

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

ATI OpenGL Programming and Optimization
Guide

Introduction

 This guide focuses on how to get the most out of ATI graphics hardware under OpenGL. This

guide focuses on the R300 and its derivatives as indicated in Appendix A. Most of the performance

advice contained in this document is generally relevant to all graphics accelerators. When something is

extremely specific to the R300, R400 or R500 family it is called out as such. In addition to performance,

this guide also looks closely at how to access the latest features. This guide does not attempt to discuss

extensions for older HW in detail, only how they interact with the R300+ series. Please see the ATI

OpenGL extensions guide for details on which extensions are found on which products.

What’s New

 This update adds new hardware (R400, R500 asic families and newer R300 derivatives), a

section on GLSL features and support, sample codes for programming user shaders, and a table

matching product names to chip families. An appendix referencing various tools and libraries to

facilitate OpenGL development has also been added (Appendix F).

Basic Architecture

 To understand how one’s application is going to perform on a particular platform, it is best to

understand the basic architecture. From the programmer’s standpoint, the R300+ series is very similar to

previous programmable graphics accelerators. Architecturally, it has richer functionality and higher

performance than its predecessors – the primary advancement being the support for floating point color

in the texture engine, the shader engine, and the frame buffer. Furthermore, the R500+ series most

importantly adds support for dynamic branching in its fragment shader unit, floating point blending, and

floating point multisampling.

 The number of vertex engines within the vertex processing unit varies across the multiple flavors

of the R300+ asics family. Refer to Appendix A for a table enumerating the engine count for the

specific asics. Generally, peak transform rate is approximately vertex engine count divided by 4

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

(number of dot products for a model to clip space transform) vertices per clock. The ideal peak rate may

not be attainable in real-world situations, but it should provide a good basis for gauging geometry

throughput.

 Each fragment shader unit on R300+ series executes a texture instruction and a set of arithmetic

instructions every clock cycle. The instructions are executed on number of fragments in parallel

depending on the number of fragment engines (sometimes called the pixel engine but will be referred to

as fragment engine throughout this document). Refer to Appendix A for number of fragment engines of

a particular asic flavor. Generally, one ALU instruction is executed per clock but the fragment shader

engine on the RV530 asic has the unique ability to execute up to three ALU instructions in parallel per

clock. As with geometry throughput, peak fragment throughput is only theoretical. The real-world

performance is almost certainly affected by such things as memory bandwidth or starvation.

Transform, Clip, and Lighting

Data specification

 OpenGL allows an application to render a number of ways – immediate mode, display list mode,

and vertex array mode. Among the three methods, immediate mode is likely to be the most inefficient

and should be avoided as the predominate rendering method. The increase in CPU and graphics

processor speeds has far exceeded that of system memory bandwidth. The large amount of data moving

around per frame during immediate mode rendering exposes this gap between processing speed versus

memory throughput and effectively starves the graphics HW of data to process.

Vertex arrays can be the fastest way to provide geometry data to the R300+ asics. First, they greatly

reduce software overhead by reducing the number of necessary function calls to specify vertex data and

can eliminate the need to send duplicate data. Additionally, the use of Vertex Buffer Objects can allow

an application to write the vertex data directly to either AGP or video memory. The graphics HW then

directly addresses the Vertex Buffer Object within local or AGP memory eliminating the need for the

vertex data to travel over the system front side bus. The R300+ series supports both vertex and index

data storage in the Vertex Buffer Objects. The gl(Multi)DrawArrays or gl(Multi)Draw(Range)Elements

entry point should be used to render with these buffer objects. Avoid using glArrayElement since this

will lead to significant per call overhead as opposed to the other Vertex Array render calls. Refer to

Appendix B for sample code on how to render using a vertex arrays stored in a Vertex Buffer Object and

glDrawElements.

To ensure maximum performance using Vertex Buffer Objects, please see the table below outlining the

native formats of the R300+ series. Specifying data in a Vertex Buffer Object that is in a format

different than the listed ones will have a significant performance penalty, and will likely be slower than

using display lists or even immediate mode.

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Type Native Alignment Components Range

GLdouble No

GLfloat Yes 32-bit 1,2,3,4 +/-

MAX_FLOAT

GLuint No

GLint No

GLushort Yes 32-bit 2,4 [0,65536]

GLshort Yes 32-bit 2,4 [-32768,32767]

GLushort

(normalized)

Yes 32-bit 2,4 [0,1]

GLshort

(normalized)

Yes 32-bit 2,4 [-1,1]

GLubyte Yes 32-bit 4 [0,255]

GLbyte Yes 32-bit 4 [-128,127]

GLubyte

(normalized)

Yes 32-bit 4 [0,1]

GLbyte

(normalized

Yes 32-bit 4 [-1,1]

 The transform engine has pre-transform and post-transform vertex caches. When using indexed

primitives via gl(Multi)Draw(Range)Elements, both of these caches can reduce the load on the vertex

engine. The pre-transform cache starts by ensuring that multiple vertices that share the same cache line

will only need to be read once, reducing the memory bandwidth required. The post-transform cache will

allow a vertex whose index matches a recently processed vertex to not be reprocessed, effectively

freeing a vertex engine to process another uncached vertex. Both of these optimizations require that the

index list contain a locality of reference to enable optimal performance, the former requiring that

neighboring indices reference contiguous vertices, and the latter requiring that reuse of any given index

be as local as possible. Finally, these and other efficiency concerns mean that vertex array draw

commands that consist of primitives with 64 or more vertices will make better use of the vertex caches

as well as allow the vertex engine to stream process the data more efficiently. Avoid drawing with less

than 10 vertices per primitive.

Geometry data can also be compiled into and rendered out of a display list. The driver will compile,

optimize, and store the display list into video or AGP memory under most circumstances. Always

attempt to compile a handful of larger display lists rather than numerous amounts of small display lists

since each glCallList(s) invokes a certain overhead which should be avoided if possible. The R300+

series is optimized for processing large primitives so it is advantageous to arrange the geometry data into

primitive strips of 10 vertices or longer. To ensure that the display list is stored in the optimal manner,

avoid compiling evaluators, edge flags, generic vertex program attributes, and texture coordinates with

four components into the display list.

