
CHAPTER 1 WHIRL Intermediate Language
Specification
1.1 Introduction . 2

1.2 Compilation Targets . . 2

1.3 The Levels of WHIRL . 3
1.3.1 Very High (VH) WHIRL 6
1.3.2 High (H) WHIRL 6
1.3.3 Mid (M) WHIRL 6
1.3.4 Low (L) WHIRL 7
1.3.5 Very Low (VL) WHIRL 7

1.4 The Components of WHIRL . 7
1.4.1 Operators 8
1.4.2 Result and Descriptor Types 8
1.4.3 Supported Data Types 8
1.4.4 Kid Pointers 10
1.4.5 Next and Previous Pointers 10
1.4.6 Offset 10
1.4.7 Mapping Mechanism 10
1.4.8 Source Position Information 11
1.4.9 Additional Fields 11

1.4.10 WHIRL Node Layout 12

1.5 Structured Control Flow Statements 13

1.6 Other Control Flow Statements 15

1.7 Calls . . 18

1.8 Other Statements . 22

1.9 Memory Accesses . 25

1.10 Bit-field Representation . 28

1.11 Pseudo-registers . 29

1.12 Other Leaf Operators . 31

1.13 Type Conversions . . 33

1.14 High Level Type Specification 34

1.15 Expression Operators . 37
1.15.1 Unary Operations 37
1.15.2 Binary Operations 40
1.15.3 Ternary Operations 45
1.15.4 N-ary Operations 45

1.16 Intrinsics . 46

1.17 Aggregates Specification . 47

1.18 ASCII WHIRL Format . . 49

Index of Operators 51
5/10/00

Page 2 WHIRL Intermediate Language Specification
1.1 Introduction

This document discusses WHIRL, the intermediate language (IR) for the
SGI Pro64™ compiler. Using a common IR enables a compiler to sup-
port multiple languages and multiple processor targets. The different
front-ends of the SGI Pro64 compiler translate the different languages to
WHIRL. The SGI Pro64 compiler has a sophicated back-end composed
of multiple components: the inter-procedural analyzer and optimizer
(IPA), loop-nest optimizer (LNO), global scalar optimizer (WOPT) and
code generator (CG). WHIRL serves as the common interface among all
these components.

Adapting a common intermediate representation for as many phases of
the compilation process as possible has numerous advantages. In the
compilation process, some optimization passes like constant propagation,
dead code elimination, and various liveness problems, have to be re-ap-
plied at different times and in different components of the compiler. With
a common IR, a single implementation of an optimization pass is suffi-
cient. Communication between the compilation phases is also easier,
since they work under the same medium.

WHIRL is designed to support C, C++, Java, FORTRAN77 and
FORTRAN90. It is expected that additional programming languages can
be targeted to WHIRL without substantial difficulties.

This document is intended to be a clear, precise and complete specifica-
tion of WHIRL. A compiler front-end vendor should be able to port their
front-end to WHIRL based on this document and using the WHIRL soft-
ware package. The generated WHIRL code should not assume any se-
mantics other than what is specified in this document; otherwise it is
considered incorrect WHIRL.

A separate document describes the symbol table portion of WHIRL.

1.2 Compilation Targets

WHIRL is designed to support effective compilation of program code to
multiple target processor architectures. As such, the WHIRL generated
by the front-ends does not assume specific target processor characteris-
tics. Instead, it targets the abstract C machine that models the semantics
of the C programming language. In particular, integers are promoted to
either 32 or 64 bits beforechwwww
5/10/00

The Levels of WHIRL Page 3
being involved in computations.

As compilation proceeds, the code sequence at lower levels of WHIRL
will more accurately reflect the target machine’s support of program op-
erations. At lower levels of WHIRL, the code generated is different for
different target processor, because the representation is restricted to what
is actually supported in the target ISA. This is necessary for the back-end
to produce optimal code sequences for each target processor. More de-
tails are given in the next Section.

1.3 The Levels of WHIRL

Nowadays, optimization is an indispensible part of the compiler, and
compiler back-ends have grown to become larger and more complicated.
As we add to the classes of optimizations that the compiler has to per-
form, we are increasing the complexity of the compiler back-end at the
same time. With each new optimization that we add, we have to be more
concerned about the robustness of the compiler, because each new opti-
mization is one more source of instability for the entire compiler. Thus, it
is necessary to find ways to simplify each optimization without compro-
mising on the quality of the output code. Since optimizations operate on
IRs, it is important that we design the most efficient form of representa-
tion for each optimization phase to work on.

Compilation can be viewed as a process of gradual transition from the
high level language constructs to the low level machine instructions. In
between, there are different levels of IR possible. The closer an IR is to
the source language, the higher is its level. The more an IR resembles the
machine instructions, the lower is its level. Table 1 contrasts the general
characteristics between high and low level representations.

Theoretically speaking, all optimizations can be performed on the lowest
level machine instructions, because any optimization effect has to filter

Table 1 Differences between high and low level representations

Characteristics High level IR Low level IR

kinds of constructs many few

length of code sequences short long

form hierarchical flat
5/10/00

Page 4 WHIRL Intermediate Language Specification
down to and expressible in them. This is, however, undesirable because
of the following reasons:

1. Information content — Since high level program representation resem-
bles the way the original program was written, it provides the optimizer
with more exact information about the program, thus allowing it to do a
better job in optimizing the program.

2. Granularity — By matching the granularity of the program representa-
tion with the granularity of the constructs that each optimization phase
manipulates, the optimization phases can be implemented with less effort
and operate much more efficiently.

3. Variations — The optimizer has to deal with more possible variations
in the code sequences that perform a given task in low level IR, making it
harder to recognize specific program semantics.

In general, the higher the level of the IR, the more assumptions the opti-
mization phase can make about its representation, thus allowing it to
gather information more efficiently and streamline its work load. In light
of this, our approach in SGI Pro64 is to implement each optimization at
as high a level as possible without affecting the quality of its work.

We have defined WHIRL to be capable of representing any level of IR
except the level that corresponds to the machine instructions. The SGI
Pro64 back-end performs a complete repertoire of optimizations. We de-
fine different levels of WHIRL, and define each optimization phase to
work at a specific level of WHIRL. The front-ends generates the highest
level of WHIRL. Optimization proceeds together with the process of con-
tinuous lowering, in which a WHIRL lowerer is called to translate
WHIRL from the current level to the next lower level. At the end, the
code generator translates the lowest level of WHIRL to its own internal
representation that matches the target machine instructions. WHIRL thus
serves as the common IR interface among all the back-end components.
Because lowering is done gradually, a secondary benefit is that each low-
ering step is simpler and easier.

Figure 1 illustrates the relationships between the compilation process and
the levels of WHIRL. The following subsections give the main character-
istics of each WHIRL level. In the specification of each WHIRL operator
later in this document, the levels where the operator is allowed to exist
are specified.
5/10/00

The Levels of WHIRL Page 5
Figure 1 Continuous Lowering in the SGI Pro64 Compiler

Representation Translator

F90
F77

Front-ends

High WHIRL

/Lowering ActionOptimizer

IPA
PREOPT

LNO

Mid WHIRL

Lower ARRAYs
Lower Complex Numbers
Lower high level control flow

WOPT

Lower IO

Lower intrinsics to calls

Low WHIRL

RVI1

Lower loads/stores to final form

RVI2

Expose code sequences for
constants and addresses

Expose $gp for -shared
Expose static link for nested

procedures

Very Low WHIRL

Map opcodes to target machine
opcodes

CG Machine
Instruction
Representation

Code generation

Spawn nested procedures for
parallel regions

Generate simulation code for quads

Very High
WHIRL

C

VHO
 standalone inliner

Lower aggregates

All data mapped to segments

C++
Java
Bcode

CG

CG

Un-nest calls
Lower COMMAs, RCOMMAs

Lower bit-fields
5/10/00

Page 6 WHIRL Intermediate Language Specification
1.3.1 Very High (VH) WHIRL
This level of WHIRL is output by the front-ends, and faithfully corre-
sponds to the structure of the program in the source code. Optimizations
performed on this level of WHIRL can be perceived as optimizing with
respect to the programming language constructs. This level of WHIRL
can be translated back to C and FORTRAN source code with only minor
loss of semantics. The tools whirl2c, whirl2f and whirl2f90 are provided
for this purpose.

In this level of WHIRL, calls are allowed to be nested. The COMMA,
RCOMMA and CSELECT operators are allowed. The operators related to
FORTRAN90 aggregates TRIPLET, ARRAYEXP, ARRSECTION and
WHERE are allowed. These constructs are not allowed in lower levels of
WHIRL.

The Very High WHIRL Optimizer (VHO) and standalone inliner work on
VH WHIRL.

1.3.2 High (H) WHIRL
At this level of WHIRL, side effects can only occur at statement bound-
aries, and control flows are fixed. As a result, procedure calls are not al-
lowed to be nested, as are statements nested via the COMMA and
RCOMMA operators. This level of WHIRL can also be translated back to
C and FORTRAN source code, though not to very close correspondence
to the original source.

In this level of WHIRL, high level control flow constructs are preserved
via the operators DO_LOOP, DO_WHILE, WHILE_DO, IF, CAND and CIOR.
The form of FORTRAN I/O statements are preserved via IO and IO_ITEM.
The form of array subscripting is preserved via ARRAY. Bit-field accesses
can be represented in high-level form via field-id.

IPA, LNO and the PREOPT part of the global scalar optimizer operate in
H WHIRL. Pseudo-registers can be generated by the compilers to store
values. Integer pseudo-registers must be of either 32- or 64- bit sizes.

1.3.3 Mid (M) WHIRL
At this level of WHIRL, the representation starts to reflect the character-
istics of the target ISA. In general, for maximum optimization effective-
ness, each WHIRL instruction should map to one instruction in the target
ISA. A WHIRL instruction that is no-op in the target processor should
not be generated. The WHIRL code sequence should correspond to the fi-
5/10/00

The Components of WHIRL Page 7
nal generated code sequence in the target ISA. Pseudo-registers are as-
sumed to be of sizes corresponding to the sizes of the machine registers,
but if their sizes in WHIRL are smaller, CG can allocate the smaller spill
locations when spilling them. Physical registers also start to show up at
this level of WHIRL. Data type B can start to show up at this level of
WHIRL if the target provides predicate registers.

At this level of WHIRL, control flow must be uniformly represented via
TRUEBR, FALSEBR, GOTO or COMPGOTO. IO must have been lowered to
calls. ARRAY must have been lowered to address expressions. Bit-field
accesses must be represented via LDBITS, STBITS, ILDBITS and ISTBITS,
and then furthered lowered to EXTRACT_BITS and COMPOSE_BITS. Such
uniform code generation strategies allow common code sequences to be
identified during optimization.

The global scalar optimizer WOPT works on M WHIRL.

1.3.4 Low (L) WHIRL
WOPT performs two rounds of register variable identification (RVI). The
first round is performed on M WHIRL. The purpose of L WHIRL is to
expose candidates for the second round of RVI.

At L WHIRL, LDID and STID are lowered into ILOAD and ISTORE so that
the base address is exposed to RVI, while ILOAD and ISTORE map to the
load and store instructions in the target ISA. Constants, including LDAs,
are lowered into the exact code sequence in which they are generated in
the target ISA. Calls is lowered to PICCALL under -shared compilation.
COMPGOTO is lowered to XGOTO.

