUpdaterExprs[1]);
    4334             :   }
    4335             :   void setUpdater(Expr *Updater) { BaseAndUpdaterExprs[1] = Updater; }
    4336             : 
    4337             :   // Iterators
    4338             :   // children = the base and the updater
    4339             :   child_range children() {
    4340           0 :     return child_range(&BaseAndUpdaterExprs[0], &BaseAndUpdaterExprs[0] + 2);
    4341             :   }
    4342             : };
    4343             : 
    4344             : /// \brief Represents an implicitly-generated value initialization of
    4345             : /// an object of a given type.
    4346             : ///
    4347             : /// Implicit value initializations occur within semantic initializer
    4348             : /// list expressions (InitListExpr) as placeholders for subobject
    4349             : /// initializations not explicitly specified by the user.
    4350             : ///
    4351             : /// \see InitListExpr
    4352             : class ImplicitValueInitExpr : public Expr {
    4353             : public:
    4354             :   explicit ImplicitValueInitExpr(QualType ty)
    4355             :     : Expr(ImplicitValueInitExprClass, ty, VK_RValue, OK_Ordinary,
    4356             :            false, false, ty->isInstantiationDependentType(), false) { }
    4357             : 
    4358             :   /// \brief Construct an empty implicit value initialization.
    4359             :   explicit ImplicitValueInitExpr(EmptyShell Empty)
    4360             :     : Expr(ImplicitValueInitExprClass, Empty) { }
    4361             : 
    4362             :   static bool classof(const Stmt *T) {
    4363             :     return T->getStmtClass() == ImplicitValueInitExprClass;
    4364             :   }
    4365             : 
    4366             :   SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
    4367             :   SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
    4368             : 
    4369             :   // Iterators
    4370           0 :   child_range children() { return child_range(); }
    4371             : };
    4372             : 
    4373             : 
    4374             : class ParenListExpr : public Expr {
    4375             :   Stmt **Exprs;
    4376             :   unsigned NumExprs;
    4377             :   SourceLocation LParenLoc, RParenLoc;
    4378             : 
    4379             : public:
    4380             :   ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
    4381             :                 ArrayRef<Expr*> exprs, SourceLocation rparenloc);
    4382             : 
    4383             :   /// \brief Build an empty paren list.
    4384             :   explicit ParenListExpr(EmptyShell Empty) : Expr(ParenListExprClass, Empty) { }
    4385             : 
    4386             :   unsigned getNumExprs() const { return NumExprs; }
    4387             : 
    4388             :   const Expr* getExpr(unsigned Init) const {
    4389             :     assert(Init < getNumExprs() && "Initializer access out of range!");
    4390             :     return cast_or_null<Expr>(Exprs[Init]);
    4391             :   }
    4392             : 
    4393             :   Expr* getExpr(unsigned Init) {
    4394             :     assert(Init < getNumExprs() && "Initializer access out of range!");
    4395             :     return cast_or_null<Expr>(Exprs[Init]);
    4396             :   }
    4397             : 
    4398             :   Expr **getExprs() { return reinterpret_cast<Expr **>(Exprs); }
    4399             : 
    4400             :   SourceLocation getLParenLoc() const { return LParenLoc; }
    4401             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    4402             : 
    4403             :   SourceLocation getLocStart() const LLVM_READONLY { return LParenLoc; }
    4404             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    4405             : 
    4406             :   static bool classof(const Stmt *T) {
    4407             :     return T->getStmtClass() == ParenListExprClass;
    4408             :   }
    4409             : 
    4410             :   // Iterators
    4411             :   child_range children() {
    4412           0 :     return child_range(&Exprs[0], &Exprs[0]+NumExprs);
    4413             :   }
    4414             : 
    4415             :   friend class ASTStmtReader;
    4416             :   friend class ASTStmtWriter;
    4417             : };
    4418             : 
    4419             : 
    4420             : /// \brief Represents a C11 generic selection.