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

 Vertex array calls can be compiled into a display list. Compiling the regular OpenGL 1.2 vertex

array usage may potentially allow the driver to perform various optimizations on the input vertex data.

But it should be noted that if vertex arrays are intended to be compiled into a Display List, the vertex

array should not be stored in a Vertex Buffer Object. Compiling vertex arrays stored in Vertex Buffer

Objects will cause a significant performance hit when the vertex data is read back from video memory

during the display list compilation.

 Regardless of the rendering mode used, it is always good practice to render primitives of similar

state in batches. State changes (i.e. stipple pattern changes, light state changes) will invoke a validation

overhead in the driver and within the graphics HW. Haphazard and redundant state changes within a

rendering frame will lead to poor performance.

Transform and Vertex Shading Engine

 All geometry processing is performed by a number of parallel vertex engines in the R300+

series. The peak geometry throughput is roughly the floor of the number of operations –or– the number

of operations divided by the number of vertex engines. All fixed function and user vertex shaders use the

same resources, so the approximate penalty of a feature in fixed function is equivalent to the cost if it

were hand-coded in a vertex program.

 The ARB_vertex_program is one way to program user shaders for the vertex engine. Refer to

Appendix C for sample code creating and binding an ARB_vertex_program. When writing an

ARB_vertex_program, several items must be considered to achieve maximum performance. Most

importantly, the smallest number of instructions should be used. The driver will collapse and optimize

code, but it is always best to start with the best code possible. It is also important to minimize the

number of constants and temporaries used by the program. The fewer temporaries used by the program

the closer the hardware comes to reaching the theoretical performance limit. As with the instructions, the

driver will attempt to reduce the use of temps where appropriate. Refer to Appendix D for a table

mapping the instructions in the ARB_vertex_program to the various HW resources required to execute

that instruction.

 The resources available to the vertex shading unit are as follows:

ALU Instructions: 256 4-tuple vector + scalar (R300, R400), 1024 4-tuple vector + scalar (R500)

Temporary registers per vertex: 32 4-tuple (R300, R400, R500)

Constant registers: 256 4-tuple (R300, R400, R500)

The OpenGL Shading Language (GLSL) can also be used to specify a custom vertex shading program.

GLSL allows users to write their shader in higher level C-like syntax and also abstracts HW shader

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

feature support. Most importantly, GLSL enables the user to program flow control into their shader

logic. The native HW program used to implement the flow control is emitted by the GLSL compiler

within the driver. All native HW support is abstracted by the compiler. The section below on the

OpenGL Shading Language divulges more information about the language and subtleties associated

with its use.

 Static flow control is supported for the R300+ series through emulation. When a vertex shader

program using static flow control is detected, the driver will recompile the program without flow control

based on the provided static constants. The recompiled program will then be cached away to avoid

redundant shader recompilation during the runtime. If you are using static flow control in a vertex

program you should pre-cache recompiled variations of that program in the driver by rendering a

dummy triangle on the very first frame with all combinations of constant values that will be relevant

throughout the execution of the application.

 Dynamic flow control is natively supported in the R500 asics. Empirical analysis indicates that

most shader programs use dynamic flow control at the fragment shading level. Therefore, the dynamic

flow control performance within the transform engine is not optimized as it would be at the fragment

level. To maximize vertex program performance for scenes rendering a significant number of

primitives, it is advised to avoid dynamic flow control altogether in the vertex program.

Clipping

 The R300+ series has support for six user specified clip-planes in addition to the frustum clip

planes. The cost of clipping is determined by the number of clip-planes enabled and the amount of

geometry being clipped but not trivially accepted or rejected. To ensure that the hardware clip-plane

support is being utilized, the user must use a projection matrix that is non-singular as all clipping occurs

in clip-space.

Rasterization

Component Interpolation

 The R300+ series can interpolate ten sets of 4-tuple vectors. Two sets are reserved for the

primary and secondary colors, while the other eight are used for texture coordinates. The color

interpolators have two inputs each, one each for front and back colors. The decision as to whether to use

the front or back colors is done at setup and the appropriate colors are then interpolated. The interpolated

colors have a range of [0-1] and are limited to 12 bits of precision. When multisampling is enabled, the

colors are sampled at the centroid of the covered portion of the fragment as is specified in the

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

SGIS_multisample specification. The texture coordinate interpolators differ from the color interpolators

in that they always sample at the fragment center and that they are interpolated using at least 24 bit

floating point. All interpolations are performed with perspective correction. Historically, calling

glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST) led to screen-space interpolation.

But this is not guaranteed to be the case any more due to advances in the HW. If screen-space effects

are desired, the user must undo the perspective correction in a fragment shader.

Stipple and Anti-Aliasing

 While the R300+ series accelerates polygon stippling, line stippling, and line anti-aliasing, the

resources used to support it overlap the texture resources. As a result, enabling polygon stippling, line

stippling, or line anti-aliasing reduces the number of texture units accelerated in hardware to seven.

Using more than seven textures in the fixed function case or more than seven texture coordinate sets in

the fragment shader/program case will result in a fallback to software rendering.

Depth and Stencil Testing

 The R300+ series supports multiple methods to accelerate rendering by culling pixels that are not

visible. First, the R300+ series supports an accelerated depth buffer clear that effectively makes clears

free. Not only is the clear free, but also the clear optimizes the first depth buffer reads for each frame

rendered. Applications should always clear the buffer rather than attempt to use Z tricks to avoid the

clear. This is even more important when bandwidth intensive operations like multi-sampling are

enabled. To ensure that the fast Z clear optimization is used, the app should have scissor disabled or

enable a full screen viewport size. If the graphics context has uses a stencil buffer, it should also be

cleared at the same time as the depth buffer.