1.3.5 Very Low (VL) WHIRL
This is the lowest level of WHIRL before translation to CG’s machine in-
struction representation. It exhibits strict one-to-one correspondence with
the target machine instructions. As a result, the generated instruction mix
is very target-dependent.

VL WHIRL only exists internal to CG. Some peephole optimizations are
performed on VL WHIRL.

1.4 The Components of WHIRL

A WHIRL file generated by the front-end consists of WHIRL instruc-
tions and WHIRL symbol tables. A separate docment describes the struc-
5/10/00

Page 8 WHIRL Intermediate Language Specification
ture of the WHIRL symbol tables. WHIRL instructions contain
references to the symbol tables via fields that are ST_IDX and TY_IDX.

The instruction part of the WHIRL file represents the program code, or-
ganized in program units (PUs). The WHIRL instructions are linked up
in strictly tree form, and we refer to each node in the tree as a WHIRL
node. DAGs are not allowed. The same WHIRL tree is used to represent
both control flow and expressions. Each PU is a single tree.

We now describe the content of the WHIRL node.

1.4.1 Operators

The operator field in a WHIRL node specifies the operation performed
by the instruction. Operators in WHIRL can be divided into three catego-
ries: structured control flow, statements, and expression. These are repre-
sented hierarchically in the tree. It is illegal for a structured control flow
operator to be a descendant of a different type of operator. Similarly, a
statement cannot be a descendant of an expression. Statements have the
further restriction that they cannot be nested, i.e. a statement cannot be a
descendant of another statement. There are, however, exceptions to these
rules in VH and H WHIRL.

1.4.2 Result and Descriptor Types

The operation specified the WHIRL operator can be further qualified by
the result type (res) and descriptor type (desc). res gives the data type of
the result of the operation, while desc gives the data type of the operands.

operator together with res and desc fully specifies an operation. It
should not be necessary to examine the kids of the node in order to deter-
mine the exact operation to be performed.

1.4.3 Supported Data Types

The following data types are supported in WHIRL:

B boolean (value is either 0 or 1)

I 1 8-bit signed integer.

I 2 16-bit signed integer.

I4 32-bit signed integer.

I8 64-bit signed integer.
5/10/00

The Components of WHIRL Page 9
U1 8-bit unsigned integer.

U2 16-bit unsigned integer.

U4 32-bit unsigned integer.

U8 64-bit unsigned integer.

A4 32-bit address (behaves as unsigned).

A8 64-bit address (behaves as unsigned).

F4 32-bit IEEE floating point.

F8 64-bit IEEE floating point.

F10 80-bit IEEE floating point.

F16 128-bit IEEE floating point.

FQ 128-bit SGI floating point.

C4 32-bit complex (64 bits total).

C8 64-bit complex (128 bits total).

CQ 128-bit complex (256 bits total).

V Void.

M struct.

BS bits.

Type B corresponds to predicate registers, and is useful only if the target
has such registers; it is introduced into the compilation starting in M
WHIRL by the global optimizer (WOPT). Booleans are represented as
integer types otherwise.

The I1, I2, U1, U2 and BS data types are allowed only in the desc field of
memory access operations.

Type A4 and A8 gives the information that the integer value specifies an
address, thus allowing the optimizer to perform more aggressive optimi-
zations. It behaves as unsigned, in the sense that, if there is a choice, it
will be zero-extended instead of sign-extended.

Type FQ is currently supported in software only, and is lowered to F8 in
L WHIRL. The complex types are included because they allow the loop
nest optimizer to perform analysis of programs with complex arrays more
efficiently. The complex types are lowered to the floating point types in
M WHIRL.
5/10/00

Page 10 WHIRL Intermediate Language Specification
Type M indicates a value made up of composite fields. Type M is not al-
lowed in arithmetic operations. When a type field is unused for an opera-
tor, it should be initialized to V.

In the specification of the WHIRL opcodes, we give the allowed types for
res and desc for each operator. We’ll use the following lower case letters
to specify groups of data types:

i Any of I4,I8,U4,U8,A4,A8 integral types

f Any of F4,F8,F10,F16,FQ floating point types

z Any of C4,C8,CQ complex types

1.4.4 Kid Pointers
WHIRL nodes other than BLOCK that are non-leaves contain pointers to
their children in the kids array. For operators that have a variable number
of kids, field kid_count gives the number of children. BLOCK nodes con-
tain first and last pointers to a doubly linked list of statements.

1.4.5 Next and Previous Pointers
The children of a BLOCK node must be statement nodes, and statement
nodes all have next and previous pointers which link them together.
These fields are NULL for any statement nodes that are not children of
BLOCKs. The first statement of a BLOCK has null previous field, and the
last statement has null next field.

1.4.6 Offset
All load and store opcodes have offset fields. The load-address opcode
LDA also uses the offset field to specify the exact address to load. In the
case of the indirect load and store opcodes, there may be code to compute
addresses prior to the loads and stores. In VH and H WHIRL,it is not le-
gal to fold the offset fields in either the load and store opcodes or LDA
into the address computation. Doing this will impact the ability of the
loop nest optimizer to do data dependence analysis.

The offset field is used to keep other contents for other operators.

1.4.7 Mapping Mechanism

Different phases of the compiler may need to store additional information
associated with individual whirl nodes. Rather than providing a pointer in
each tree node for every conceivable data structure, WHIRL provides a
5/10/00

The Components of WHIRL Page 11
general mapping, or annotation, mechanism. One can view this mecha-
nism as a mapping table (although the actual implementation may be
quite different). Each node contains a word-sized map_id that effectively
maps to a row in the table. By creating a new map, the user reserves a col-
umn in the table. The user can then enter or query a value for any map for
any WHIRL node in constant time.

As an example, imagine that a compiler pass wishes to store a parent
pointer for every control flow node in the tree. The pass would call

 parent_map = WN_MAP_Create(mempool).

At this point, parent_map would contain the name of a new mapping.
Memory to store information about the mapping will be allocated from
mempool. The pass would then visit every control flow node, nd, in the
tree, calling

WN_MAP_Set(parent_map, wn, parent).

Now, the parent of any control flow node, nd, can be found by calling

 parent = WN_MAP_Get(parent_map, wn).

To avoid creating too many entries that are unused, the WHIRL nodes are
divided into different categories according to the operator. Assigned map
IDs are unique only within each category. There is one category for all
the structured control flow statements, one for all the load and store
nodes, one for ARRAY nodes, one for all other statement nodes, and one
for all other expression nodes. Map IDs are also unique only within each
PU, and the map tables are organized on a per-PU basis in the WHIRL
file.

1.4.8 Source Position Information
The 64-bit field linenum for specifying source position information is al-
located only for statement nodes. The line number is stored in a 32-bit
field. The remaining 32 bits contain the file and column number.

1.4.9 Additional Fields
There are other operator-specific fields such as symbol table indices and
type table indices. These fields are underlined and described in the opera-
tor specifications.
5/10/00

Page 12 WHIRL Intermediate Language Specification
1.4.10 WHIRL Node Layout
A WHIRL node is represented by the struct WN. The minimum allocated
size of struct WN is 24 bytes., which include pointers to two kids. If the
node has more than two kids, the struct is extended at the end for the ad-
ditional kid pointers needed. If the node is a statement, four additional
words are allocated before the struct for linenum and the previous and
next pointers. Table 2 gives the layout of struct WN.

Table 2 Layout of the WHIRL node

Offset Field Description Field size

byte -16 prev previous pointer word

byte -12 next next pointer word

byte -8 linenum source position information double word

byte 0 offset offset for loads, stores, LDA, IDNAME;
no, of entries, COMPGOTO and SWITCH;
length in bits for CVTL;
label number;
flags for calls, PARM and REGION;
break code for TRAP, ASSERT;

word

byte 0 trip_est estimated trip count for LOOP_INFO; half-word

byte 2 depth loop nesting depth for LOOP_INFO; half-word

byte 4 st_idx symbol table index;
type index for all except LDA, LDID, STID;
last label for COMPGOTO and SWITCH;
number of exits for REGION;
id for intrinsics;
flags field for PREFETCH, LOOP_INFO ;
region supplement: EXC_SCOPE_BEGIN;

word

byte 0 elem_size element size for ARRAY; double word

byte 8 operator WHIRL operator; byte

byte 9 bit 0 res result type; 5 bits

byte 9 bit 5 kid_count number of kids for n-ary operators;
field ID for operators with fixed no. of kids;
bit_offset at most significant 7 bits and
bit_size at least significant 7 bits for
LDBITS, STBITS, ILDBITS, ISTBITS,
EXTRACT_BITS and COMPOSE_BITS;

14 bits

byte 11 bit 3 desc descriptor type; 5 bits

byte 12 map_id index into map table; word
5/10/00

Structured Control Flow Statements Page 13
In the upcoming operator specification in this document, any fields other
than operator, prev/next, linenum and kid_count that an operator use will
be underlined so that the reader can know at a glance what additional
fields in the node are used for each operator.

1.5 Structured Control Flow Statements

Structured control flow statements in WHIRL are hierarchical in nature.
All the statements in a particular control flow structure are descendents of
the node representing that structure. All the control flow opcodes have a
‘V’ in their result type and descriptor fields. Except FUNC_ENTRY and
BLOCK, structured control flow opcodes are not allowed in M—VL
WHIRL. All of these opcodes use the prev and next fields.

❑ FUNC_ENTRY [VH—VL]
This operator represents a function entry. This operator will be at the top
of every tree. st_idx points to the name of the procedure or function. Kids
0..n-4 are IDNAME leaves containing the names of the formal parameters.
Kid n-3 is a BLOCK node containing a list of PRAGMAs that are relevant
to the compilation of the PU. Kid n-2 is a BLOCK containing a list of
PRAGMAs that are relevant to the compilation at the call sites of the PU.
For a nested PU, this pragma list must be present to identify any non-lo-
cal variables accessed in the PU to ensure correct compilation at the call
sites. Kid n-1 is a BLOCK node giving the body of the procedure.

❑ BLOCK [VH—VL]
This operator represents a list of subtrees. It contains an arbitrary number
of children connected together via a doubly linked list, and pointed to by
the first and last fields. The prev field of the first child and the next field

byte 16 kids[0] kid 0;
first pointer for BLOCK;
flags for LABEL;

word

byte 20 kids[1] kid 1;
type index for LDA, LDID, STID;
address type pointer for ILOAD;
last pointer for BLOCK;

word

byte 16 const_val 64-bit integer constant; double word

byte 24+n kids[2+n] the (2+n)th kid for n ≥ 0; word

Table 2 Layout of the WHIRL node

Offset Field Description Field size
5/10/00

Page 14 WHIRL Intermediate Language Specification
of the last child must be null. It is the only operator for which the number
of children is not fixed at node creation time.The kid_count field is unde-
fined for this operator. A BLOCK may not be the direct child of another
BLOCK. An empty BLOCK is allowed, in which case the head of the dou-
bly linked list is null. In M—VL WHIRL, this operator can only appears
under FUNC_ENTRY.