    4421             : ///
    4422             : /// A generic selection (C11 6.5.1.1) contains an unevaluated controlling
    4423             : /// expression, followed by one or more generic associations.  Each generic
    4424             : /// association specifies a type name and an expression, or "default" and an
    4425             : /// expression (in which case it is known as a default generic association).
    4426             : /// The type and value of the generic selection are identical to those of its
    4427             : /// result expression, which is defined as the expression in the generic
    4428             : /// association with a type name that is compatible with the type of the
    4429             : /// controlling expression, or the expression in the default generic association
    4430             : /// if no types are compatible.  For example:
    4431             : ///
    4432             : /// @code
    4433             : /// _Generic(X, double: 1, float: 2, default: 3)
    4434             : /// @endcode
    4435             : ///
    4436             : /// The above expression evaluates to 1 if 1.0 is substituted for X, 2 if 1.0f
    4437             : /// or 3 if "hello".
    4438             : ///
    4439             : /// As an extension, generic selections are allowed in C++, where the following
    4440             : /// additional semantics apply:
    4441             : ///
    4442             : /// Any generic selection whose controlling expression is type-dependent or
    4443             : /// which names a dependent type in its association list is result-dependent,
    4444             : /// which means that the choice of result expression is dependent.
    4445             : /// Result-dependent generic associations are both type- and value-dependent.
    4446             : class GenericSelectionExpr : public Expr {
    4447             :   enum { CONTROLLING, END_EXPR };
    4448             :   TypeSourceInfo **AssocTypes;
    4449             :   Stmt **SubExprs;
    4450             :   unsigned NumAssocs, ResultIndex;
    4451             :   SourceLocation GenericLoc, DefaultLoc, RParenLoc;
    4452             : 
    4453             : public:
    4454             :   GenericSelectionExpr(const ASTContext &Context,
    4455             :                        SourceLocation GenericLoc, Expr *ControllingExpr,
    4456             :                        ArrayRef<TypeSourceInfo*> AssocTypes,
    4457             :                        ArrayRef<Expr*> AssocExprs,
    4458             :                        SourceLocation DefaultLoc, SourceLocation RParenLoc,
    4459             :                        bool ContainsUnexpandedParameterPack,
    4460             :                        unsigned ResultIndex);
    4461             : 
    4462             :   /// This constructor is used in the result-dependent case.
    4463             :   GenericSelectionExpr(const ASTContext &Context,
    4464             :                        SourceLocation GenericLoc, Expr *ControllingExpr,
    4465             :                        ArrayRef<TypeSourceInfo*> AssocTypes,
    4466             :                        ArrayRef<Expr*> AssocExprs,
    4467             :                        SourceLocation DefaultLoc, SourceLocation RParenLoc,
    4468             :                        bool ContainsUnexpandedParameterPack);
    4469             : 
    4470             :   explicit GenericSelectionExpr(EmptyShell Empty)
    4471             :     : Expr(GenericSelectionExprClass, Empty) { }
    4472             : 
    4473           0 :   unsigned getNumAssocs() const { return NumAssocs; }
    4474             : 
    4475             :   SourceLocation getGenericLoc() const { return GenericLoc; }
    4476             :   SourceLocation getDefaultLoc() const { return DefaultLoc; }
    4477             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    4478             : 
    4479             :   const Expr *getAssocExpr(unsigned i) const {
    4480             :     return cast<Expr>(SubExprs[END_EXPR+i]);
    4481             :   }
    4482           0 :   Expr *getAssocExpr(unsigned i) { return cast<Expr>(SubExprs[END_EXPR+i]); }
    4483             : 
    4484             :   const TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) const {
    4485             :     return AssocTypes[i];
    4486             :   }
    4487           0 :   TypeSourceInfo *getAssocTypeSourceInfo(unsigned i) { return AssocTypes[i]; }
    4488             : 
    4489             :   QualType getAssocType(unsigned i) const {
    4490             :     if (const TypeSourceInfo *TS = getAssocTypeSourceInfo(i))
    4491             :       return TS->getType();
    4492             :     else
    4493             :       return QualType();
    4494             :   }
    4495             : 
    4496             :   const Expr *getControllingExpr() const {
    4497             :     return cast<Expr>(SubExprs[CONTROLLING]);
    4498             :   }
    4499           0 :   Expr *getControllingExpr() { return cast<Expr>(SubExprs[CONTROLLING]); }
    4500             : 
    4501             :   /// Whether this generic selection is result-dependent.