The R300+ series also supports hierarchical depth testing. This allows the graphics HW to depth check

blocks of fragments efficiently. To maximize the benefit of the Hi-Z optimization, the app must keep the

depth compare function constant over the course of a frame. The app must not switch from a test using

less than to using greater than or vice versa. Avoid using always. This naturally is not a problem if the

depth test is switched and the depth mask is set to prevent updating the depth buffer. Additionally, other

operations can preclude the use of Hi-Z for a set of primitives. These operations include: outputting a

depth in the fragment shading unit and updating the stencil buffer on depth fail.

Finally, the R300+ series has a more fine-grained mechanism to cull occluded fragments. It can perform

the depth and stencil tests prior to shading the fragment. This is only a win if the shader has multiple

instructions such that the rasterizer is able to produce fragments faster than the shader can consume. So a

user should not be concerned with this optimization unless they are performing a relatively expensive

shading operation. To enable the optimization, the app only needs to ensure that the shader is not writing

a depth value and that pixels are not being killed by the shader or by the alpha test when the depth

values are being updated.

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

 In addition to all these pixel culling optimizations, the R300+ series has the ability to control its

stencil functions and stencil ops based on the facing direction of the primitive. This allows algorithms

such as shadow volume computations to be accelerated, as they need to alter the stencil buffer

differently based on the facing orientation of the primitive. Please see the extension spec

ATI_separate_stencil for more details.

Fragment Shader Unit

 For mostly all R300+ asics, the fragment shading unit can execute one texture instruction and

one ALU instruction in each clock cycle. The one pleasant exception is the RV530 which can actually

execute up to three ALU instructions plus one texture instruction per clock. Each ALU instruction can

actually be a 4-tuple operation or a combination of a 3-tuple plus a scalar operation. All instructions are

operated on in 24-bit floating point numbers for R300/R400 and 32-bit floating point for R500.

 The ARB_fragment_program is primarily used to program a user shader for the fragment

shading unit. Like programming the vertex engine with the ARB_vertex_program, one should use the

least amount of instructions possible to allow for maximum performance. While resources have

increased for the R500, it is still good practice to be sensitive to the number of resources used in the

fragment program. Refer to Appendix D for a table mapping the ARB_fragment_program instructions

to the various HW resources required to execute the instruction.

The resources available in the shader unit are as follows:

ALU Instructions: 64 3-tuple vector + scalar (R300), 512 3-tuple vector + scalar (R400 + R500)

Texture Instructions: 32 (R300), 512 (R400 and R500)

Temporary registers: 32 4-tuple (R300), 64 4-tuple (R400), 128 4-tuple (R500)

Constant registers: 32 4-tuple (R300 and R400), 256 4-tuple (R500)

 Each fragment engine on the R300+ series operates as two independent units - one operating on

scalar data and one operating on 3-tuple data. This means that the implementation can optimize certain

operations if the user can isolate 3-tuple operations to occur only on the rgb components by using the

write masks. Additionally, all of the native scalar ops (EX2, LG2, RSQ, and RCP) are always executed

on the scalar unit, so it is best to have the sources and destinations come from the alpha channel. In

general, these tips will only reduce shader size. Ignoring them will not cause the driver to expand the

operation into more instructions.

 When writing an ARB_fragment_program, one should also consider the source modifiers used.

While all the different source modifier variations are natively supported on the R500, not all of the

source modifiers are natively supported on the R300 and R400 series. The native source modifiers for

the R300 and R400 are negate (-src), r replicate (src.r), g replicate, b replicate, a replicate, gbr*, brg*,

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

and abg*. Additionally, these modifiers are not native on the texture or kill operations. When using non-

native source modifiers, the driver will insert up to four extra instructions to generate the swizzle.

As with the vertex shading unit, one can also program the fragment shading unit using the OpenGL

Shading Language (GLSL). The benefits of using GLSL for the fragment shading unit is nearly the

same as the benefits for using GLSL for the vertex shading unit. As a matter of fact, the GLSL compiler

can be of more significance for a GLSL fragment program than a vertex program due to the increase in

complexity of the fragment shading unit’s architecture over the vertex shading unit’s. Like the vertex

shading case, the user can easily program flow control into their fragment shader logic as well as enjoy

the abstractions and optimizations the compiler implements for the underlying HW. For more

information on the usage of GLSL, refer to the OpenGL Shading Language section below.

 While the R500 natively supports flow control in the fragment shading unit, the R300 and R400

asics does not. Static flow control for the R300 and R400 is emulated by the driver compiling out

unused conditionals and unrolling loops based on the set constants. Even though the R500 asics family

natively support flow control, the driver will still attempt to compile out static flow conditions enabling

it to reorganize shader instructions for better instruction scheduling. The driver will also try to cache

away the compiled shader for a specific static flow condition set in anticipation for its reuse. So when

writing a fragment program that uses static flow control, it is recommended to “warm” the shader cache

by rendering a dummy triangle on the very first frame that uses the common static conditional

permutations relevant for the life of the shader.

 The R500 asics family fully supports dynamic flow control in the fragment shading unit.

Dynamic flow control allows a shader program to execute varying shader code as well as selectively

skip over portions of execution code and texture fetches for a group of fragments also known as the

execution thread. When implementing dynamic flow control into a shader program, one should be

sensitive to the parallel nature of the fragment engine and how it processes the execution thread in

lockstep. If flow control causes fragments that are executed within a thread to take a different code path,

all the fragments in the thread, regardless of whether they should or should not execute the path, will be

“dragged along”. For the fragments that should not execute the path, the instructions will be ignored

while the relevant fragments will be processed as usual. The thread size for the R500 family consists of

16 fragments so a fragment program should not be written so that dynamic flow control varies execution

paths for fragments smaller than this granularity. Like static flow control, it is best to avoid small

conditional statements since it will limit compiler optimization efficiency. Generally, fragment shaders

should avoid loops as well as more than 6 levels of dynamic branching. If possible, a low iteration

count dynamic loop should be unrolled into nested conditional statements.