❑ REGION [H—VL]
This operator specifies a nested sub-region. The region flags field speci-
fies the WHIRL level in the region. It has three kids, all of which must be
BLOCKs. The number-exits field gives the number of exit points from the
region. Kid 0 is a BLOCK that defines a jump table by its list of
REGION_EXITs. The number of REGION_EXITs must be equal to the num-
ber of exits. Kid 1 gives a list of PRAGMAs that affect (and only affect)
the compilation of the region. Kid 2 gives the content of the region. A re-
gion serves as a unit of compilation. Regions can be nested one inside an-
other. The outermost region is the block corresponding to FUNC_ENTRY.
WHIRL level changes are allowed only at region boundaries. When the
current compilation unit contains REGION nodes, they are to be treated as
black boxes while working on the current compilation unit. REGION
nodes cannot contain references and definitions of pseudo-registers that
are live-in or live-out with respect to the node. Values can be passed in
and out of the black boxes via dedicated registers at the region bound-
aries. The WHIRL level of a region must be lower than or equal to the
level of its enclosing region. A compilation component may choose to ig-
nore a region boundary at which the WHIRL level does not change, in
which case it will optimize the code of the region together with the en-
closing region. In general, nested regions should be compiled inside-out.
An additional use of this node is to specify a region to be parallelized. In
the course of compilation, a segment of code to be parallelized is first
marked as a parallel region. The lowering process will spawn off the re-
gion as a nested procedure that will be called via synchronization rou-
tines during parallel execution.

❑ DO_LOOP [VH—H]
This operator has the semantics of a Fortran Do loop. Kid 0 is an IDNAME
representing the index variable, which must be of type integer. Kid 1
must be an STID statement initializing the index variable, which must not
be null. Kid 2 is a comparison expression for the end condition. The com-
parison must use GE, GT, LE or LT, and any content other than the induc-
tion variable in this expression must be loop invariant. Kid 3 must be an
STID statement that increments the index variable via an ADD by a step
amount. The step must be an expression that is loop invariant. Kid 4 is a
5/10/00

Other Control Flow Statements Page 15
BLOCK node representing the body of the do loop. If Kid 5 is present, it
must be a LOOP_INFO that gives additional information about the loop.

❑ DO_WHILE [VH—H]
A while loop. Kid 0 is a boolean expression. Kid 1 is a BLOCK node rep-
resenting the block of statements that is executed while kid 0 returns non-
zero. The condition is tested at the end of the loop, so the block is execut-
ed at least once.

❑ WHILE_DO [VH—H]
A while loop. Kid 0 is a boolean expression. Kid 1 is a BLOCK represent-
ing the block of statements that is executed while Kid 0 returns non-zero.
The condition is tested at the start of the loop.

❑ IF [VH—H]
This operator represents a structured logical if statement. Kid 0 is an ex-
pression, and both kids 1 and 2 must be BLOCKs. Kid 1gives a block of
statements that is executed if Kid 0 evaluates to some non-zero value. Kid
2 gives another block of statements that is executed if Kid 0 evaluates to
zero. If this statement has no else part, the block for Kid 2 has an empty
statement list. The flags field is used to provide compilation-related infor-
mation for this node.

DO_LOOP, DO_WHILE, WHILE_DO and IF represent only well-formed
high-level control constructs. The blocks associated with them cannot be
the target of jumps from outside. To make it easier for the front-ends, we
do tolerate illegal high-level control constructs in the front-ends’ output.
Such illegal high-level control constructs will be screened out and con-
verted to use ordinary control flow constructs by the first optimization
phase.

1.6 Other Control Flow Statements

This section describes the remaining control flow statements in WHIRL,
which are not hierarchical. They are allowed at all levels of WHIRL. All
of these operators use the prev and next fields.

❑ GOTO [VH—VL]
An unconditional branch to the label in the current procedure as given by
label_number.
5/10/00

Page 16 WHIRL Intermediate Language Specification
❑ GOTO_OUTER_BLOCK [VH—VL]
An unconditional branch from a nested procedure to the label in a parent
procedure as given by label_number. It involves unwinding of the proce-
dure call stack.

❑ SWITCH [VH]
A switch statement in a form close to the source code. An internal field,
number_entries, gives the number of cases in the jump table. Another
field, last_label, gives the label that marks the end of the code compiled
from the switch statement in the source program. Kid 0 is the switch ex-
pression, which must be of type integer. Kid 1 is a BLOCK that defines the
jump table by a list of CASEGOTOs, the number of which equals
number_entries. Kid 2 is a GOTO giving the default jump target. If there
is no default target (i.e. the front-end guarantees that a match case can be
found), then Kid 2 does not exist. This statement will be lowered to the
control flow constructs that most efficiently implement the switch.

❑ CASEGOTO [VH]
This is used only within a SWITCH to specify jump targets for individual
case values. The const_val field gives the integer case value. The
label_number field gives the target of the jump if the switch expression
evaluates to the given case value.

❑ COMPGOTO [VH—M]
A non-structured computed goto statement. An internal field,
number_entries, gives the number of entries in the jump table. Another
field, last_label, gives the label that marks the end of the code compiled
from the switch statement in the source program; a value of 0 means no
information, and is used in the case of a FORTRAN computed/assigned
goto, in which the jump targets are not contiguous. Kid 0 is the switch
value, and must evaluate to a 0-based integer index. Kid 1 is a BLOCK
that defines the jump table by its list of GOTO’s. The number of GOTO
nodes must equal number_entries. For index value 0, the first GOTO is ex-
ecuted; for the next index value, the next GOTO is executed, etc. Kid 2 is
a GOTO giving the default jump target. If there is no default target (i.e. the
front-end guarantees that the switch value is in range), then Kid 2 does
not exist.

❑ XGOTO [L—VL]
This is formed out of lowering a COMPGOTO. st_idx gives the symbol ta-
ble entry of the allocated jump table. Kid 0 is an expression that evaluates
to the address to be jumped to, starting with the base address of the allo-
cated jump table. Kid 1 is the same as Kid 1 in COMPGOTO. Number-en-
tries gives the number of entries in the jump table as in COMPGOTO.
5/10/00

Other Control Flow Statements Page 17
There is no default jump target. The default jump target in the original
COMPGOTO must be handled by additional code generated during lower-
ing.

❑ AGOTO [VH—VL]
An assigned or indirect unconditional branch. The flow of control is
transferred to the address evaluated by Kid 0.

❑ REGION_EXIT [VH—VL]
This must exist within a REGION block, and specifies an exit out of the
region. The label number specifies the label outside the region that the
flow of control will transfer to. Exit out of a region can only be effected
by executing this statement, and fall-through out of a region is not al-
lowed. Other jump statements in the region must have their targets locat-
ed inside the region.

❑ ALTENTRY [VH—VL]
An alternate entry for the function, as translated from multiple entry sub-
routines in Fortran. st_idx names the entry point. Kid 0..n-1 are IDNAME
leaves as in FUNC_ENTRY. However, there is no BLOCK, and control
flows to the next statement. The code that appears before this operator
must always ends with a GOTO to jump around the alternate entry, be-
cause the prolog code generated from lowering ALTENTRY is not to be
executed unless control is entered via the alternate entry point.

❑ TRUEBR [VH—VL]
A non-structured conditional branch. This node contains a label_number.
Kid 0 is an expression that must evaluate to an integral value. If it evalu-
ates to non-zero, control is transferred to the previously mentioned label.
Otherwise, control flows to the next statement.

❑ FALSEBR [VH—VL]

A non-structured conditional branch. This node contains a label_number.
Kid 0 is an expression that must evaluate to an integral value. If it evalu-
ates to zero, control is transferred to the previously mentioned label. Oth-
erwise, control flows to the next statement.

❑ RETURN [VH—VL]
Return from this procedure. There can be any number of return state-
ments in a program unit. If a value is being returned, RETURN_VAL must
be used instead. All return points must be explicitly specified via RE-
TURN or RETURN_VAL even if it is the end of the function body.
5/10/00

Page 18 WHIRL Intermediate Language Specification
❑ RETURN_VAL res=any [VH—H]
Return from this function with the return value specified by Kid 0. This is
lowered to RETURN with associated store statements in M WHIRL.

❑ LABEL [VH—VL]
Define a label. This node contains a label_number. Any branch to the la-
bel will transfer control to the statement following this one. A flags field
gives attributes about the label. In particular, one bit specifies that the la-
bel marks the start of an exception handler, in which case the label has to
be treated as an entry point to the program unit. A LOOP_INFO may be at-
tached to this node as Kid 0. Otherwise, Kid 0 must be NULL.

❑ LOOP_INFO [H—VL]
Not a statement node, but exists as a kid of DO_LOOP in H WHIRL and
LABEL otherwise. It provides information about a loop and does not
translate into any executable code. In the case of being attached to an LA-
BEL, it specifies the label as marking the start of the loop body, and the
actual extent of the loop can be determined by finding all the basic blocks
dominated by the label up to a branch back to that same label. The
trip_est field is a 16-bit field that gives the estimated trip count of the
loop; if it is larger than 16-bits, it should be represented as a large 16-bit
number instead of being truncated; if 0, the information is not provided.
The depth field gives the loop nesting depth of the content of the loop.
The flags field provides various information about the loop, like inner-
most, loop wind-down, etc. Kid 0 must be an LDID that gives the induc-
tion variable of the loop. If Kid 0 is NULL, the loop has no induction
variable. Kid 1 is an expression that evaluates to the exact trip count of
the loop. If Kid 1 is NULL, the exact trip count cannot be specified or is
unknown, as in the case of a WHILE_DO. If Kid 0 is NULL, Kid 1 must
also be NULL. The trip count expression is for information only, and
does not need to be optimized, since it replicates the executable code
elsewhere that computes the trip count.

1.7 Calls

Because function calls can incur side effects, they are classified as state-
ments rather than expression trees. Programming languages allow arbi-
trary nesting of function calls inside expressions. In VH WHIRL, those
nestings are preserved by allowing call statements as nodes in an expres-
sion. The lowerer to H WHIRL has to unnest calls from expression trees
in order to obey H WHIRL semantics. This also includes flattening out
nested calls. Calls unnested from an expression need to be generated se-
5/10/00

Calls Page 19
quentially, and their return values need to be stored in pseudo-registers
(pregs).

In VH and H WHIRL, return values from calls reside in the special pseu-
do-register specified by preg -1. This conforms to C language convention,
in which only a single item can be returned, though it may be a composite
item.

In lowering to M WHIRL, the actual return mechanism conforming to
the target ISA and ABI is manifested. The actual return mechanism may
involve multiple registers specified by dedicated pregs. The actual return
mechanism may also create an implicit parameter that points to the mem-
ory block designated by the caller for returning a struct. res in the call
node indicates the return type. Type V must be used for res if there is no
subsequent read of the return pregs.

The code to read the return values in the pregs must be in the statements
immediately after the call. If there is one return value, it must be in the
first statement after the call. If there are n return values, it must be in the
first n statements immediately after the call. In VH WHIRL, the state-
ment that reads the return value can be a COMMA. Otherwise, the state-
ment that reads the return value must be a simple STID or ISTORE whose
right-hand-side contains only the LDID node of the return preg.

The WHIRL ASM_STMT is provided to support inline assembler instruc-
tions embedded in C code. Input operands to the asm are specified by
ASM_INPUT kids of the ASM_STMT. Execution of ASM_STMT can result
in the assignment of values to multiple output operands. The effect is rep-
resented by separate store statements that follow the ASM_STMT. The
right-hand-sides of these stores refer to respective output operands via
pregs with unique negative preg numbers. The correspondence of these
pregs to the output operands are specified in Kid 1 of the ASM_STMT.