    4502             :   bool isResultDependent() const { return ResultIndex == -1U; }
    4503             : 
    4504             :   /// The zero-based index of the result expression's generic association in
    4505             :   /// the generic selection's association list.  Defined only if the
    4506             :   /// generic selection is not result-dependent.
    4507             :   unsigned getResultIndex() const {
    4508             :     assert(!isResultDependent() && "Generic selection is result-dependent");
    4509             :     return ResultIndex;
    4510             :   }
    4511             : 
    4512             :   /// The generic selection's result expression.  Defined only if the
    4513             :   /// generic selection is not result-dependent.
    4514             :   const Expr *getResultExpr() const { return getAssocExpr(getResultIndex()); }
    4515             :   Expr *getResultExpr() { return getAssocExpr(getResultIndex()); }
    4516             : 
    4517             :   SourceLocation getLocStart() const LLVM_READONLY { return GenericLoc; }
    4518             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    4519             : 
    4520             :   static bool classof(const Stmt *T) {
    4521             :     return T->getStmtClass() == GenericSelectionExprClass;
    4522             :   }
    4523             : 
    4524             :   child_range children() {
    4525             :     return child_range(SubExprs, SubExprs+END_EXPR+NumAssocs);
    4526             :   }
    4527             : 
    4528             :   friend class ASTStmtReader;
    4529             : };
    4530             : 
    4531             : //===----------------------------------------------------------------------===//
    4532             : // Clang Extensions
    4533             : //===----------------------------------------------------------------------===//
    4534             : 
    4535             : 
    4536             : /// ExtVectorElementExpr - This represents access to specific elements of a
    4537             : /// vector, and may occur on the left hand side or right hand side.  For example
    4538             : /// the following is legal:  "V.xy = V.zw" if V is a 4 element extended vector.
    4539             : ///
    4540             : /// Note that the base may have either vector or pointer to vector type, just
    4541             : /// like a struct field reference.
    4542             : ///
    4543             : class ExtVectorElementExpr : public Expr {
    4544             :   Stmt *Base;
    4545             :   IdentifierInfo *Accessor;
    4546             :   SourceLocation AccessorLoc;
    4547             : public:
    4548             :   ExtVectorElementExpr(QualType ty, ExprValueKind VK, Expr *base,
    4549             :                        IdentifierInfo &accessor, SourceLocation loc)
    4550             :     : Expr(ExtVectorElementExprClass, ty, VK,
    4551             :            (VK == VK_RValue ? OK_Ordinary : OK_VectorComponent),
    4552             :            base->isTypeDependent(), base->isValueDependent(),
    4553             :            base->isInstantiationDependent(),
    4554             :            base->containsUnexpandedParameterPack()),
    4555             :       Base(base), Accessor(&accessor), AccessorLoc(loc) {}
    4556             : 
    4557             :   /// \brief Build an empty vector element expression.
    4558             :   explicit ExtVectorElementExpr(EmptyShell Empty)
    4559             :     : Expr(ExtVectorElementExprClass, Empty) { }
    4560             : 
    4561             :   const Expr *getBase() const { return cast<Expr>(Base); }
    4562             :   Expr *getBase() { return cast<Expr>(Base); }
    4563             :   void setBase(Expr *E) { Base = E; }
    4564             : 
    4565             :   IdentifierInfo &getAccessor() const { return *Accessor; }
    4566             :   void setAccessor(IdentifierInfo *II) { Accessor = II; }
    4567             : 
    4568             :   SourceLocation getAccessorLoc() const { return AccessorLoc; }
    4569             :   void setAccessorLoc(SourceLocation L) { AccessorLoc = L; }
    4570             : 
    4571             :   /// getNumElements - Get the number of components being selected.