 Regardless if GLSL or ARB_fragment_program is used, one should consider the memory

latency of texture fetches when writing a fragment program. Even though the fragment shader unit can

execute one texture instruction along with one ALU instruction, due to memory latency and time to filter

the texture sample, it will very likely take more than one cycle for the sample result to be available. For

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

the R300+ asics other than the RV530, the fragment program should have a 1:4 texture to ALU

instruction ratio. For the RV530, the ratio should be around 1:8 since it can execute more ALU

instructions per clock. The most optimal ratio will also vary depending on the texture filter mode,

format and general memory load on the HW.

Texture Operations

 As mentioned above, the fragment shader can execute a maximum of 32 texture fetches for the

R300/R400 and 512 texture fetches for the R500. Each of these fetches may come from any of the

available 16 texture contexts for all R300+ asics. This flexibility is only available by using the fragment

program extension. In fixed function, the available number of textures is limited to the number of texture

coordinate supported by OpenGL which is eight for version 1.2.

 The speed of texture operations is controlled by the precision of the input texture and the number

of bilinear blends the filter requires. LINEAR, NEAREST, NEREST_MIPMAP_NEAREST, and

LINEAR_MIPMAP_NEAREST filter modes on 1D and 2D textures all qualify as requiring a single

bilinear blend. LINEAR_MIPMAP_LINEAR on 1D and 2D textures and the previous operations on 3D

textures require two bilinear blends. Operations such as anisotropic filter take a variable number of

blends based on the level of anisotropy. Each bilinear blend requires one clock cycle if the amount of

data being blended is 32 bits or less. This includes texture of type RGBA8 and

LUMINANCE8_ALPHA8. For texture formats larger than 32 bits per component, blending can take 2

or more cycles

 The R300+ series supports two floating point texture formats. The first is a standard 32 bit IEEE

float with 8 bits exponent, 23 bits mantissa, and a sign bit. The second is a 16 bit floating point number a

5 bit exponent, a 10 bit mantissa, and a sign bit. Floating point textures have some restrictions to its

usage. They may only be sampled as NEAREST or NEAREST_MIPMAP_NEAREST since floating

point texture filtering is not supported. In the case where floating point texture filtering is required, it

can be simulated in a fragment program. The use of the 16 bit integer per channel format can also be

entertained as an alternative to using the floating point format since filtering is supported for the 16 bit

integer format.

Also, the R300/R400 asics do not support the texture border color when using floating point texture

formats. So only parameters that do not use the border color such as GL_REPEAT and

GL_CLAMP_TO_EDGE are supported as wrap modes. The R500 fully supports texture border colors

regardless of texture format. In all other ways, floating point textures are identical to other textures.

They can be used with the 1D, 2D, 3D, CUBE_MAP, and RECTANGLE targets.

 The maximum texture size supported by the R300 and R400 series is 2048 in all dimensions and

4096 in all dimensions for the R500. Allocating the maximum texture size is impossible since doing so

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

exceeds the 32-bit address space. For optimum performance, individual textures should be kept to sizes

32MB or smaller since it allows the driver more flexibility in where to place the texture in memory.

 The 16 bit integer formats do not support a border color. As a result, the wrap modes CLAMP

and CLAMP _TO_BORDER are not supported for these formats.

 As a final note on performance, an application should attempt to use smaller texture formats

where applicable. Modern 3D graphics is often extremely bandwidth intensive, any reduction in

bandwidth usage often equates to an increase in performance. Judiciously using the compressed texture

formats is one way to reduce bandwidth usage as well as memory footprint. Often textures like base

maps can be compressed with few or no visual artifacts, while textures used as normal maps may suffer

terrible quality degradation. Being careful to selectively reduce texture format sizes will improve

bandwidth with minimal quality loss.

Backend Operations

Blending

 The R300+ series supports most modes of frame buffer blending in use today. It supports the

blend_func_separate extension and the blending operations included in the imaging subset. The

important thing to keep in mind from a performance point of view with the R300+ series is that it can

optimize identity blending operations and save bandwidth. For instance, if the source factor is

DEST_COLOR and the destination factor is ZERO, the blend can be optimized if the pixel is (1,1,1,1).

To enable this optimization, the programmer should either ensure that unneeded quantities are either

masked or set to the identity value for the blend. An example of this is rendering without attention to nor

caring about what is being placed into the destination alpha. If the app either sets the alpha mask to false

or takes care to ensure that the value produced on alpha is the one that is the identity for that blend

equation, then the optimization will be applied. Otherwise, the HW will have to blend those pixels just

to keep the destination alpha correct even though they may never be used.

 The R500 asics family also supports alpha blending for the 4-channel 16-bit floating point and

RGBA1010102 format render targets. One and 2-channel 16-bit floating point format blending is not

supported but 1 and 2-channel formats are generally used for storing non-color values for which

blending is not applicable.

Multisampling

 The R300+ series supports ARB_multisample and is a true multisampling implementation. Each

fragment may be written to two, four, or six samples based on coverage and depth. The pixel formats for

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

multisample buffers are only available when queries are made with WGL_ARB_pixel_format. To get

the most out of multisampling on the R300+ series, the programmer should be aware that the resolve is

done in a gamma corrected space. The result is that blends between extreme values will provide the

perceptually correct value. To allow this to work optimally, the programmer should not attempt to

provide a gamma correction curve. The resolve operation is tuned for an sRGB color space which

expects that the gamma table be linear. This value works on essentially all displays presently in use.

 The R500 asics family also supports multisampling for the 16-bit floating point and

RGBA1010102 format render target to allow for High Dynamic Range rendering. It should be noted

that 16-bit floating point multisampling will significantly increase memory footprint as well as memory

bandwidth usage. The 1010102 format may be a better performance alternative to the 16-bit floating

point format.

Miscellaneous Categories

OpenGL Shading Language (GLSL)

 A programmable vertex and fragment shader program can also be specified using the OpenGL

Shading Language or GLSL. All API functions needed to create, compile and use a GLSL program has

been promoted into OpenGL 2.0 and is supported by all variants of the R300 family of products. The

language specification for GLSL can be found at http://www.opengl.org/documentation/oglsl.html.