❑ CALL res=any [VH—VL]
A direct call statement. st_idx gives the name of the procedure being
called. Kids 0..n-1 are PARM nodes that specify the actual parameters to
the call. WHIRL follows the C pass-by-value semantics. When res is not
V, the return value is placed in one or more pregs; if more than one preg
are used, res gives the data type in each preg. WHIRL follows the C pass-
by-value semantics. A flags field gives attributes about the call that are
useful for optimization around the call. The attributes are: non_data_mod
(the called function modifies a data item that is not represented in the
program), non_parm_mod (the called function modifies a non-local data
item whose address is not passed as parameter), parm_mod (the called
5/10/00

Page 20 WHIRL Intermediate Language Specification
function modifies a data item whose address is passed as parameter),
non_data_ref (the called function references a data item that is not repre-
sented in the program), non_parm_ref (the called function references a
non-local data item whose address is not passed as parameter), parm_ref
(the called function references a data item whose address is passed as pa-
rameter), and never_return (the called function will cause control to exit
the current program unit).

❑ ICALL res=any [VH—VL]
An indirect call statement. Kid n-1 is the address of the procedure being
called. Kids 0..n-2 are PARM nodes that specify the actual parameters to
the call. WHIRL follows the C pass-by-value semantics. When res is not
V, the return value is placed in one or more pregs; if more than one preg
are used, res gives the data type in each preg. This operator contains a
ty_idx, which gives the type information from the prototype definition of
the function pointer. A flags field gives attributes about the call that are
useful for optimization around the call.

❑ VFCALL res=any [VH—H]
A virtual function call statement. Similar to ICALL, except that kid n-1
must be of the restricted form as given by Figure 2.

❑ PICCALL res=any [L—VL]
A position-independent call statement, formed out of lowering a CALL
under -shared compilation. Kid n-1 is the address of the procedure being
called. Kids 0..n-2 are PARM nodes that specify the actual parameters to
the call. When res is not V, the return value is placed in one or more

PARM

. .

LDID <field_id for vptr>

ARRAY
ILOAD

ILOAD <field_id>
VFCALL

Figure 2 Form for VFCALL

. .
ILOAD <field_id>

. .

. .
PARM
5/10/00

Calls Page 21
pregs; if more than one preg are used, res gives the data type in each
preg. This operator contains the same st_idx as in the original CALL. A
flags field gives attributes about the call that are useful for optimization
around the call.

❑ INTRINSIC_CALL res=any [VH—M]
A call to the intrinsic specified by the intrinsic field. Kids 0..n-1 are
PARM nodes that specify the actual parameters to the call. When res is
not V, the return value is placed in one or more negative pregs; if more
than one preg are used, res gives the data type in each preg. A flags field
gives attributes about the intrinsic that are useful for optimization around
the intrinsic. Depending on the intrinsic and compilation options, it will
either become a call or a sequence of instructions after it is lowered to L
WHIRL.

❑ IO [VH—H]
A call to the FORTRAN I/O intrinsic specified by the intrinsic field. This
operator directly corresponds to an I/O statement in the FORTRAN
source, and the trees underneath it also matches the I/O statement syntax,
so as to allow easy translation back to FORTRAN source code by
whirl2f. Kids 0..n-1 are all IO_ITEM nodes that specify the parameters in
the I/O statement. Calls do not need to be unnested underneath an IO. Due
to the need to tolerate such special semantics, the optimizations per-
formed on the contents of this statement are limited and not as effective.
There can be hidden references and side effects to program variables in
this statement; to maintain proper optimization semantics, the hidden ref-
erences and side effects must not be to any pseudo-registers, since their
addresses cannot be taken. A flags field gives attributes about the intrin-
sic. In M WHIRL, this operator will be converted to a sequence of calls
to the actual library routines.

❑ ASM_STMT [VH—VL]
An inline assembler string. St_idx gives a CLASS_NAME symbol table
entry whose name is the assembly code string. Kid 0 is a BLOCK contain-
ing a list of PRAGMAs and/or XPRAGMAs of type ASM_CLOBBER that
indicate registers clobbered by the given assembly code. Kid 1 is a
BLOCK containing a list of PRAGMAs of type ASM_CONSTRAINT,
each of which indicates an operand constraint for an output operand and
the negative preg number that will be used to refer to the output value
corresponding to it. The code to actually transfer the output values to the
output operands are generated as store statements that follow the
ASM_STMT. These stores do not have to immediately follow the
ASM_STMT. Because they may be arbitrarily separated from it, each neg-
ative preg used in an ASM_STMT must be unique (i.e. used only once)
5/10/00

Page 22 WHIRL Intermediate Language Specification
within the program unit. From Kid 2 onwards are ASM_INPUT nodes,
each giving an input operand expression and the corresponding constraint
string. A flags field gives attributes about the ASM_STMT.

1.8 Other Statements

This section describes the WHIRL statements that are neither control
flow nor stores. Store statements are described in the Memory Access
Section. All statement operators use the prev and next fields.

❑ EVAL [VH—VL]
The expression in Kid 0 is evaluated. This is used to force evaluation of
an expression that does not produce a side effect. It is necessary for
things like volatiles. If the expression does not have side effect, this state-
ment can be optimized away.

❑ PRAGMA [VH—VL]
This operator provides compilation directives for the current point of the
program. The offset field gives the name of the pragma. st_idx, if not 0,
gives the symbol associated with the directive. Additional values associ-
ated with the pragma are stored in the const_val field. The mapping
mechanism can be used to store even more information for the pragma.

❑ XPRAGMA [VH—VL]
This operator provides compilation directives like PRAGMA, but the di-
rectives are specified with respect to a WHIRL expression tree given by
Kid 0 of this statement node. The number of kids must be 1. The offset
field gives the name of the pragma. st_idx, if not 0, gives the symbol as-
sociated with the directive.

❑ PREFETCH [H—VL]
This statement is generated by the front-end from a manual prefetch
pragma, or automatically by LNO. Kid 0 computes an address which is
added to the offset field. The optimizer needs not do anything to this op-
eration other than optimizing the address computation. The flags field
contains hints, which CG will incorporate into the prefetch instruction in
the target machine code. The manual prefetch bit of the flags field identi-
fies prefetches generated by the front-end that have not yet been pro-
cessed by LNO, and thus can be ignored or deleted by the back-end
phases when LNO is not run.
5/10/00

Other Statements Page 23
❑ PREFETCHX [M—VL]
This operator is converted from PREFETCH by WOPT. It contains two
kids, both of which must be LDIDs corresponding to two pseudo-registers.
The sum of the two kids give the computed address. The flags field con-
tains hints, which CG will incorporate into the prefetch instruction in the
target machine code.

❑ COMMENT [VH—VL]
This operator does not translate into any executable code. It gives an ascii
string for commenting purpose only. The st_idx field gives a
CLASS_NAME symbol table entry whose name is the content of the
comment.

❑ TRAP [VH—VL]
When executed, this statement causes a breakpoint trap to occur. This op-
erator is translated to either a instruction that causes a break, or a call to a
runtime routine that eventually traps. The offset field contains the break
code that specifies how the trap will be effected. Execution will not con-
tinue into the next statement. It can have a variable number of kids de-
pending on the break code.

❑ ASSERT [VH—VL]
This statement WHIRL node asserts the condition specified by Kid 0. If
the result is true, nothing will happen. Otherwise, the effect is the same as
executing the corresponding TRAP. The offset field contains the break
code as in TRAP. This operator can be used to implement bounds-check-
ing or assertions. It can have a variable number of kids depending on the
break code. The compiler can delete this statement or generate TRAP if it
can prove that the condition evaluates to true or false respectively.

❑ AFFIRM [VH—VL]
This statement WHIRL node does not cause any executable code to be
generated. It affirms that the condition specified by Kid 0 is always true,
and that the compiler can take advantage of the information in perform-
ing optimizations.

❑ FORWARD_BARRIER [VH—VL]
This operator designates a barrier to the code movement of memory ac-
cess instructions in the forward direction (along the flow of control), used
for MP support. If there is zero kid, all memory objects are affected. Oth-
erwise, a named barrier is specified, and only the memory accesses rep-
resented by dereferences of the L-value expressions given by the kids are
affected by the barrier. Examples of L-value expressions are LDAs, ILDAs,
LDIDs of pointers, and any address expressions.
5/10/00

Page 24 WHIRL Intermediate Language Specification
Barriers never have any effect on variables that are not modifiable or vis-
ible in the source program. This includes: pregs, constants, read-only
variables, the base address of formal parameters that are passed by refer-
ence, the index variable of any DO_LOOP that encloses the barrier. Barri-
ers also have no effect on objects declared volatile. It is an error to
specify the L-value of these objects as kids in named barriers. Barrier se-
mantics also implies liveness: the store to an object should not be regard-
ed as dead if it reaches a barrier that affects it. The reason is because
another thread of the PU executing at the same time may reference the
object.

In the case of unnamed barriers, to prevent the loss of too many optimiza-
tion opportunities, private varables are excluded from being affected by
the barrier. Variables are declared to be private (local) or shared via MP
pragmas. An auto variable is never shared unless its symbol table entry is
marked with the ST_IS_SHARED_AUTO flag.

❑ BACKWARD_BARRIER [VH—VL]
This operator designates a barrier to the code movement of memory ac-
cess instructions in the backward direction (against the flow of control),
used for MP support. The memory accesses affected by the barrier are
specified in the same way as FORWARD_BARRIER. See
FORWARD_BARRIER regarding rules for determining the affected ob-
jects.

❑ DEALLOCA [VH—VL]
This operator restores the stack pointer ($sp) back to the value represent-
ed by Kid 0. Kid 0 must be a pointer that gets its value via an earlier AL-
LOCA with size 0. Kids 1 and up are dummy operands that give pointers
or address expressions to the allocated objects that are the left-hand-sides
of the affected ALLOCAs, whose dereferences are no longer valid because
their pointed-to memory areas have been deallocated by this operator.
Kids 1 and up are to be regarded as L-value occurrences (i.e. stores) of
the pointed-to locations by the compiler components, so that movements
of their dereferences can be automatically blocked by this statement. A
compiler-generated ALLOCA must lead to a DEALLOCA in which the
pointer to the allocated block is specified as one of the dummy operands.
For user-specified ALLOCAs, since the affected dereferences cannot be
easily collected, a DEALLOCA with no dummy operand (i.e. only Kid 0)
can be specified, which will block the movement of all dereferences. For
user-specified ALLOCAs, DEALLOCA is generated only by the inliner:
when the inliner inlines a procedure that contains a user-specified ALLO-
CA, it must insert an ALLOCA with 0 argument at the start of the inlined
body, and a corresponding DEALLOCA with no dummy operand at each
5/10/00

Memory Accesses Page 25
each exit from the inlined body, to preserve the original stack allocation
and deallocation behavior of the program, and prevent the movement of
dereferences beyond the deallocation points.

1.9 Memory Accesses

In WHIRL, program variables and static data are regarded as being orga-
nized in blocks of memory. The blocks of memory can be allocated stati-
cally, or automatically on procedure entry in the procedure’s stack frame.
One important job of the compiler is to lay out the variables and data in
memory so that the operations that access them can be performed by an
efficient sequence of instructions.