    4572             :   unsigned getNumElements() const;
    4573             : 
    4574             :   /// containsDuplicateElements - Return true if any element access is
    4575             :   /// repeated.
    4576             :   bool containsDuplicateElements() const;
    4577             : 
    4578             :   /// getEncodedElementAccess - Encode the elements accessed into an llvm
    4579             :   /// aggregate Constant of ConstantInt(s).
    4580             :   void getEncodedElementAccess(SmallVectorImpl<unsigned> &Elts) const;
    4581             : 
    4582             :   SourceLocation getLocStart() const LLVM_READONLY {
    4583             :     return getBase()->getLocStart();
    4584             :   }
    4585             :   SourceLocation getLocEnd() const LLVM_READONLY { return AccessorLoc; }
    4586             : 
    4587             :   /// isArrow - Return true if the base expression is a pointer to vector,
    4588             :   /// return false if the base expression is a vector.
    4589             :   bool isArrow() const;
    4590             : 
    4591             :   static bool classof(const Stmt *T) {
    4592             :     return T->getStmtClass() == ExtVectorElementExprClass;
    4593             :   }
    4594             : 
    4595             :   // Iterators
    4596           0 :   child_range children() { return child_range(&Base, &Base+1); }
    4597             : };
    4598             : 
    4599             : 
    4600             : /// BlockExpr - Adaptor class for mixing a BlockDecl with expressions.
    4601             : /// ^{ statement-body }   or   ^(int arg1, float arg2){ statement-body }
    4602             : class BlockExpr : public Expr {
    4603             : protected:
    4604             :   BlockDecl *TheBlock;
    4605             : public:
    4606             :   BlockExpr(BlockDecl *BD, QualType ty)
    4607             :     : Expr(BlockExprClass, ty, VK_RValue, OK_Ordinary,
    4608             :            ty->isDependentType(), ty->isDependentType(),
    4609             :            ty->isInstantiationDependentType() || BD->isDependentContext(),
    4610             :            false),
    4611             :       TheBlock(BD) {}
    4612             : 
    4613             :   /// \brief Build an empty block expression.
    4614             :   explicit BlockExpr(EmptyShell Empty) : Expr(BlockExprClass, Empty) { }
    4615             : 
    4616             :   const BlockDecl *getBlockDecl() const { return TheBlock; }
    4617           0 :   BlockDecl *getBlockDecl() { return TheBlock; }
    4618             :   void setBlockDecl(BlockDecl *BD) { TheBlock = BD; }
    4619             : 
    4620             :   // Convenience functions for probing the underlying BlockDecl.
    4621             :   SourceLocation getCaretLocation() const;
    4622             :   const Stmt *getBody() const;
    4623             :   Stmt *getBody();
    4624             : 
    4625             :   SourceLocation getLocStart() const LLVM_READONLY { return getCaretLocation(); }
    4626             :   SourceLocation getLocEnd() const LLVM_READONLY { return getBody()->getLocEnd(); }
    4627             : 
    4628             :   /// getFunctionType - Return the underlying function type for this block.
    4629             :   const FunctionProtoType *getFunctionType() const;
    4630             : 
    4631             :   static bool classof(const Stmt *T) {
    4632             :     return T->getStmtClass() == BlockExprClass;
    4633             :   }
    4634             : 
    4635             :   // Iterators
    4636             :   child_range children() { return child_range(); }
    4637             : };
    4638             : 
    4639             : /// AsTypeExpr - Clang builtin function __builtin_astype [OpenCL 6.2.4.2]
    4640             : /// This AST node provides support for reinterpreting a type to another
    4641             : /// type of the same size.