The GLSL syntax is similar to the C programming language. The programmer need not worry about

GLSL support since all OpenGL 2.0 compliant HW must support GLSL. The low-level translation of

the program to machine language is hidden from the GLSL programmer. This abstraction allows the

compiler in the graphics driver to seamlessly enable future HW improvements compiling the same

GLSL program.

A GLSL program consists of various shader objects. Currently, it can be a vertex shader or a fragment

shader targeting, respectively, the transform/vertex engine or the fragment shading unit within the

graphics HW. After the shaders are compiled, it is then attached to a program object. The program

object is then linked into the GL pipeline and replaces the targeted fixed pipeline functionality. Refer to

Appendix E for sample vertex, fragment shader code and the code needed to create, compile, and use a

shader and program object.

While GLSL abstracts the resource limitations of the hardware, a programmer must take some care in

developing programs that are well suited to the target hardware. With the rapid expansion of hardware

capabilities and improvements in graphics hardware compiler technology, this is quickly becoming a

smaller problem, but care is still needed to support older graphics HWs. To help identify limitations, the

ATI OpenGL driver will attempt to add a helpful message to the info log at link time if the capabilities

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

of the underlying HW platform have been exceeded. The driver will always report the word “software”

in the info log if the shader forces the driver to not render fully hardware accelerated.

All ATI graphics HW have a few items that deserve special consideration when using GLSL. The first

major item of note is the absence of vertex texture units. This means that vertex texturing is never

available, and all shaders attempting to use texture functions in the vertex shader will fail to link.

Additionally, dynamic index on samplers is presently not supported in either hardware or software. This

means that while it is possible to declare an array of samplers and use it within a shader, if the array

indices are recognized as not being compile time constants, then the shader will fail to compile. Finally,

the full generality required to handle all cases of user defined clip planes is also not supported. As a

result, if the vertex shader writes gl_ClipVertex, the program will use software vertex processing. If a

user wishes to use user clip planes with GLSL on ATI hardware, they can use ftransform and specify the

clip planes in eye-space as they would with fixed function. ATI defines the unspecified result in this

case to be equivalent to fixed function clipping.

In addition to the general caveats, the R300 and R400 asics have some additional GLSL limitations. The

first important item to note is that they lack support for dynamic flow control. As a result, all branching

code paths must execute and extra instructions simulating predication are added to the compiled shader

program to resolve the final solution. Loop branches are also unrolled. The practical result of the lack of

branching support is that flow control attempting to avoid extra work is ineffective on this hardware, and

that deeply nested if statements will place heavy demands on resources. The practical result of the lack

of dynamic loop support is that the driver can only support fairly simple for loops with reasonably small

loop counts in hardware. The R300 and R400 asics also lack support for derivative operations. This

means that dFdx, dFdy, and fwidth will cause the shader to run in software. Finally, the R300 and R400

can support up to three indirections when accessing textures (the R500 asics do not have this restriction).

The compiler will do a good job of rearranging code to avoid running into this limit, but occasionally it

is impossible to avoid. Additionally, when combined with large numbers of texture fetches this

limitation can artificially increase the use of register resources potentially exceeding HW limits.

Finally, the GLSL shaders compete for hardware resources with a few other states. As a result, the user

may see a shader that would otherwise run in hardware fall back to software rendering. The states that

compete for shader resources are anti-aliased points and lines, and stippled lines and polygons.

Additionally, wide points and lines are incompatible with the gl_FragCoord variable.

To ensure the best performance when writing GLSL code, it is best to keep a few simple rules in mind.

First, the hardware described here is essentially a SIMD vector machine. This means that a user should

avoid small optimizations that might be done on a scalar machine. Adding a pair of three component

vectors can actually be cheaper than recognizing that the y component of one of them is always zero and

performing two scalar additions instead. Further, it is typically best to try to take full advantage of all the

built-in functions, as these are coded to make maximal use of the hardware.

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Pixel Transfer Operations

 The flexibility of the R300+ series’ shader pipe allows it to support acceleration on most forms

of draw and copy pixels. The only formats that DrawPixels does not natively support are GLint and

GLuint. The only packed formats that are not natively supported are the BITMAP, 2_3_3_REV,

10_10_10_2, and 5_5_5_1 formats. Additionally, the scale, bias, and zoom operations are all supported

directly by hardware. For non-packed formats, all pixel transfer operations are most efficient when

operating on four component data. This same flexibility exists in the texture specification path, but for

maximum performance textures should be specified in BGRA order. For the internal bit representations

of the various GL pixel formats, refer to Appendix F.

 ReadPixels is presently accelerated only for color components. To get the best performance an

application should be programmed to read colors back in BGRA format as GLubyte’s, GLushort’s, or

GLfloat’s with four components on a 32 bit desktop. To prepare for future acceleration an app should

read back depth values as 32-bit floats.

 While glBitmap is hardware accelerated on the R300+ series, it is relatively performance

intensive. Rendering bitmaps on a 3D scene may cause a noticeable slowdown. To get the best

performance out of bitmaps, they should typically be compiled into a display list. For even better

performance, a user should use textures for rendering widgets and text on top of their 3D screen.

Floating Point Rendering

All R300+ hardware has the capability to render to floating point frame buffers through various

extensions to OpenGL. The preferred method of rendering to a floating point buffer is with the use of

the EXT_framebuffer_object (FBO) extension. This extension supersedes the ARB_pbuffer extensions

in many ways. Most importantly, an FBO allows much greater software efficiency by eliminating the

need to use separate contexts to render to floating point buffers. Regardless of the mechanism used, the

buffers may be created to use either IEEE 32-bit floats or the 16-bit s10e5 floats described previously.