Memory accesses in WHIRL are represented by load and store opera-
tions. These operations are either direct or indirect. The operators for di-
rect load and store are LDID and STID respectively. They are used
whenever the address of the accessed data is fixed.

Directly accessed locations are specified in WHIRL by the triple —
st_idx, offset and size. Each symbol table entry has a field that specifies
the block. Each separately declared object is assigned a unique block.
The symbol table entry of the object has another offset field, which gives
the offset of the object within the block. The real offset of an accessed lo-
cation within the block is given by the sum of the offset in the WHIRL
node and the offset in the symbol table entry. The size is implied by the
descriptor type.

The purpose off the offset field in the symbol table entry is to enable
memory layout to be performed by just updating the symbol table entries.
As compilation progresses, the SGI Pro64 back-end components perform
layout of the program variables by collescing them from a large number
of smaller blocks into a small number of large blocks. As each variable is
laid out in a block, its offset field in the symbol table entry is adjusted to
reflect the new offset within the larger block. All compile-time data lay-
out has to be completed before lowering to L WHIRL. In L WHIRL, the
symbol table entry referenced in the WHIRL node must have 0 offset, so
that the full offset within the block is given in the offset field in the
WHIRL node.

LDID and STID, enable the compiler to do a better job in optimizing the
memory accesses, due to the fact that the locations are known to the com-
piler, and the compiler knows that it is dealing with a specific data object.
Having exact location information allows the compiler to more efficiently
5/10/00

Page 26 WHIRL Intermediate Language Specification
check for the presence of aliasing. Given two direct accesses, the compil-
er can verify that there is no alias among them by just checking that there
is no overlap between the accessed locations. If the address of the loca-
tion is never taken, the compiler can assume that any other indirect ac-
cesses will not affect the location. Having accurate alias information
allows the optimizer more freedom in moving expressions that contain
memory references around.

Indirect memory accesses are represented by ILOAD and ISTORE respec-
tively. These operators reference an expression that computes the address
of the location being accessed. It takes substantially more compilation
time to do an accurate job of determining the possible locations that an
ILOAD or ISTORE accesses. The work involves carrying around ranges of
values and tracing the contents of pointers. After all the possible loca-
tions have been determined, it still has to find all the data objects that
alias with these locations. When compilation speed is important, such ex-
pensive analyses have to be omitted, and the compiler has to assume the
worst cases regarding aliases for the indirect loads and stores. As a result,
direct memory accesses using LDID and STID are always preferred over
indirect memory accesses, and the optimizer will try to promote an
ILOAD or ISTORE to LDID or STID whenever it can determine that the
computed address is a constant.

In WHIRL, stores are statements and loads are expressions. LDID is a
leaf, because it does not use the result of any other computation. For all
the load operators, desc specifies the data type in memory, while res
specifies the data type in the hardware register. In VH WHIRL, the data
types can be any type, but in M WHIRL and lower, type M is not al-
lowed. For other than integer types, res and desc must be the same type.
For integer types, res and desc must be the same type differing only by
size. For the store operators, desc specifies the data type in memory,
while res must be type V.

For fields within a struct or union, the additional annotation of field_id is
provided. All the nested fields in a struct are flattened and a unique inte-
ger number is assigned to each field. This allows more accurate informa-
tion to be represented in the case of overlapping fields. If a struct is itself
a field within another struct, the struct itself is also given a field_id. The
field_id of 0 is given to the top-level un-nested struct. All the nested
structs and fields inside it are assigned integer numbers starting from 1.
The ty_idx field in the WHIRL node must give the type of the outermost
struct within which field_id’s are assigned whenever field_id is not 0.
5/10/00

Memory Accesses Page 27
Since field_id uniquely identifies a field, the exact layout of the field
within the struct can be delayed. Prior to this layout, the offset field in the
WHIRL node is the offset for the top-level un-nested struct. In the current
implementation, only the layout of bit-fields are delayed. For non-bit-
fields, the field_id only provides supplemental information, and is not re-
quired for code generation purpose.

Since the field_id field is only 14 bits long, it is not large enough in the
case of structs that have more than 16383 fields. As a result, we reserve
the value 16383 to mean unknown or unrepresentable field, which also
occurs when optimization generates an access that does not correspond to
any particular field. If field_id cannot be used, then bit-field accesses can-
not be represented in this form, and the lowered bit-field operators of LD-
BITS, STBITS, ILDBITS and ISTBITS must be used.

❑ LDID res=B,i,f,z,M desc=all [VH—VL]
This operator contains st_idx, field_id and offset. This specifies a direct
load from the address in bytes given by the offset field, located within the
block given by the symbol table entry. This node also contains a ty_idx
that gives the high level type of the object, which includes the volatile at-
tribute. Type M is allowed only in VH and H WHIRL. Type B for desc is
allowed only if the object is a register, and res can be type B only if desc
is also type B.

❑ STID desc=all [VH—VL]
This operator contains st_idx, field_id and offset. This specifies a direct
store of the value computed by Kid 0 to the address in bytes given by the
offset field, located within the block given by the symbol table entry. This
node also contains a ty_idx that gives the high level type of the object,
which includes the volatile attribute. Type M is allowed only in VH and
H WHIRL. Type B for desc is allowed only if the object is a register.

❑ ILOAD res=i,f,z,Mdesc=all [VH—VL]
A load or dereference is performed from the address in bytes given by
adding the offset field to the address computed by Kid 0. This node con-
tains two ty_idx’s, one giving the high level type of the pointer through
which the indirection is performed, and the other giving the high level
type of the item being loaded. If the loaded object is a field in a struct,
field_id identifies the exact field. Type M is allowed only in VH and H
WHIRL.

❑ ILOADX res=f desc=f [M—VL]
This operator is only generated by later phases of the compiler. This op-
erator contains two kids. Both kids must be LDIDs corresponding to two
5/10/00

Page 28 WHIRL Intermediate Language Specification
pseudo-registers. This operator loads from the address given by the sum
of the two pseudo-registers. Two ty_idx’s are provided as in ILOAD.

❑ MLOAD [M—L]
A multiple-byte load is performed from the address in bytes given by
adding the offset field to the address computed by kid 0. Kid 1 gives the
number of bytes to load.This node contains a ty_idx that gives the high
level type of the pointer through which indirection is performed. If the
loaded object is a field in a struct, field_id identifies the exact field.

❑ ISTORE desc=all [VH—VL]
A store of the value computed by Kid 0 is performed to the address in
bytes given by adding the offset field to the address computed by Kid 1.
This node also contains one ty_idx that gives the high level type of the
pointer through which indirection is performed. If the stored-to object is
a field in a struct, field_id identifies the exact field.Type M is allowed
only in VH and H WHIRL

❑ ISTOREX desc=f [M—VL]
This operator is only generated by later phases of the compiler. This op-
erator contains three kids. Kids 1 and 2 must be LDIDs corresponding to
two pseudo-registers. This operator stores the value computed by Kid 0
to the address given by the sum of the two pseudo registers. ty_idx is pro-
vided as in ISTORE.

❑ MSTORE [M—L]
A multiple-byte store of the value computed by Kid 0 is performed to the
address given by adding the offset field to the address computed by Kid
1. Kid 2 gives the number of bytes to store. This node also contains
ty_idx that gives the high level type of the pointer through which indirec-
tion is performed. If the stored-to object is a field in a struct, field_id
identifies the exact field. Kid 0 is either an MLOAD or a scalar expression.
If Kid 0 is an MLOAD, it must be of the same size, and there must be no
overlap between the source and target memory. If Kid 0 is a scalar ex-
pression, the size of the MSTORE must be a multiple of the size of the
type of the scalar expression, and the alignment of the start address of the
MSTORE must also match the alignment of the type of the scalar expres-
sion.

1.10 Bit-field Representation

Since bit-fields are always fields in a struct, they can be represented by
field_id in the load and store WHIRL operations. The data type BS is
5/10/00

Pseudo-registers Page 29
used in desc to indicate bit-field loads and stores, in which case the offset
field gives the offset of the top-level un-nested struct.

Bit-field loads and stores have to be lowered in getting to M WHIRL. The
lowered forms of bit-field loads and stores are also used whenever
field_id cannot be used, which could be due to bit-field optimizations or
because the field number exceeds the size of the field_id field. In LDBITS,
STBITS, ILDBITS and ISTBITS, field_id is replaced by a pair of numbers,
bit_offset and bit_size, that give the offset and length respectively of the
bit-field being accessed. In these operators, desc gives the unit of memo-
ry being accessed in order to extract or deposit the bit-field.

EXTRACT_BITS and COMPOSE_BITS are even lower-level operations re-
lated to bit-fields. They should be generated only if the target instruction
set provides similar instructions.

❑ LDBITS res=i desc=i,I1,I2 [VH—VL]
This operator corresponds to an LDID with field_id 0. desc gives the unit
of memory being loaded before the bit-field extraction. The bit-field ex-
traction is specified by the fields bit_offset and bit_size.

❑ STBITS desc=i,I1,I2 [VH—VL]
This operator corresponds to an STID with field_id 0. desc gives the unit
of memory being accessed to perform the bit-field deposition. The bit-
field deposition is specified by the fields bit_offset and bit_size.

❑ ILDBITS res=i desc=i,I1,I2 [VH—VL]
This operator corresponds to an ILOAD with field_id 0. desc gives the unit
of memory being loaded before the bit-field extraction. The bit-field ex-
traction is specified by the fields bit_offset and bit_size.

❑ ISTBITS desc=i,I1,I2 [VH—VL]
This operator corresponds to an ISTORE with field_id 0. desc gives the
unit of memory being accessed to perform the bit-field deposition. The
bit-field deposition is specified by the fields bit_offset and bit_size.

1.11 Pseudo-registers

One important task of the compilation process is to identify candidates
for allocation to registers. WHIRL programs can use an unlimited num-
ber of pseudo-registers. An important property of pseudo-registers is that
they are never aliased to anything. This simplifies the job of the global
register allocator (GRA) in CG, which will map all the pseudo-registers
5/10/00

Page 30 WHIRL Intermediate Language Specification
to the set of physical registers in the target machine. In this process, it
may have to spill some of them back into memory, or re-materialize them
to avoid the memory store operations.

Pseudo-registers (pregs) do not need to have symbol table entries, be-
cause they do not correspond to user variables, and do not need to be laid
out in memory unless spilled. But because they resembles memory ob-
jects, we refer to them using LDIDs and STIDs. However, their addresses
cannot be taken using LDA.

The symbol table entry given by the LDID or STID will identify the object
as being a preg. The offset field in the WHIRL node gives the number of
the preg being accessed. The preg number is unique within the entire PU,
and their numbering starts from 1. Preg 0 is reserved and disallowed for
use. All pregs of the same data type will point to the same symbol table
entry. Pregs of all the WHIRL data types except V and M are allowed.
For integer types, pregs must be either 32-bit or 64-bit, since the C lan-
guage specifies that intermediate values of computation can only be of
these two sizes; starting in M WHIRL, if desc gives a size smaller than
the physical size of the register in the compilation target, it indicates that
that the high-order bits of the register are not live.