    4642             : class AsTypeExpr : public Expr {
    4643             : private:
    4644             :   Stmt *SrcExpr;
    4645             :   SourceLocation BuiltinLoc, RParenLoc;
    4646             : 
    4647             :   friend class ASTReader;
    4648             :   friend class ASTStmtReader;
    4649             :   explicit AsTypeExpr(EmptyShell Empty) : Expr(AsTypeExprClass, Empty) {}
    4650             : 
    4651             : public:
    4652             :   AsTypeExpr(Expr* SrcExpr, QualType DstType,
    4653             :              ExprValueKind VK, ExprObjectKind OK,
    4654             :              SourceLocation BuiltinLoc, SourceLocation RParenLoc)
    4655             :     : Expr(AsTypeExprClass, DstType, VK, OK,
    4656             :            DstType->isDependentType(),
    4657             :            DstType->isDependentType() || SrcExpr->isValueDependent(),
    4658             :            (DstType->isInstantiationDependentType() ||
    4659             :             SrcExpr->isInstantiationDependent()),
    4660             :            (DstType->containsUnexpandedParameterPack() ||
    4661             :             SrcExpr->containsUnexpandedParameterPack())),
    4662             :   SrcExpr(SrcExpr), BuiltinLoc(BuiltinLoc), RParenLoc(RParenLoc) {}
    4663             : 
    4664             :   /// getSrcExpr - Return the Expr to be converted.
    4665             :   Expr *getSrcExpr() const { return cast<Expr>(SrcExpr); }
    4666             : 
    4667             :   /// getBuiltinLoc - Return the location of the __builtin_astype token.
    4668             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    4669             : 
    4670             :   /// getRParenLoc - Return the location of final right parenthesis.
    4671             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    4672             : 
    4673             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    4674             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    4675             : 
    4676             :   static bool classof(const Stmt *T) {
    4677             :     return T->getStmtClass() == AsTypeExprClass;
    4678             :   }
    4679             : 
    4680             :   // Iterators
    4681           0 :   child_range children() { return child_range(&SrcExpr, &SrcExpr+1); }
    4682             : };
    4683             : 
    4684             : /// PseudoObjectExpr - An expression which accesses a pseudo-object
    4685             : /// l-value.  A pseudo-object is an abstract object, accesses to which
    4686             : /// are translated to calls.  The pseudo-object expression has a
    4687             : /// syntactic form, which shows how the expression was actually
    4688             : /// written in the source code, and a semantic form, which is a series
    4689             : /// of expressions to be executed in order which detail how the
    4690             : /// operation is actually evaluated.  Optionally, one of the semantic
    4691             : /// forms may also provide a result value for the expression.
    4692             : ///
    4693             : /// If any of the semantic-form expressions is an OpaqueValueExpr,
    4694             : /// that OVE is required to have a source expression, and it is bound
    4695             : /// to the result of that source expression.  Such OVEs may appear
    4696             : /// only in subsequent semantic-form expressions and as
    4697             : /// sub-expressions of the syntactic form.
    4698             : ///
    4699             : /// PseudoObjectExpr should be used only when an operation can be
    4700             : /// usefully described in terms of fairly simple rewrite rules on
    4701             : /// objects and functions that are meant to be used by end-developers.
    4702             : /// For example, under the Itanium ABI, dynamic casts are implemented
    4703             : /// as a call to a runtime function called __dynamic_cast; using this
    4704             : /// class to describe that would be inappropriate because that call is
    4705             : /// not really part of the user-visible semantics, and instead the
    4706             : /// cast is properly reflected in the AST and IR-generation has been
    4707             : /// taught to generate the call as necessary.  In contrast, an
    4708             : /// Objective-C property access is semantically defined to be
    4709             : /// equivalent to a particular message send, and this is very much
    4710             : /// part of the user model.  The name of this class encourages this
    4711             : /// modelling design.
    4712             : class PseudoObjectExpr : public Expr {
    4713             :   // PseudoObjectExprBits.NumSubExprs - The number of sub-expressions.
    4714             :   // Always at least two, because the first sub-expression is the
    4715             :   // syntactic form.