 Certain limitations apply when using floating point buffers on the R300 and R400 hardware and

the user must be aware of them. We decided not to put these limitations into the extensions because we

did not want to create an extension that would need revising in the future when hardware without these

limitations, such as the R500, is available. First, floating point buffers are not displayable on R300 or

R400 series hardware, but 16 bit floating point buffers are displayable on the R500 series. This later

capability is presently unavailable under Microsoft Windows due to limitations with the desktop color

buffer bit depth. As a result, all floating point rendering must be targeted at an offscreen buffer using

either the ARB_pbuffer extension or the FBO extension. Refer to the EXT_framebuffer_object SDK

sample for more information and sample code on the topic

(http://www.ati.com/developer/radeonSDK.html). Floating point buffers also lack hardware support for

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

some of the operations after specular add or fragment program execution. Enabling any of these

operations will force the implementation to fall back to software rendering. The unsupported operations

are:

• alpha test (Supported for 16-bit floats on the R500 series)

• blending (Supported for 16-bit floats on the R500 series)

• fog

The supported operations are:

• depth test

• stencil test

• color mask.

There are also operations that are do not make sense when applied to floats. These operations are:

• dither

• logical operation

Data Formats

 The R300+ series supports three different floating point numeric formats that are in some way

exposed to the programmer. When performing calculations that require an extensive amount of

precision, the programmer should be familiar with these formats, where they occur, and what their

limitations are. Textures and frame buffers may use either a 16 bit or 32 bit floating point format. The 32

bit format is identical to a single precision IEEE 754 float, except that denormals will be interpreted as

zero. The 16 bit floating point format behaves in the same manner, but it naturally has different range

and precision statistics. Additionally, the R300 and R400 asics use a 24 bit format for internal shader

computations while the R500 uses a 32 bit floating point format. The layout of the formats and their

limitations are in the following tables.

sign exponent Mantissa
 31 30 23 22 0

sign exponent Mantissa
 23 22 16 15 0

sign exponent mantissa
 15 14 10 9 0

Format Mantissa Exponent Max Value Min Positive Value

16 bit 10 bits 5 bits 6.550400E+04 5.960464E-08

24 bit 16 bits 7 bits 1.844660E+19 2.168404E-19

32 bit 23bits 8 bits 3.402823466e+38 1.175494E-38

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Multiple Output Colors and Destination Color Buffers

 The R300+ series supports simultaneous rendering to multiple color buffers. This allows it to

fully accelerate render modes such as FRONT_AND_BACK. Additionally, the shader may output

separate colors for each of the buffers being written to. These independent color outputs and the control

of their associated destination buffers are defined in the GL_ATI_draw_buffers extension. The R300+

series supports up to four simultaneous color outputs through this extension.

 Under fixed function OpenGL, the same color value will be written to all of the draw buffers.

When fragment programs are enabled, they may optionally write separate outputs for each of the draw

buffers. In either case, all the buffers share the same alpha-blending and color masking state.

Appendix A: R300+ series Extension and New Feature Usage

Accumulations buffers

 The R300+ series is the first consumer level card to accelerate accumulation buffers in hardware.

It represents the data using a signed 16-bit format, and all accumulation operations are directly

supported. The user should be careful to only select a pixel format with an accumulation buffer if

desired. Otherwise, using accumulation buffers can cause a memory overhead. But the driver tries to

avoid the overhead by detecting when the buffer goes unused.

 All accumulations buffer rendering is accomplished using the entry point glAccum and no

extensions to the standard accumulation capabilities are provided. If enhanced accumulation operations

are desired, they can be accomplished via fragment programs and rendering to FBOs.

ARB_vertex_program

 The R300+ series presently implements ARB_vertex_program as its primary method for

specifying a user vertex program. Please see the information above for implementation details.

ARB_fragment_program

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

 The R300+ series presently implements ARB_fragment_program as its primary method for

exposing per-fragment programmability to the user. Implementation details on how it operates on the

R300+ are included above.

ARB_depth_texture, ARB_shadow, ARB_shadow_ambient

 The R300+ series supports shadow buffers via ARB_depth_texture, ARB_shadow and

ARB_shadow_ambient. The R300+ series only supports NEAREST and

NEAREST_MIPMAP_NEAREST filtering on depth textures. If better filtering is desired, the user

should write a fragment program and perform whatever version of filtering is desired.

ATI_separate_stencil

 The R300+ series supports an extension to accelerate the rendering of stencil shadow volumes in

the form of ATI_separate_stencil. This extension allows an application to specify different stencil

update functions for primitives based on whether they are front or back facing. This reduces the

transform overhead in when using common shadow volume techniques, since the geometry must only be

sent once rather than once for front faces and once for back faces.

ATI_draw_buffers

 The multiple output colors are defined using the ATI_draw_buffers fragment program option

which extends the fragment program grammar with result.color[n]. The draw buffers for each of the

output colors is defined with glDrawBuffersATI(GLsizei n, const GLenum *bufs).

ATI_pixel_format_float

 This extension provides a new pixel format type for floating point data. This pixel format is only

available for off-screen rendering using the ARB_pbuffer or the EXT_framebuffer_object extension. On

the R300+ series, certain rendering capabilities are either restricted or emulated in software when

rendering to targets with a floating point pixel format. The exact limitations are contained in the section

“Floating Point Rendering”.

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

ATI_texture_float

 Floating point texture formats are exposed through the ATI_texture_float extension. As noted in

the texturing section, the floating point formats have certain limitations that developer should be aware

of. The additional formats are exposed as new internal formats for all the base texture formats. (RGB,

RGBA, etc) The new internal formats have versions for both 16-bit floating point numbers and 32-bit

floating point numbers.