Since pregs have to correspond to the hardware registers, starting in L
WHIRL, only the data types that have exact correspondence to the hard-
ware registers are allowed in pregs. Pregs for the complex data types are
lowered to pairs of float pregs in M WHIRL. Pregs for quad-word floats
are lowered to pairs of float pregs in L WHIRL. Pregs of type B are intro-
duced starting in M WHIRL, and they correspond to predicate registers.

LDIDs and STIDs of pseudo-registers do not cause implicit type conver-
sions to be generated. The same floating-point pseudo-register is not al-
lowed to be F4 and F8 at different places in the same program unit. For
integer data types, the same pseudo-registers may be referenced as I4, I8,
U4 or U8 at different places because the compiler recognizes that some
integer type conversions are no-op. Type conversions for pseudo-registers
that are not no-op must be represented explicitly by conversion operators
in WHIRL so that they can be optimized by the WHIRL optimizer.

Whenever the compiler needs to save the intermediate results of compu-
tations, it should generate and use new pregs whenever possible, as op-
posed to temporaries that reside in memory, because this avoids the
overhead of creating and maintaining symbol table entries, and they do
not have to be allocated in memory unless spilled. Subsequent compiler
phases also have less overhead dealing with pregs because they are never
5/10/00

Pseudo-registers Page 31
aliased. In contrast, temporaries are regarded as memory objects, and
symbol table entries have to be created for them.

As compilation proceeds in the back-end, pregs are generated to store in-
termediate results. In the register variable identification (RVI) phase, the
compiler attempts to convert as many memory accesses to preg accesses
as possible, while leaving behind the minimum number of memory loads
and stores. This phase also attempts to allocate constants to registers. As
a result, a data value can reside in pregs and memory at different places in
the program.

We call pregs that have home memory locations has-home pregs. A home
can be associated with only one preg, and a has-home preg can be associ-
ated with only one home. The live range of a preg is the set of WHIRL
statements over which it is both defined and live. Over the live range of a
has-home preg, its home location cannot be assumed to contain up-to-
date values. The only exception is in the case where a has-home preg has
only uses over a contiguous part of its live range, in which case the home
location can be regarded as having valid content over that region.

Depending on the target machine, different classes and numbers of phys-
ical (or dedicated) registers can show up starting in M WHIRL. They are
identified by different symbol table entries. Their usages are associated
with the passing of function parameters and return values or compilation
regions. In L WHIRL, additional dedicated pregs will be manifested that
reference the global pointer, the frame pointer and the return address reg-
ister.

Dedicated pregs are not subject to the fixed-size restriction as for ordi-
nary pregs. Each floating-point preg can be both F4 and F8 at different
times, if the target ISA allows. Dedicated pregs are not re-mapped in later
code generation phases.

The special preg -1 is used in VH and H WHIRL for specifying the return
value of a function call. Preg -1 can be used only once after each call that
sets its value. In VH and H WHIRL, preg -1 suffices because a function
can return only one item, even though it may be a composite item. After
lowering to M WHIRL, depending on the linkage convention, more than
one item can be returned in multiple dedicated registers. See Section 1.7
regarding restrictions on where negative pregs can appear.
5/10/00

Page 32 WHIRL Intermediate Language Specification
1.12 Other Leaf Operators

Apart from LDID, these are the other operators that constitute leaves in
WHIRL trees:

❑ LDA res= A4,A8 [VH—VL]
Return the address in bytes given by adding the offset field to the address
of the symbol given by st_idx. The symbol can be either a variable or a
function. This node also contains ty_idx that gives the high level type of
the address being loaded.

❑ LDMA res= A4,A8 [VH—VL]
Same as LDA, but the address cannot be regarded as constant because it is
mutable, in the sense that the address of the variable or function may be
changed by a procedure call. There are two situations in which the ad-
dress of a symbol can be changed by a procedure call. In the first situa-
tion, the call causes a new dynamic object to be linked in, and the
definition of the symbol is pre-empted by it. (Dynamic objects can be
linked in at run-time via the dlopen(2) or sgidladd(2) symtem calls). The
second situation applies only to functions, and is due to lazy-text resolu-
tion performed by the run-time linker, or quickstart. For the second situa-
tion, the address of the function is changed only when it is called the first
time. A symbol is mutable only if its export class is
EXPORT_PREEMPTIBLE. In the case of variables, it must additionally
be either a weak symbol or is of the SCLASS_COMMON or
SCLASS_EXTERN storage class.

❑ LDA_LABEL res= A4,A8 [VH—VL]
Return the text address of the label_number given. This node also con-
tains ty_idx that gives the high level type of the address being loaded,
which should be a pointer to void.

❑ IDNAME [VH—VL]
Refer to the name of a symbol given by st_idx and offset. This is used for
the formal parameters in FUNC_ENTRY and ALTENTRY, and for the induc-
tion variable in DO_LOOP. This operator is not executable, and is for
specification purpose only.

❑ INTCONST res=B,i [VH—VL]
Return an integer value. The integer value is contained in the 64 bit field
const_val. When representing a 32-bit integer, the high-order 32 bits are
ignored.
5/10/00

Type Conversions Page 33
❑ CONST res=i,f,z [VH—VL]
Return a literal value. st_idx points to the entry that gives the literal val-
ue. For the integer types, this operator is used to specify symbolic con-
stants.

1.13 Type Conversions

In this section, we talk about the type conversion operators CVT and
CVTL, and the treat-as operator TAS. These operators have data types that
are different between their operands and results. CVT and CVTL maintain
the same value, while changing the representation from one type to an-
other. TAS preserves the bit representation and interprete the value as if it
is of a different type.

To effectively serve as the medium to perform optimizations for the un-
derlying target machine, it is most ideal for one operation in WHIRL to
map to exactly one machine instruction. If there are more operations in
WHIRL than after they have been translated to machine instructions, any
common subexpression that the optimizer recognizes at the WHIRL level
could be wrongly disguised, causing unnecessary saving of the disguised
common subexpression and the unnecessary occupation of a register. VH
and H WHIRL are target-independent. Starting in M WHIRL, we dis-
courage the generation of any WHIRL operation that translates to a no-op
in the target machine.

CVT is used for conversions among the data types i and f. To support inte-
ger values represented by smaller number of bits, CVTL is used. The inte-
ger value must still be manipulated in register as one of the base types I4,
I8, U4 or U8. In between operations, CVTL is used to effect truncation
and sign extension within the base type.

The purposes of CVT and CVTL are to preserve the value while changing
representation. For some conversions, the value being converted may be
unrepresentable in the new representation because it lies outside the do-
main of the result type. The compiler always generates code that does the
correct conversion for in-range values, and the correct truncation for out-
of-range values. A special case occurs when a negative signed integer is
converted to unsigned; in this case, the result is really undefined. Howev-
er, consistent results can be produced by generating different code ac-
cording to how the size changes: if the size is unchanged or increased, no
code is generated, which means that the value is sign-extended; if the size
decreases, the signed value is truncated.
5/10/00

Page 34 WHIRL Intermediate Language Specification
TAS is always a no-op except when casting between floating-point and in-
teger types. TAS takes a ty_idx that gives the high level type description
of the casted result. In cases where the high level type information given
is crucial for optimization purposes, the TAS should be generated even if
it translates to a no-op. Any transformation done to the code around the
TAS must not destroy the type information given by it. As a result, TAS is
a barrier to tree restructuring transformation, similar to the PAREN opera-
tor.

❑ CVT res=i,f desc=B,i,f [VH—VL]
The value in Kid 0 is converted from type desc into type res. For conver-
sions from f to i, CVT can map to one of RND, TRUNC, FLOOR and CEIL
depending on the rounding mode set in the target processor. In both For-
tran and C, conversion from floating point to integer is defined to use the
truncation semantics, so the front-ends should explicitly use TRUNC for
such type conversions. Conversion from B to i corresponds to transfer-
ring the boolean value from a predicate register to an integer register.

❑ CVTL res=i [VH—VL]
The value computed by Kid 0 is to be treated as being of the given size in
number of bits represented by the basic type res. The type of Kid 0 must
be of the same size as res. For res=U8 or U4, the rest of the bits are made
to be zero. For res = I8 or I4, the rest of the bits are sign-filled. The size
specified in the node must be smaller than the size of res in bits.

❑ TAS res=i,f [VH—VL]
Treats (or casts) the value computed by Kid 0 as being of type res. The
bit representation of the value is unchanged. The type of Kid 0 must be of
the same size as res. A ty_idx is used to give the high level type descrip-
tion of the result type.

1.14 High Level Type Specification

High level types are the composite types that users specify in their pro-
grams. They provide additional type information beyond that provided by
the data type fields in the WHIRL node. Since high level types have built-
in structure and hierarchy, they can only be represented in the symbol ta-
ble via the TY entries. There are ty_idx fields in the symbol table entries
that give the declared type of each variable. But in modern programming
languages, type information is not just limited to the places in the pro-
gram where things are declared. Languages like C allow type casts in ex-
ecutable statements that can alter the semantics of the computation. As a
result, ty_idx’s are provided in a few WHIRL operators to carry the type
5/10/00

High Level Type Specification Page 35
casting information from the original program. High level type informa-
tion in WHIRL serves the following purposes:

1. It provides the complete information to allow correct code generation:
Information like alignment and the volatile attribute is carried in the high
level type information in WHIRL.

2. It enables better optimizations: Under some options, (for example, “−
TENV:alias=typed”), the compiler can assume that accesses to objects
through pointers to different types are not aliased to each other. This al-
lows the compiler to more aggressively move memory references around
to achieve better performance.

3. It supports translation of WHIRL back to the source language: The
tools whirl2c and whirl2f can more accurately reconstruct the original
program using the high level type information.

Whenever the data type fields in the WHIRL node provide sufficient in-
formation for a given translation or optimization, use of the data type
fields should be preferred over high level types.

Since explicit type casts do not arise frequently, setting up a ty_idx field
for all operators would unnecessarily expand the WHIRL node. We have
chosen to provide ty_idx only for a few operators, LDID, STID, LDA, ILDA,
ILOAD, MLOAD, ISTORE and MSTORE. To represent type casts that are not
associated with these operations, we use TAS to specify the high level
type. We now describe the ty_idx’s in these operators:

LDA, ILDA— ty_idx gives the high level type of the address being
loaded. If the address is subsequently dereferenced, it is assumed that
the pointed-to object is dereferenced, and that the operation can only
affect the block of memory locations whose size is the size of the type
pointed to by the pointer type specified by the ty_idx.

LDID and STID — ty_idx gives the type of the object being loaded or
stored into.

ILOAD — There are two ty_idx’s, one for the pointer as computed by
the address expression and the other for the result of the load. The re-
sult type cannot be derived from the address type only in the case of
explicit type casting for the result of the load.

MLOAD — There is only one ty_idx that gives the type of the pointer
computed by the address expression. The type for the object being
loaded is not specified, as it can be inferred from the type of the ad-
5/10/00

Page 36 WHIRL Intermediate Language Specification
dress, and type casts to structs are not allowed in the languages sup-
ported.

ISTORE and MSTORE — Only the ty_idx for the pointer computed by
the address expression is provided. The type of the value being stored
can be determined by looking at the expression that computes the val-
ue.

TAS — This operator arises only from implicit or explicit type casts
in the original program. The ty_idx gives the casted-to type. If the
ty_idx can be carried with one of the above operators, this operator
should not be generated.

