
The Wayland Display Server

Kristian Hgsberg
krh@bitplanet.net

July 26, 2010

1 Wayland Overview

• wayland is a protocol for a new display server.

• wayland is an implementation

1.1 Replacing X11

Over time, a lot of functionality have slowly moved out of the X server and into
client-side libraries or kernel drivers. One of the first components to move out
was font rendering, with freetype and fontconfig providing an alternative to
the core X fonts. Direct rendering OpenGL as a graphics driver in a client side
library. Then cairo came along and provided a modern 2D rendering library
independent of X and compositing managers took over control of the rendering
of the desktop. Recently with GEM and KMS in the Linux kernel, we can do
modesetting outside X and schedule several direct rendering clients. The end
result is a highly modular graphics stack.

1.2 Make the compositing manager the display server

Wayland is a new display server building on top of all those components. We
are trying to distill out the functionality in the X server that is still used by
the modern Linux desktop. This turns out to be not a whole lot. Applications
can allocate their own off-screen buffers and render their window contents by
themselves. In the end, whats needed is a way to present the resulting window
surface to a compositor and a way to receive input. This is what Wayland
provides, by piecing together the components already in the eco-system in a
slightly different way.

X will always be relevant, in the same way Fortran compilers and VRML
browsers are, but its time that we think about moving it out of the critical path
and provide it as an optional component for legacy applications.

1



2 Wayland protocol

2.1 Basic Principles

The wayland protocol is an asynchronous object oriented protocol. All requests
are method invocations on some object. The request include an object id that
uniquely identifies an object on the server. Each object implements an inter-
face and the requests include an opcode that identifies which method in the
interface to invoke.

The wire protocol is determined from the C prototypes of the requests and
events. There is a straight forward mapping from the C types to packing the
bytes in the request written to the socket. It is possible to map the events and
requests to function calls in other languages, but that hasn’t been done at this
point.

The server sends back events to the client, each event is emitted from an
object. Events can be error conditions. The event includes the object id and the
event opcode, from which the client can determine the type of event. Events
are generated both in repsonse to a request (in which case the request and the
event constitutes a round trip) or spontanously when the server state changes.

• state is broadcast on connect, events sent out when state change. client
must listen for these changes and cache the state. no need (or mechanism)
to query server state.

• server will broadcast presence of a number of global objects, which in
turn will broadcast their current state

2.2 Connect Time

• no fixed format connect block, the server emits a bunch of events at con-
nect time

• presence events for global objects: output, compositor, input devices

2.3 Security and Authentication

• mostly about access to underlying buffers, need new drm auth mecha-
nism (the grant-to ioctl idea), need to check the cmd stream?

• getting the server socket depends on the compositor type, could be a
system wide name, through fd passing on the session dbus. or the client
is forked by the compositor and the fd is already opened.

2.4 Creating Objects

• client allocates object ID, uses range protocol

• server tracks how many IDs are left in current range, sends new range
when client is about to run out.

2



2.5 Compositor

The compositor is a global object, advertised at connect time.
Interface compositor
Requests
create surface(id)
commit()
Events
device(device)
acknowledge(key, frame)
frame(frame, time)

• a global object

• broadcasts drm file name, or at least a string like drm:/dev/card0

• commit/ack/frame protocol

2.6 Surface

Created by the client.
Interface surface
Requests
destroy()
attach()
map()
damage()
Events
no events

Needs a way to set input region, opaque region.

2.7 Input

Represents a group of input devices, including mice, keyboards. Has a key-
board and pointer focus. Global object. Pointer events are delivered in both
screen coordinates and surface local coordinates.

Interface cache
Requests
no requests
Events
motion(x, y, sx, sy)
button(button, state, x, y, sx, sy)
key(key, state)
pointer focus(surface)
keyboard focus(surface, keys)

Talk about:

3



• keyboard map, change events

• xkb on wayland

• multi pointer wayland

A surface can change the pointer image when the surface is the pointer
focus of the input device. Wayland doesn’t automatically change the pointer
image when a pointer enters a surface, but expects the application to set the
cursor it wants in response the the motion event. The rationale is that a client
has to manage changing pointer images for UI elements within the surface in
response to motion events anyway, so we’ll make that the only mechanism for
setting changing the pointer image. If the server receives a request to set the
pointer image after the surface loses pointer focus, the request is ignored. To
the client this will look like it successfully set the pointer image.

The compositor will revert the pointer image back to a default image when
no surface has the pointer focus for that device. Clients can revert the pointer
image back to the default image by setting a NULL image.