    4716             : 
    4717             :   // PseudoObjectExprBits.ResultIndex - The index of the
    4718             :   // sub-expression holding the result.  0 means the result is void,
    4719             :   // which is unambiguous because it's the index of the syntactic
    4720             :   // form.  Note that this is therefore 1 higher than the value passed
    4721             :   // in to Create, which is an index within the semantic forms.
    4722             :   // Note also that ASTStmtWriter assumes this encoding.
    4723             : 
    4724           0 :   Expr **getSubExprsBuffer() { return reinterpret_cast<Expr**>(this + 1); }
    4725             :   const Expr * const *getSubExprsBuffer() const {
    4726             :     return reinterpret_cast<const Expr * const *>(this + 1);
    4727             :   }
    4728             : 
    4729             :   friend class ASTStmtReader;
    4730             : 
    4731             :   PseudoObjectExpr(QualType type, ExprValueKind VK,
    4732             :                    Expr *syntactic, ArrayRef<Expr*> semantic,
    4733             :                    unsigned resultIndex);
    4734             : 
    4735             :   PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs);
    4736             : 
    4737             :   unsigned getNumSubExprs() const {
    4738           0 :     return PseudoObjectExprBits.NumSubExprs;
    4739             :   }
    4740             : 
    4741             : public:
    4742             :   /// NoResult - A value for the result index indicating that there is
    4743             :   /// no semantic result.
    4744             :   enum : unsigned { NoResult = ~0U };
    4745             : 
    4746             :   static PseudoObjectExpr *Create(const ASTContext &Context, Expr *syntactic,
    4747             :                                   ArrayRef<Expr*> semantic,
    4748             :                                   unsigned resultIndex);
    4749             : 
    4750             :   static PseudoObjectExpr *Create(const ASTContext &Context, EmptyShell shell,
    4751             :                                   unsigned numSemanticExprs);
    4752             : 
    4753             :   /// Return the syntactic form of this expression, i.e. the
    4754             :   /// expression it actually looks like.  Likely to be expressed in
    4755             :   /// terms of OpaqueValueExprs bound in the semantic form.
    4756           0 :   Expr *getSyntacticForm() { return getSubExprsBuffer()[0]; }
    4757             :   const Expr *getSyntacticForm() const { return getSubExprsBuffer()[0]; }
    4758             : 
    4759             :   /// Return the index of the result-bearing expression into the semantics
    4760             :   /// expressions, or PseudoObjectExpr::NoResult if there is none.
    4761             :   unsigned getResultExprIndex() const {
    4762             :     if (PseudoObjectExprBits.ResultIndex == 0) return NoResult;
    4763             :     return PseudoObjectExprBits.ResultIndex - 1;
    4764             :   }
    4765             : 
    4766             :   /// Return the result-bearing expression, or null if there is none.