In recognizing common subexpressions, the WHIRL optimizer (WOPT)
handles the ty_idx in TAS differently from the other operators. Ordinarily,
the optimizer disregards ty_idx’s in recognizing common subexpressions.
This is possible because the values computed by the two instances are the
same, even if their ty_idx’s are different. For example, if two loads are
common subexpressions, they must be loading the same value from the
same address. The process of recognizing common subexpressions will
result in the optimizer using only one node to represent the two instances;
the optimizer just randomly picks one of the ty_idx’s to use in the single
node. We do not think this will cause any error in the generated code,
even if the compilation is “−TENV:alias =typed”. On the other hand, this
allows more common subexpressions to be recognized.

For TAS’s, WOPT includes the ty_idx in recognizing common subexpres-
sion. This means that two TAS’s with different ty_idx’s will not be recog-
nized as common subexpressions. This guarantees that optimization will
never delete any high level type information provided in TAS’s.

The reason that we provide the address ty_idx in ILOAD and ISTORE is
because the address expression referenced by them may not provide a re-
sult type ty_idx. For example, if the root of the address expression is an
ADD, there is no ty_idx that gives the high level type of the result of the
address expression. Such high level type information is needed in code
generation and optimization for ILOAD and ISTORE.

The use of TAS that does not map to any machine instruction can cause
non-optimal code sequences to be generated. This is illustrated in Figure
3. The occurrences of TAS’s cause the optimizer to use two registers in-
stead of one in order to handle the common subexpression in TAS’s.
5/10/00

Expression Operators Page 37
The example in Figure 3 shows that TAS’s should not be generated when-
ever possible. With our specification, a TAS would not have been generat-
ed if it is underneath a ILOAD, or associated with an LDID or LDA. So the
situation where it has to appear should be very rare. Figure 4 gives an ex-
ample of a situation where TAS has to be generated.

1.15 Expression Operators

In this section, we specify the WHIRL operators that are internal nodes in
expression trees. We classify them according to the number of operands
involved in the operation.All floating-point arithmetic operations, where

U4U4LDID p
U4TAS t1

Input code:
Optimized code:

..
U4U4LDID p
U4TAS t1

..
U4U4LDID p

.

.

U4U4LDID p
U4U4STID preg1

U4U4LDID preg1
U4TAS t1
U4U4STID preg2
U4U4LDID preg2

.
U4U4LDID preg2

.

U4U4LDID preg1
..

..

Figure 3 Effects of CSEs on TAS’s

C expression: *(((t1 *) (p+5)) + 4)

WHIRL expression: U4U4LDID p
I4INTCONST 20

U4ADD
U4TAS t1
I4INTCONST 16

U4ADD
I4I4LOAD 0

Figure 4 Example of appearance of TAS
5/10/00

Page 38 WHIRL Intermediate Language Specification
applicable, are all intended to have the standard IEEE 754 semantics, in-
cluding traps according to the current machine state.

1.15.1 Unary Operations

❑ NEG res=i,f,z [VH—VL]
Return the arithmetic negation of Kid 0.

❑ ABS res=i,f [VH—VL]
Return the absolute value of Kid 0.

❑ SQRT res=f [VH—VL]
Return the sqrt of Kid 0.

❑ RSQRT res=f [VH—VL]
Return the recipricol sqrt of Kid 0.

❑ RECIP res=f [VH—VL]
Return the reciprical of Kid 0.

❑ FIRSTPART res=f desc=FQ,z [VH—M]
For res=z, it returns the real part of the complex number given by Kid 0.
For res=FQ, it returns the high part of the FQ value given by Kid 0. res=z
is supported only in VH and H WHIRL. res=FQ is supported only in M
WHIRL.

❑ SECONDPART res=f desc=FQ,z [VH—M]
For res=z, it returns the imaginary part of the complex number given by
Kid 0. For res=FQ, it returns the low part of the FQ value given by Kid 0.
res=z is supported only in VH and H WHIRL. res=FQ is supported only
in M WHIRL.

❑ PAREN res=f,z [VH—VL]
Place a parenthesis around the expression in Kid 0. This is used to force
the order of evaluation on an expression.

❑ RND res=i desc=f [VH—VL]
Return Kid 0 rounded to the nearest integer.

❑ TRUNC res=i desc=f [VH—VL]
Return Kid 0 rounded towards zero.

❑ CEIL res=i desc=f [VH—VL]
Return Kid 0 rounded towards +∞.
5/10/00

Expression Operators Page 39
❑ FLOOR res=i desc=f [VH—VL]
Return Kid 0 rounded towards -∞.

❑ BNOT res=i [VH—VL]
Return the bitwise not of Kid 0.

❑ LNOT res=B,i desc=B,i [VH—VL]
Return the logical not of Kid 0. The operand and result must both be of
type boolean.

❑ LOWPART res=i [M—VL]
Operate on an LDID of a preg that contains the result of an XMPY or DI-
VREM and return the part that represents the low-order part of the multi-
ply or quotient of the divide respectively.

❑ HIGHPART res=i [M—VL]
Operate on an LDID of a preg that contains the result of an XMPY or DI-
VREM and return the part that represents the high-order part of the multi-
ply or remainder of the divide respectively.

❑ MINPART res=i [M—VL]
Operate on an LDID of a preg that contains the result of an MINMAX and
return the part that represents the minimum.

❑ MAXPART res=i [M—VL]
Operate on an LDID of a preg that contains the result of a MINMAX and re-
turn the part that represents the maximum.

❑ ILDA res= A4,A8 [VH]
Return the address in bytes given by adding the offset field to Kid 0 . The
symbol can be either a variable or a function. This node also contains
ty_idx that gives the high level type of the pointer corresponding to Kid
0. If the address being loaded corresponds to a field in a struct, field_id
identifies the exact field. This operator can be viewed as computing the l-
value of an ILOAD that has the same contents and kid.

❑ EXTRACT_BITS res= I4,I8,U4,U8 [VH—VL]
Perform a bit-field extraction, specified by the fields bit_offset and
bit_size, on the value computed by Kid 0. The value of the extracted bit-
field is returned. This instruction is more general than LDBITS/ILDBITS,
and may be generated as a result of lowering them.
5/10/00

Page 40 WHIRL Intermediate Language Specification
❑ PARM res=i,f,z,M,V [VH—VL]
This must be a kid of CALL, ICALL, VFCALL, PICCALL, INTRINSIC_CALL
or INTRINSIC_OP. It specifies that Kid 0 is an actual parameter in the call.
res is allowed to be V only in VH WHIRL, in which case it has no kid.
ty_idx gives the high level type of the parameter (as given by the function
prototype). The flags field gives different attributes about the parameter:
call-by-reference, in (call-by-value) and out. The dummy attribute speci-
fies that the parameter is present only to carry the right alias information
to the optimizer, and code to pass the parameter does not need to be gen-
erated. There are additional attributes to represent the results of alias
analysis: read-only indicates that the reference parameter being passed is
referenced but not modified; passed-not-saved indicates that the callee
does not save the address passed; not-exposed-use indicates that there is
no exposed use of the passed value in the callee; is-killed indicates that
the reference parameter is definitely assigned to in the callee.

❑ ASM_INPUT res=i,f,z [VH—VL]
This must be a kid of ASM_STMT, and specifies that Kid 0 is an expres-
sion whose value is the input operand. The st_idx field gives a
CLASS_NAME symbol table entry whose name is the operand’s con-
straint string.

❑ ALLOCA res=A4,A8 [VH—VL]
Return a pointer to the block of uninitialized local stack space allocated
by adjusting the stack pointer. Kid 0 gives the size in bytes of the block of
memory to be allocated. This operator must only appear as the right-
hand-side of a store statement. A zero value for the operand can be used
to get the current base of the stack frame without any allocation. There
are two kinds of ALLOCAs: user-specified and compiler-generated. See
DEALLOCA for additional usage requirements for this operator.

1.15.2 Binary Operations

❑ PAIR res=FQ,z [VH—M]
For res=z, it creates a complex number whose real part is equal to the
value in Kid 0 and whose imaginary part is equal to the value in Kid 1.
For res=FQ, it creates a FQ number from the high part given by Kid 0
and the low part given by Kid 1. res=z is supported only in VH and H
WHIRL. res=FQ is supported only in M WHIRL.

❑ ADD res=i,f,z [VH—VL]
Return Kid 0 plus Kid 1.
5/10/00

Expression Operators Page 41
❑ SUB res=i,f,z [VH—VL]
Return Kid 0 minus Kid 1.

❑ MPY res=i,f,z [VH—VL]
Return the result when Kid 0 is multiplied by Kid 1. In M WHIRL or
lower, for type integer, this operator can alternatively be represented by
XMPY followed by LOWPART so that the multiply operation can be com-
monized with respect to another HIGHMPY of the same operands.

❑ HIGHMPY res=i [VH—VL]
Return the high-order part of the result when Kid 0 is multiplied by Kid
1. In M WHIRL or lower, this operator can alternatively be represented
by XMPY followed by HIGHPART so that the multiply operation can be
commonized with respect to another MPY of the same operands.

❑ XMPY res=i [M—VL]
Return the composite result when Kid 0 is multiplied by Kid 1. This op-
erator is lowered from either MPY or HIGHMPY, and its result can only be
operated on by LOWPART and HIGHPART. Though its result is actually
made up of a pair of values, it can be regarded as being of the same type
at the WHIRL level. The code generator will deal with the details of han-
dling the pair of values. After optimization, XMPY can only appear as a
kid of an STID to a preg. The preg containing the result can only appear as
the operand of LOWPART or HIGHPART.

❑ DIV res=i,f,z [VH—VL]
Return the quotient when Kid 0 is divided by Kid 1. In M WHIRL or
lower, for type integer, this operator can alternatively be represented by
DIVREM followed by LOWPART so that the divide operation can be com-
monized with respect to another REM of the same operands.

❑ MOD res=i [VH—VL]
Return Kid 0 modulus Kid 1. The modulus operator of the form (i mod j)
is defined as the value of the expression (i − k × j) for some integer k such
that the value of the expression falls in the range between 0 and j or is 0.
The sign is the sign of the divisor. −(−i mod −j) yields the same value as (i
mod j). When the sign of the two operands are the same, it yields the
same value as REM. When only one operand is negative and the result is
not 0, (i mod j) = (i % j) + j.

❑ REM res=i [VH—VL]
Return the remainder when Kid 0 is divided by Kid 1. This implements
the % operation in C. (a % b) is defined as the value of the expression
5/10/00

Page 42 WHIRL Intermediate Language Specification
. The sign is the sign of the dividend. −(−a % −b) yields the same

value as (a % b). When the sign of the two operands are the same, it
yields the same value as MOD. In M WHIRL or lower, this operator can
alternatively be represented by DIVREM followed by HIGHPART so that
the divide operation can be commonized with respect to another DIV of
the same operands.

❑ DIVREM res=i [M—VL]
Return the composite result representing both the quotient and the re-
mainder when Kid 0 is divided by Kid 1. This operator is lowered from
either DIV or REM, and its result can only be operated on by LOWPART
and HIGHPART. Though its result is actually made up of a pair of values,
it can be regarded as being of the same type at the WHIRL level. The
code generator will deal with the details of handling the pair of values.
After optimization, DIVREM can only appear as a kid of an STID to a preg.
The preg containing the result can only appear as the operand of LOW-
PART or HIGHPART.