What if the pointer moves from one window which has set a special pointer
image to a surface that doesn’t set an image in response to the motion event?
The new surface will be stuck with the special pointer image. We can’t just
revert the pointer image on leaving a surface, since if we immediately enter a
surface that sets a different image, the image will flicker. Broken app, I sup-
pose.

2.8 Output

A output is a global object, advertised at connect time or as they come and go.
Interface output
Requests
no requests
Events
geometry(width, height)

• laid out in a big (compositor) coordinate system

• basically xrandr over wayland

• geometry needs position in compositor coordinate system

• events to advertise available modes, requests to move and change modes

2.9 Shared object cache

Cache for sharing glyphs, icons, cursors across clients. Lets clients share iden-
tical objects. The cache is a global object, advertised at connect time.

4



Interface cache
Requests
upload(key, visual, bo, stride, width, height)
Events
item(key, bo, x, y, stride)
retire(bo)

• Upload by passing a visual, bo, stride, width, height to the cache.

• Upload returns a bo name, stride, and x, y location of object in the buffer.
Clients take a reference on the atlas bo.

• Shared objects are refcounted, freed by client (when purging glyphs from
the local cache) or when a client exits.

• Server can’t delete individual items from an atlas, but it can throw out an
entire atlas bo if it becomes too sparse. The server sends out an retire
event when this happens, and clients must throw away any objects from
that bo and reupload. Between the server dropping the atlas and the
client receiving the retire event, clients can still legally use the old atlas
since they have a ref on the bo.

• cairo needs to hook into the glyph cache, and maybe also a way to create
a read-only surface based on an object form the cache (icons).

cairo wayland create cached surface(surface-data).

2.10 Drag and Drop

Multi-device aware. Orthogonal to rest of wayland, as it is its own toplevel
object. Since the compositor determines the drag target, it works with trans-
formed surfaces (dragging to a scaled down window in expose mode, for ex-
ample).

Issues:

• we can set the cursor image to the current cursor + dragged object, which
will last as long as the drag, but maybe an request to attach an image to
the cursor will be more convenient?

• Should drag.send() destroy the object? There’s nothing to do after the
data has been transferred.

• How do we marshall several mime-types? We could make the drag setup
a multi-step operation: dnd.create, drag.offer(mime-type1, drag.offer(mime-
type2), drag.activate(). The drag object could send multiple offer events
on each motion event. Or we could just implement an array type, but
that’s a pain to work with.

• Middle-click drag to pop up menu? Ctrl/Shift/Alt drag?

5



• Send a file descriptor over the protocol to let initiator and source ex-
change data out of band?

• Action? Specify action when creating the drag object? Ask action?

New objects, requests and events:

• New toplevel dnd global. One method, creates a drag object: dnd.start(new
object id, surface, input device, mime types). Starts drag
for the device, if it’s grabbed by the surface. drag ends when button is
released. Caller is responsible for destroying the drag object.

• Drag object methods:

drag.destroy(id), destroy drag object.

drag.send(id, data), send drag data.

drag.accept(id, mime type), accept drag offer, called by target sur-
face.

• Drag object events:

drag.offer(id, mime-types), sent to potential destination surfaces
to offer drag data. If the device leaves the window or the originator can-
cels the drag, this event is sent with mime-types = NULL.

drag.target(id, mime-type), sent to drag originator when a target
surface has accepted the offer. if a previous target goes away, this event
is sent with mime-type = NULL.

drag.data(id, data), sent to target, contains dragged data. ends
transaction on the target side.

Sequence of events:

• The initiator surface receives a click (which grabs the input device to that
surface) and then enough motion to decide that a drag is starting. Way-
land has no subwindows, so it’s entirely up to the application to decide
whether or not a draggable object within the surface was clicked.

• The initiator creates a drag object by calling the create dragmethod on
the dnd global object. As for any client created object, the client allocates
the id. The create drag method also takes the originating surface, the
device that’s dragging and the mime-types supported. If the surface has
indeed grabbed the device passed in, the server will create an active drag
object for the device. If the grab was released in the meantime, the drag
object will be in-active, that is, the same state as when the grab is released.
In that case, the client will receive a button up event, which will let it
know that the drag finished. To the client it will look like the drag was
immediately cancelled by the grab ending.

The special mime-type application/x-root-target indicates that the initia-
tor is looking for drag events to the root window as well.

6



• To indicate the object being dragged, the initiator can replace the pointer
image with an larger image representing the data being dragged with the
cursor image overlaid. The pointer image will remain in place as long as
the grab is in effect, since the initiating surface keeps pointer focus, and
no other surface receives enter events.