    4767             :   Expr *getResultExpr() {
    4768             :     if (PseudoObjectExprBits.ResultIndex == 0)
    4769             :       return nullptr;
    4770             :     return getSubExprsBuffer()[PseudoObjectExprBits.ResultIndex];
    4771             :   }
    4772             :   const Expr *getResultExpr() const {
    4773             :     return const_cast<PseudoObjectExpr*>(this)->getResultExpr();
    4774             :   }
    4775             : 
    4776             :   unsigned getNumSemanticExprs() const { return getNumSubExprs() - 1; }
    4777             : 
    4778             :   typedef Expr * const *semantics_iterator;
    4779             :   typedef const Expr * const *const_semantics_iterator;
    4780             :   semantics_iterator semantics_begin() {
    4781           0 :     return getSubExprsBuffer() + 1;
    4782             :   }
    4783             :   const_semantics_iterator semantics_begin() const {
    4784             :     return getSubExprsBuffer() + 1;
    4785             :   }
    4786             :   semantics_iterator semantics_end() {
    4787           0 :     return getSubExprsBuffer() + getNumSubExprs();
    4788             :   }
    4789             :   const_semantics_iterator semantics_end() const {
    4790             :     return getSubExprsBuffer() + getNumSubExprs();
    4791             :   }
    4792             :   Expr *getSemanticExpr(unsigned index) {
    4793             :     assert(index + 1 < getNumSubExprs());
    4794             :     return getSubExprsBuffer()[index + 1];
    4795             :   }
    4796             :   const Expr *getSemanticExpr(unsigned index) const {
    4797             :     return const_cast<PseudoObjectExpr*>(this)->getSemanticExpr(index);
    4798             :   }
    4799             : 
    4800             :   SourceLocation getExprLoc() const LLVM_READONLY {
    4801             :     return getSyntacticForm()->getExprLoc();
    4802             :   }
    4803             : 
    4804             :   SourceLocation getLocStart() const LLVM_READONLY {
    4805             :     return getSyntacticForm()->getLocStart();
    4806             :   }
    4807             :   SourceLocation getLocEnd() const LLVM_READONLY {
    4808             :     return getSyntacticForm()->getLocEnd();
    4809             :   }
    4810             : 
    4811             :   child_range children() {
    4812             :     Stmt **cs = reinterpret_cast<Stmt**>(getSubExprsBuffer());
    4813             :     return child_range(cs, cs + getNumSubExprs());
    4814             :   }
    4815             : 
    4816             :   static bool classof(const Stmt *T) {
    4817             :     return T->getStmtClass() == PseudoObjectExprClass;
    4818             :   }
    4819             : };
    4820             : 
    4821             : /// AtomicExpr - Variadic atomic builtins: __atomic_exchange, __atomic_fetch_*,
    4822             : /// __atomic_load, __atomic_store, and __atomic_compare_exchange_*, for the
    4823             : /// similarly-named C++11 instructions, and __c11 variants for <stdatomic.h>.
    4824             : /// All of these instructions take one primary pointer and at least one memory
    4825             : /// order.
    4826             : class AtomicExpr : public Expr {
    4827             : public:
    4828             :   enum AtomicOp {
    4829             : #define BUILTIN(ID, TYPE, ATTRS)
    4830             : #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) AO ## ID,
    4831             : #include "clang/Basic/Builtins.def"
    4832             :     // Avoid trailing comma
    4833             :     BI_First = 0
    4834             :   };
    4835             : 
    4836             :   // The ABI values for various atomic memory orderings.
    4837             :   enum AtomicOrderingKind {
    4838             :     AO_ABI_memory_order_relaxed = 0,
    4839             :     AO_ABI_memory_order_consume = 1,
    4840             :     AO_ABI_memory_order_acquire = 2,
    4841             :     AO_ABI_memory_order_release = 3,
    4842             :     AO_ABI_memory_order_acq_rel = 4,
    4843             :     AO_ABI_memory_order_seq_cst = 5
    4844             :   };
    4845             : 
    4846             : private:
    4847             :   enum { PTR, ORDER, VAL1, ORDER_FAIL, VAL2, WEAK, END_EXPR };
    4848             :   Stmt* SubExprs[END_EXPR];
    4849             :   unsigned NumSubExprs;
    4850             :   SourceLocation BuiltinLoc, RParenLoc;
    4851             :   AtomicOp Op;
    4852             : 
    4853             :   friend class ASTStmtReader;
    4854             : 
    4855             : public:
    4856             :   AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args, QualType t,
    4857             :              AtomicOp op, SourceLocation RP);
    4858             : 
    4859             :   /// \brief Determine the number of arguments the specified atomic builtin
    4860             :   /// should have.
    4861             :   static unsigned getNumSubExprs(AtomicOp Op);
    4862             : 
    4863             :   /// \brief Build an empty AtomicExpr.
