
Wayland
Kristian Høgsberg Kristensen
kristian.h.kristensen@intel.com



Who am I

● Core X developer since 2004 (at Red Hat)
● AIGLX to enable GL compositors
● DRI2 lets GL applications work in a 

composited environment
● Not developing Wayland because I don't 

know how X works



What is Wayland

● New display server architecture
● Integrates server, WM and compositor
● No rendering API, all direct rendering

● Sounds ambitiuos, but we're largely just 
consolidating existing practices



Breif review of how X used to work and 
changes we've made over the years.
● X used to do font management, rendering.
● Toolkits used to use sub-windows for 

widgets
● Modesetting and acceleration code was all 

tied up in X specific drivers
● Sharing the GPU between applications 

wasn't possible or grossly inefficient.
● The X server had input drivers to parse a 

mess of different input device serial formats.

Where do we come from



What is a compositor?

Biggest change in recent years
● Application renders into their own private 

color buffer
● The compositor renders the final desktop by 

painting those buffers on the screen.
● In X applications rendered into the front 

buffer, divided up by the clipping rectangles.
● Composited desktop is a basic 

expectation/requirement today.
● Extra copy, more memory.



What is a compositor?

● Wayland makes the compositor the display 
server.

● Applications talk directly to the compositor.
● The compositor reads input from the input 

devices and distributes to the applications.
● The applications push their color buffers 

directly to the compositor, which renders the 
desktop.



How is Wayland feasible?

Server side:
● Reuses open source driver eco-system.
● Compositor uses KMS to bring up display 

and manage pageflipping and planes.
● Compositor renders using EGL/GLES2 to 

the KMS buffers.
● Read input from evdev devices.
● No hardware specific code in the server.



How is Wayland feasible?

Server side:
● Weston is a Wayland compositor written 

from scratch, the Wayland reference 
compositor.
○ Less than 10kloc, running this presentation!

● Existing X compositors (mutter, kwin, 
enlightenment etc) can be modified to also 
be Wayland compositors.

● Single process UIs on KMS/DirectFB can be 
made Wayland servers and incorporate 
content from external applications.



How is Wayland feasible?

Client side:
● Port toolkits: GTK+ 3, Qt 5, EFL, Clutter, 

SDL
● Rendering and fonts all client side in libs
All works in progress. Challenges:
● Port away from X rendering
● Client side decorations
● No grabs
● Only surface local coordinates
● Per-app X specific access



Driver Support

● Short version: "If you have KMS and can run 
DRI2, you can run Wayland"

● Longer version
○ Weston needs KMS, and an EGL stack that 

implements the Wayland compositor extension.
○ Wayland clients depends on the Wayland EGL 

platform.
○ Mesa and the Linux kernel provides all this for most 

Intel, nVidia and AMD chipsets.



The Big Plan

We expect that we can release Wayland 1.0 
this year:
● 0.85, developer snapshot, protocol changes 

planned (released Feb 9, 2012)
● 0.90, starting beta, protocol frozen
● 0.9x, release candidates
● 1.0, first stable release

○ Marks beginning of stable protocol and API.
○ Not world domination.
○ Somewhere in second half of 2012.



Wayland 1.0

● First stable release of Wayland protocol and 
libraries.

● Toolkits can rely on a stable protocol and 
API form this point on.

● Changes and additions will be done in a 
backwards fashion.

● Release of Weston compositor 1.0 as well.



Questions?