Appendix B: Product family chart

Product Chip

Family

Bus Memory Fragment

Engines

Vertex

Engines
Radeon 9700 (Pro) R300 AGP 128 MB 8 4

Radeon 9500 R300 AGP 128 MB 4 4

Radeon 9500 Pro R300 AGP 128 MB 8 4

Radeon 9800 (Pro) R350 AGP 128/256 MB 8 4

Radeon 9800XT R360 AGP 256 MB 8 4

FireGL X1 R300 AGP 128 MB 8 4

FireGL X1-256 R300 AGP Pro 256 MB 8 4

FireGL Z1 R300 AGP 128 MB 4 4

Radeon 9600 (Pro) RV350 AGP 128 MB 4 2

Radeon 9600XT RV360 AGP 128 MB 4 2

FireGL T2 RV350 AGP 128 MB 4 2

FireGL T2e RV360 AGP 128 MB 4 2

Radeon X800 R420/R423 AGP/PCI-E 256 MB 12 6

Radeon X800PE R420/R423 AGP/PCI-E 256 MB 12 6

FireGL V3100 RV370 PCI-E 128 MB 4 2

FireGL V3200 RV380 PCI-E 128 MB 4 2

FireGL V5100 R423 PCI-E 128 MB 12 6

FireGL V7100 R423 PCI-E 256 MB 12 6

Radeon X700 RV410 PCI-E 128/256 MB 8 6

FireGL V5000 RV410 PCI-E 128 MB 8 6

Radeon X600 RV380 PCI-E 128/256 MB 4 2

Radeon X300 RV370 PCI-E 128 MB 4 2

FireGL V3300 RV515Pro-GL PCI-E 128 MB 4 2

FireGL V3400 RV530Pro-GL PCI-E 128 MB 4 (3x ALU) 5

FireGL V5200 RV530XT-GL PCI-E 256 MB 4 (3x ALU) 5

FireGL V7200 R520XT-GL PCI-E 256 MB 16 8

FireGL V7300 R520XT-GL PCI-E 512 MB 16 8

FireGL V7350 R520XT-GL PCI-E 1024MB 16 8

Radeon X1300 RV515 PCI-E 128/256 MB 4 2

Radeon X1600 RV530 PCI-E 256/512 MB 4 (3x ALU) 5

Radeon X1800 R520 PCI-E 256/512 MB 16 8

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Radeon X1900 R580 PCI-E 512 MB 16 (3x ALU) 8

Appendix C: Rendering using Vertex Buffer Objects

Below is a coding example on how to create, bind and draw using a Vertex Buffer Object and the

glDrawElements call. More information can be found at

http://www.ati.com/developer/sdk/RadeonSDK/Html/Info/Extensions/GL_ARB_vertex_buffer.html.

#include <glATI.h>

// Initialize a VBO array buffer
glGenBuffersARB(1, &unVtxBufferObj);
glBindBufferARB(GL_ARRAY_BUFFER_ARB, unVtxBufferObj);

// Create data store of the buffer object and copy vertex data
// into the buffer object
glBufferDataARB(GL_ARRAY_BUFFER_ARB,
 vCount * 3 * sizeof(GLfloat), vtxArray,
 GL_STATIC_DRAW_ARB);

// Do the same for indexed arrays
glGenBuffersARB(1, &unIndexBufferObj);
glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, unIndexBufferObj);
glBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB,
 N_PRIMS_TO_DRAW * sizeof(GLuint) * 3,
 elemIdxArray,
 GL_STATIC_DRAW_ARB);

// Enable vertex arrays
glEnableClientState(GL_VERTEX_ARRAY);

// Set the vertex array to use the buffer object by setting
// the vertex pointer to NULL
glVertexPointer(4, GL_FLOAT, 0, NULL);

// Draw elements using the indexed buffer object by also
// passing in a NULL index pointer
glDrawElements(GL_TRIANGLES, (N_PRIMS_TO_DRAW*3),
 GL_UNSIGNED_INT, 0);

// Delete the buffer objects
glDeleteBuffersARB(1, &unVtxBufferObj);
glDeleteBuffersARB(1, &unIndexBufferObj);

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Appendix D: Creating and binding an ARB_vertex and
ARB_fragment program

#include <glATI.h>

// Vertex Program
const char vertexProg[] =
"!!ARBvp1.0 \n"
"PARAM black = { 1.0, 0.0, 0.0, 1.0}; \n"
"PARAM c0 = { 1.0, 0.0, 0.0, 0.0}; \n"
"PARAM c1 = { 0.0, 1.0, 0.0, 0.0}; \n"
"PARAM c2 = { 0.0, 0.0, 1.0, 0.0}; \n"
"PARAM c3 = { 0.0, 0.0, 0.0, 1.0}; \n"
"ATTRIB vtx = vertex.position; \n"
"OUTPUT oV = result.position; \n"
"OUTPUT oC = result.color; \n"
"MOV oV, vtx; \n"
"MOV oC, black; \n"
" \n"
"END";

// Fragment Program
const char fragmentProg[] =
"!!ARBfp1.0 \n"
"MOV result.color, fragment.color; \n"
"END";

// Initialize, compile, and bind a vertex and fragment program
glGenProgramsARB(2, VFprogArr);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, VFprogArr[0]);
glProgramStringARB(GL_VERTEX_PROGRAM_ARB,
 GL_PROGRAM_FORMAT_ASCII_ARB,
 (GLsizei)(strlen(vertexProg)), vertexProg);
if (glGetError() != GL_NO_ERROR) {
 printf("Vertex Shader failed compile: %s\n",
 glGetString(GL_PROGRAM_ERROR_STRING_ARB));
}
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, VFprogArr[1]);
glProgramStringARB(GL_FRAGMENT _PROGRAM_ARB,
 GL_PROGRAM_FORMAT_ASCII_ARB,
 (GLsizei)(strlen(fragmentProg)), fragmentProg);
if (glGetError() != GL_NO_ERROR) {
 printf("Fragment Shader failed compile: %s\n",
 glGetString(GL_PROGRAM_ERROR_STRING_ARB));
}

// Enable vertex program

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

glEnable(GL_VERTEX_PROGRAM_ARB);
glEnable(GL_FRAGMENT_PROGRAM_ARB);
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, VFprogArr[0]);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, VFprogArr[1]);

// Render
// ...

// Delete the program
glBindProgramARB(GL_VERTEX_PROGRAM_ARB, 0);
glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, 0);
glDeleteProgramsARB(2, VFprogArr);

Appendix E: Tables mapping ARB_vertex_program and
ARB_fragment_program to HW resources

The following tables provide guideline for the number of ops required for each of the instructions in

ARB_vertex_program and ARB_fragment_program and information on the resources available and the

resource usage by certain instructions.