• As long as the grab is active (or until the initiator cancels the drag by
destroying the drag object), the drag object will send offer events to
surfaces it moves across. As for motion events, these events contain the
surface local coordinates of the device as well as the list of mime-types
offered. When a device leaves a surface, it will send an offer event with
an empty list of mime-types to indicate that the device left the surface.

• If a surface receives an offer event and decides that it’s in an area that can
accept a drag event, it should call the accept method on the drag object
in the event. The surface passes a mime-type in the request, picked from
the list in the offer event, to indicate which of the types it wants. At this
point, the surface can update the appearance of the drop target to give
feedback to the user that the drag has a valid target. If the offer event
moves to a different drop target (the surface decides the offer coordinates
is outside the drop target) or leaves the surface (the offer event has an
empty list of mime-types) it should revert the appearance of the drop
target to the inactive state. A surface can also decide to retract its drop
target (if the drop target disappears or moves, for example), by calling
the accept method with a NULL mime-type.

• When a target surface sends an accept request, the drag object will
send a target event to the initiator surface. This tells the initiator that
the drag currently has a potential target and which of the offered mime-
types the target wants. The initiator can change the pointer image or drag
source appearance to reflect this new state. If the target surface retracts
its drop target of if the surface disappears, a target event with a NULL
mime-type will be sent.

If the initiator listed application/x-root-target as a valid mime-type, drag-
ging into the root window will make the drag object send a target event
with the application/x-root-target mime-type.

• When the grab is released (indicated by the button release event), if the
drag has an active target, the initiator calls the send method on the drag
object to send the data to be transferred by the drag operation, in the
format requested by the target. The initiator can then destroy the drag
object by calling the destroy method.

• The drop target receives a data event from the drag object with the re-
quested data.

MIME is defined in RFC’s 2045-2049. A registry of MIME types is main-
tained by the Internet Assigned Numbers Authority (IANA).

7



ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/

3 Types of compositors

3.1 System Compositor

• ties in with graphical boot

• hosts different types of session compositors

• lets us switch between multiple sessions (fast user switching, secure/personal
desktop switching)

• multiseat

• linux implementation using libudev, egl, kms, evdev, cairo

• for fullscreen clients, the system compositor can reprogram the video
scanout address to source fromt the client provided buffer.

3.2 Session Compositor

• nested under the system compositor. nesting is feasible because protocol
is async, roundtrip would break nesting

• gnome-shell

• moblin

• compiz?

• kde compositor?

• text mode using vte

• rdp session

• fullscreen X session under wayland

• can run without system compositor, on the hw where it makes sense

• root window less X server, bridging X windows into a wayland session
compositor

8



3.3 Embbedding Compositor

X11 lets clients embed windows from other clients, or lets client copy pixmap
contents rendered by another client into their window. This is often used for
applets in a panel, browser plugins and similar. Wayland doesn’t directly al-
low this, but clients can communicate GEM buffer names out-of-band, for ex-
ample, using d-bus or as command line arguments when the panel launches
the applet. Another option is to use a nested wayland instance. For this, the
wayland server will have to be a library that the host application links to. The
host application will then pass the wayland server socket name to the embed-
ded application, and will need to implement the wayland compositor interface.
The host application composites the client surfaces as part of it’s window, that
is, in the web page or in the panel. The benefit of nesting the wayland server
is that it provides the requests the embedded client needs to inform the host
about buffer updates and a mechanism for forwarding input events from the
host application.

• firefox embedding flash by being a special purpose compositor to the
plugin

4 Implementation

what’s currently implemented

4.1 Wayland Server Library

libwayland-server.so

• implements protocol side of a compositor

• minimal, doesn’t include any rendering or input device handling

• helpers for running on egl and evdev, and for nested wayland

4.2 Wayland Client Library

libwayland.so

• minimal, designed to support integration with real toolkits such as Qt,
GTK+ or Clutter.

• doesn’t cache state, but lets the toolkits cache server state in native objects
(GObject or QObject or whatever).

9



4.3 Wayland System Compositor

• implementation of the system compositor

• uses libudev, eagle (egl), evdev and drm

• integrates with ConsoleKit, can create new sessions

• allows multi seat setups

• configurable through udev rules and maybe /etc/wayland.d type thing

4.4 X Server Session

• xserver module and driver support

• uses wayland client library

• same X.org server as we normally run, the front buffer is a wayland sur-
face but all accel code, 3d and extensions are there

• when full screen the session compositor will scan out from the X server
wayland surface, at which point X is running pretty much as it does na-
tively.

10