    4864             :   explicit AtomicExpr(EmptyShell Empty) : Expr(AtomicExprClass, Empty) { }
    4865             : 
    4866             :   Expr *getPtr() const {
    4867             :     return cast<Expr>(SubExprs[PTR]);
    4868             :   }
    4869             :   Expr *getOrder() const {
    4870             :     return cast<Expr>(SubExprs[ORDER]);
    4871             :   }
    4872             :   Expr *getVal1() const {
    4873             :     if (Op == AO__c11_atomic_init)
    4874             :       return cast<Expr>(SubExprs[ORDER]);
    4875             :     assert(NumSubExprs > VAL1);
    4876             :     return cast<Expr>(SubExprs[VAL1]);
    4877             :   }
    4878             :   Expr *getOrderFail() const {
    4879             :     assert(NumSubExprs > ORDER_FAIL);
    4880             :     return cast<Expr>(SubExprs[ORDER_FAIL]);
    4881             :   }
    4882             :   Expr *getVal2() const {
    4883             :     if (Op == AO__atomic_exchange)
    4884             :       return cast<Expr>(SubExprs[ORDER_FAIL]);
    4885             :     assert(NumSubExprs > VAL2);
    4886             :     return cast<Expr>(SubExprs[VAL2]);
    4887             :   }
    4888             :   Expr *getWeak() const {
    4889             :     assert(NumSubExprs > WEAK);
    4890             :     return cast<Expr>(SubExprs[WEAK]);
    4891             :   }
    4892             : 
    4893             :   AtomicOp getOp() const { return Op; }
    4894             :   unsigned getNumSubExprs() { return NumSubExprs; }
    4895             : 
    4896             :   Expr **getSubExprs() { return reinterpret_cast<Expr **>(SubExprs); }
    4897             : 
    4898             :   bool isVolatile() const {
    4899             :     return getPtr()->getType()->getPointeeType().isVolatileQualified();
    4900             :   }
    4901             : 
    4902             :   bool isCmpXChg() const {
    4903             :     return getOp() == AO__c11_atomic_compare_exchange_strong ||
    4904             :            getOp() == AO__c11_atomic_compare_exchange_weak ||
    4905             :            getOp() == AO__atomic_compare_exchange ||
    4906             :            getOp() == AO__atomic_compare_exchange_n;
    4907             :   }
    4908             : 
    4909             :   SourceLocation getBuiltinLoc() const { return BuiltinLoc; }
    4910             :   SourceLocation getRParenLoc() const { return RParenLoc; }
    4911             : 
    4912             :   SourceLocation getLocStart() const LLVM_READONLY { return BuiltinLoc; }
    4913             :   SourceLocation getLocEnd() const LLVM_READONLY { return RParenLoc; }
    4914             : 
    4915             :   static bool classof(const Stmt *T) {
    4916             :     return T->getStmtClass() == AtomicExprClass;
    4917             :   }
    4918             : 
    4919             :   // Iterators
    4920             :   child_range children() {
    4921           0 :     return child_range(SubExprs, SubExprs+NumSubExprs);
    4922             :   }
    4923             : };
    4924             : 
    4925             : /// TypoExpr - Internal placeholder for expressions where typo correction
    4926             : /// still needs to be performed and/or an error diagnostic emitted.
    4927             : class TypoExpr : public Expr {
    4928             : public:
    4929             :   TypoExpr(QualType T)
    4930             :       : Expr(TypoExprClass, T, VK_LValue, OK_Ordinary,
    4931             :              /*isTypeDependent*/ true,
    4932             :              /*isValueDependent*/ true,
    4933             :              /*isInstantiationDependent*/ true,
    4934             :              /*containsUnexpandedParameterPack*/ false) {
    4935             :     assert(T->isDependentType() && "TypoExpr given a non-dependent type");
    4936             :   }
    4937             : 
    4938           0 :   child_range children() { return child_range(); }
    4939             :   SourceLocation getLocStart() const LLVM_READONLY { return SourceLocation(); }
    4940             :   SourceLocation getLocEnd() const LLVM_READONLY { return SourceLocation(); }
    4941             : };
    4942             : }  // end namespace clang
    4943             : 
    4944             : #endif

Generated by: LCOV version 1.11