ARB_vertex_program

Instruction

HW Instructions HW Temps HW Constants

ABS 1 0 0

FLR 2 1 0

FRC 1 0 0

LIT 1 0 0

MOV 1 0 0

EX2 1 0 0

EXP 1 0 0

LG2 1 0 0

LOG 1 0 0

RCP 1 0 0

RSQ 1 0 0

POW 1 0 0

ADD 1 0 0

DP3 1 0 0

DP4 1 0 0

DPH 1 0 0

DST 1 0 0

MAX 1 0 0

MIN 1 0 0

MUL 1 0 0

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

SGE 1 0 0

SLT 1 0 0

SUB 1 0 0

XPD 2 1 0

MAD 1 0 0

SWZ 0/1 (R300, R400), 0

(R500)

0 0

ARB_fragment_program

Instruction

HW Instructions HW Temps HW Constants

ABS 0-1 0 0

FLR 2 1 0

FRC 1 0 0

LIT 8 1 1

MOV 0-1 0 0

COS 11 (R300, R400),

1 (R500)

2 (R300, R400), 0

(R500)

3

EX2 1 0 0

LG2 1 0 0

RCP 1 0 0

RSQ 1 0 0

SIN 10 (R300, R400)

1 (R500)

2 (R300, R400), 0

(R500)

3

SCS 6-8 (R300, R400), 2

(R500)

1 (R300, R400), 0

(R500)

2

POW 3 1 0

ADD 1 0 0

DP3 1 0 0

DP4 1 0 0

DPH 2 (R300, R400), 1

(R500)

1 (R300, R400), 0

(R500)

0

DST 3 0 0

MAX 1 0 0

MIN 1 0 0

MUL 1 0 0

SGE 2 1 0

SLT 2 1 0

SUB 1 0 0

XPD 2 1 0

CMP 1 0 0

LRP 1-2 0-1 0

MAD 1 0 0

SWZ 1-4 (R300, R400), 1

(R500)

1 (R300, R400), 0

(R500)

0

TEX 1 Texture 0 0

TXP 1 Texture 0 0

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

TXB 1 Texture 0 0

KIL 1 Texture 0 0

Appendix F: Using the OpenGL Shading Language

Below is a coding example on how to create, compile and link a GLSL program object. More info about

GLSL and the language specification can be found at http://www.opengl.org/documentation/oglsl.html.

// Vertex Shader
const char vertexProg[] =
“void main() \n”
“{ \n”
“ // transform vertices into projection space \n”
“ gl_Position = gl_ModelViewProjectionMatrix*gl_Vertex;\n”
“ \n”
“ // output color \n”
“ gl_FrontColor = gl_Color; \n”
“}”;

// Fragment Shader
const char fragmentProg[] =
“void main() \n”
“{ \n”
“ // Fragment color \n”
“ gl_FragColor = gl_Color; \n”
“}”;

// Create and compile a vertex and fragment shader object
vshader = glCreateShaderObject(GL_VERTEX_SHADER);
glShaderSource(vshader, 1,(const GLcharARB**) &vertexProg,NULL);
glCompileShader(vshader);
fShader = glCreateShaderObject(GL_FRAGMENT_SHADER);
glShaderSource(fShader, 1,(const GLcharARB**) &fragmentProg,NULL);
glCompileShader(fShader);

// Attach and use the new shader programs
prog = glCreateProgramObject();
glAttachObject(prog, vshader);
glAttachObject(prog, fShader);
glLinkProgramObject(prog);
glUseProgramObject(prog);

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

Appendix G: Table of internal bit representation of the GL Pixel
and Texture formats

Internal Representation of Pixel and Texture Formats

Format Red

bits

Green

bits

Blue bits Alpha

bits

Lum bits Int bits Depth

bits

Unused

Bits

RGBA8 8 8 8 8

RGB8 8 8 8 8

RGB10 10 10 10 2

RGB12 16 16 16 16

RGB16 16 16 16 16

RGB10_A2 10 10 10 2

RGBA12 16 16 16 16

RGBA16 16 16 16 16

RGB5 5 6 5

RGB4 5 6 5

RGBA4 4 4 4 4

ALPHA4 8

ALPHA8 8

ALPHA12 16

ALPHA16 16

LUM4 8

LUM8 8

LUM12 16

LUM16 16

LUM4_A4 8 8

LUM8_A8 8 8

LUM12_A4 16 16

LUM12_A12 16 16

LUM16_A16 16 16

INT4 8

INT8 8

INT12 16

INT16 16

RGBA32F 32 32 32 32

RGBA16F 16 16 16 16

RGB32F 32 32 32 32

RGB16F 16 16 16 16

ALPHA32F 32

ALPHA16F 32

INT32F 32

http://ati.amd.com/developer
Copyright © 2007 Advanced Micro Devices Inc. ATI, the ATI logo, CrossFire, Radeon
and The Ultimate Visual Experience are trademarks of Advanced Micro Devices, Inc.

INT16F 16

LUM32F 32

LUM16F 16

LUM_A32F 32 32

LUM_A16F 16 16

DEPTH32 16

DEPTH24 16

DEPTH16 16

Appendix H: Tools and Libraries to facilitate OpenGL development

GLUT and GLU are the most commonly used utility libraries in OpenGL development. The GLUT

library allows one to develop OpenGL applications that are agnostic of the underlying

graphics/windowing subsystem. By using the GLUT library, the OpenGL application becomes portable

across many different platforms without the need to write platform specific code.

The GLU library exposes various utility functions that help in developing an OpenGL application such

as texturing utilities (ie mipmap creation) and drawing functionality (i.e. NURBS).

 The gDEBugger application, developed by Graphic Remedy (http://www.gremedy.com/), can be

used to debug and profile one’s OpenGL application. With gDEBugger, a developer can analyze the

OpenGL API call stream to debug or optimize the application. A trial version of the application can be

found at their website.