❑ MAX res=i,f [VH—VL]
Return the maximum of Kid 0 and Kid 1.

❑ MIN res=i,f [VH—VL]
Return the minimum of Kid 0 and Kid 1.

❑ MINMAX res=i,f [M—VL]
Return the composite result representing both the minimum and the max-
imum when Kid 0 is compared with Kid 1. This operator is lowered from
either MAX or MIN, and its result can only be operated on by MAXPART
and MINPART. Though its result is actually made up of a pair of values, it
can be regarded as being of the same type at the WHIRL level. The code
generator will deal with the details of handling the pair of values. After
optimization, MINMAX can only appear as a kid of an STID to a preg. The

Table 3 Examples to show relationship between MOD and REM

a b a mod b a rem b

8 5 3 3

-8 5 2 -3

8 -5 -2 3

-8 -5 -3 -3

a
a
b
--- b×–
5/10/00

Expression Operators Page 43
preg containing the result can only appear as the operand of MAXPART or
MINPART.

❑ EQ res=B,i desc=B,i,f,z [VH—VL]
Return true if Kid 0 is equal to Kid 1, false otherwise.

❑ NE res=B,i desc=B,i,f,z [VH—VL]
Return true if Kid 0 is not equal to Kid 1, false otherwise.

❑ GE res=B,i desc=i,f [VH—VL]
Return true if Kid 0 is greater than or equal to Kid 1, false otherwise.

❑ GT res=B,i desc=i,f [VH—VL]
Return true if Kid 0 is greater than Kid 1, false otherwise.

❑ LE res=B,i desc=i,f [VH—VL]
Return true if Kid 0 is less than or equal to Kid 1, false otherwise.

❑ LT res=B,i desc=i,f [VH—VL]
Return true if Kid 0 is less than Kid 1, false otherwise.

❑ BAND res=i [VH—VL]
Return the bitwise AND of Kid 0 and Kid 1.

❑ BIOR res=i [VH—VL]
Return the bitwise OR of Kid 0 and Kid 1.

❑ BNOR res=i [VH—VL]
Return the bitwise NOR of Kid 0 and Kid 1.

❑ BXOR res=i [VH—VL]
Return the bitwise XOR of Kid 0 and Kid 1.

❑ LAND res=i [VH—VL]
Return the logical AND of Kid 0 and Kid 1. The children and the result
are of type boolean. The code generated may use short-circuiting.

❑ LIOR res=i [VH—VL]
Return the logical OR of Kid 0 and Kid 1. The children and the result are
of type boolean. The code generated may use short-circuiting.

❑ CAND res=i [VH—H]
Control flow version of LAND. It evaluates the logical AND of Kid 0 and
Kid 1 via short-circuiting. Kid 1 is not to be evaluated if Kid 0 evalutes to
5/10/00

Page 44 WHIRL Intermediate Language Specification
0. In VH WHIRL, the kids can contain side-effect operations (via COM-
MA and RCOMMA). If there are side effects, the lowered form in H
WHIRL will use jumps.

❑ CIOR res=i [VH—H]
Control flow version of LIOR. It evaluates the logical OR of Kid 0 and
Kid 1 via short-circuiting. Kid 1 is not to be evaluated if Kid 0 evalutes to
1. In VH WHIRL, the kids can contain side-effect operations (via COM-
MA and RCOMMA). If there are side effects, the lowered form in H
WHIRL will use jumps.

❑ SHL res=i [VH—VL]
Return Kid 0 shifted left Kid 1 times. All the low order bits shifted in are
set to zero. The exact semantics depends on the target architecture.

❑ ASHR res=i [VH—VL]
Return Kid 0 arithmetically shifted right Kid 1 times. The exact seman-
tics depends on the target architecture.

❑ LSHR res=i [VH—VL]
Return Kid 0 logically shifted right Kid 1 times. The exact semantics de-
pends on the target architecture.

❑ COMPOSE_BITS res= I4,I8,U4,U8 [VH—VL]
Creates a new integer value by performing bits composition using two
operands. The value of Kid 1 is deposited into the range of bits in Kod 0
as specified by the fields bit_offset and bit_size. If the value of Kid 1 is
larger than what the bit-field can contain, its value is truncated. The rest
of the bits are taken from the value in Kod 0. The resulting new integer
value is returned. res must be the same as that of Kid 0. This instruction
is more general than STBITS/ISTBITS, and may be generated as a result of
lowering them.

❑ RROTATE res=U4,U8desc=U1,U2,U4,U8 [VH]
Return Kid 0 rotated to the right by the number of bits specified by Kid 1.
Only the low order part of Kid 0 corresponding to desc is used. The rota-
tion amount must not be negative. Only the least significant bits of Kid 1
sufficient to specify the full bits in desc are used to determine the rotate
amount; the higher order bits of Kid 1 are ignored. The high order bits of
the result that lie outside of desc have undefined values.

❑ COMMA res=i,f,z,M [VH]
Kid 0 must be a BLOCK, while Kid 1 must be an expression of type res.
Kid 1 must not be another COMMA. The statements in the block given by
5/10/00

Expression Operators Page 45
Kid 0 are executed before evaluating and returning the value of Kid 1. A
call can be generated in the middle of an expression in VH WHIRL using
this operator. If the return value of the call is to be used in the expression,
Kid 1 can load the dedicated pseudo-register that contains the function
return value.

❑ RCOMMA res=i,f,z,M [VH]
Kid 0 must be an expression of type res, while Kid 1 must be a BLOCK.
Kid 0 must not be another RCOMMA. The statements in the block given
by Kid 1 are executed after evaluating Kid 1. The value of Kid 0 is re-
turned.

1.15.3 Ternary Operations

❑ SELECT res=i,f desc=B,i [H—VL]
Kid 0 must evaluate to a boolean expression. Both Kid 1 and Kid 2 must
have res as the result type. Return Kid 1 if Kid 0 evaluates to true. Other-
wise, return Kid 2. The evaluation of both Kids 1 and 2 can be performed
regardless of the value of Kid 0. Converting an if statement to this opera-
tor is tantamount to speculation if Kid 1 or 2 are expressions.

❑ CSELECT res=i,f,M,Vdesc=i [VH]
Control flow version of SELECT. The kids are the same as SELECT, but
only one of Kid 1 and Kid 2 is to be evaluated depending on the result of
Kid 0.

❑ MADD res=f [VL]
Return (Kid 1 × Kid 2) + Kid 0.

❑ MSUB res=f [VL]
Return (Kid 1 × Kid 2) – Kid 0.

❑ NMADD res=f [VL]
Return – ((Kid 1 × Kid 2) + Kid 0).

❑ NMSUB res=f [VL]
Return – ((Kid 1 × Kid 2) – Kid 0).

1.15.4 N-ary Operations

❑ ARRAY res=A4,A8 [VH—H]
This operator uses array addressing rules to return an address. The num-
ber of dimensions of the array, n, is inferred from kid-count shifted right
5/10/00

Page 46 WHIRL Intermediate Language Specification
by 1. An internal field, element_size, gives the size of each array element
in bytes. If element_size is negative, it specifies a non-contiguous array in
FORTRAN90. Kid 0 is the address of the base of the array. Kids 1 to n
give the size of each dimension in contiguous arrays, and the multiplier
for each index in non-contiguous arrays. Kids n+1 to 2n give the index
expressions for dimensions 0 to n-1 respectively (adjusted so that the ar-
ray index has a zero lower bound). If we name Kids 1 to n as m1..mn, and
if we name the values of the index expressions x1..xn (i.e. xi = the value
of Kid i+n), and if element_size is s, then for contiguous arrays, the re-
sultant address is:

and for non-contiguous arrays, the resultant address is:

In contiguous arrays, for dimensions d=2..n, 0 <= xd < md; in other
words, excepting the first dimension, each index expression must be in
bounds.

❑ INTRINSIC_OP res=I1,I2,U1,U2, i,f,z,M [VH—M]
This operator applies the intrinsic operation as specified by the intrinsic
field to the operands specified by Kids 0..n-1, which must be PARM
nodes, and returns the result. A flags field gives attributes about the in-
trinsic that are useful for optimization around the intrinsic. This operator
can only be used for intrinsics that have no side effects and are pure func-
tions. This means the value returned is dependent only on the arguments,
which may be passed by reference. Depending on the intrinsic, its result
type and compilation options, it will either become a call or a sequence of
instructions after it is lowered to L WHIRL. The types I1, I2, U1, U2, M
are only allowed in VH WHIRL.

❑ IO_ITEM [VH—H]
This can appear only as kids of IO, and represents an item specified in a
FORTRAN I/O statement. The intrinsic field gives the type of I/O item
specified. This operator has either 0, 1, 2 or 3 kids depending on the type
of I/O item. The kids are expression trees representing the contents of the
I/O item. Call and GOTO statements are allowed to be nested within the
expression tree. Thus, this operator can indicate implicit control flow.

kid0 s xi m j

j i 1+=

n

∏ 
 
 

i 1=

n

∑+

kid0 s–() xim j

i 1=

n

∑+
5/10/00

Intrinsics Page 47
1.16 Intrinsics

An intrinsic in WHIRL is an operation that cannot be mapped to exactly
one machine instruction in the target architecture. However, there are
some common language constructs that we exempt from this rule because
they have common occurrences, like CVTL, MAX and MIN.

The list of intrinsics that WHIRL support is defined and maintained sepa-
rately from the WHIRL operators. Both the call and the intrinsics opera-
tors carry attributes in the flags field that provide information to the
compiler about the call or intrinsic operation. But intrinsics are distinct
from calls because they represent “functions” that the compiler has spe-
cial knowledge about and can take advantage of.

We support two intrinsic operators. INTRINSIC_OP is an expression oper-
ator, while INTRINSIC_CALL is a statement. The expression form allows
the optimizer to treat the intrinsic the same as any other expression oper-
ator, so the intrinsic can benefit from any optimizations involving expres-
sions, like common subexpression elimination. But because
INTRINSIC_OP can only be defined for intrinsics that have no side effect,
only a limit number of intrinsics can be represented under INTRINSIC_OP.

1.17 Aggregates Specification

Fortran 90 provides program constructs that represent aggregates of array
elements in a compact form. Translation of such aggregate operations re-
quires the introduction of loops. Operations on aggregates provide opti-
mization opportunities that could be obscured or made more difficult
once those operations are lowered into loops operating on array elements.
Thus, we define VH WHIRL as the level of WHIRL that corresponds to
program constructs as they appear in Fortran 90 programs. VH WHIRL
constructs are also generated by Fortran 77 programs that use the 8X ex-
tensions.

In VH WHIRL, we allow a WHIRL node to specify an aggregate of val-
ues (as opposed to a single value). All WHIRL operators can take on ag-
gregate values as operands. The ARRAYEXP operator is used to give the
dimension information of an array expression.

Among the WHIRL operators for aggregates specification, TRIPLET, AR-
RAYEXP and ARRSECTION are expression operators. WHERE is a struc-
tured control flow statement.
5/10/00

Page 48 WHIRL Intermediate Language Specification
❑ TRIPLET res=i [VH]
This operator produces a one dimensional array of integers in a linear
progression. Kid 0 evaluates to the starting integer value of the progres-
sion. Kid 1 evaluates to an integer value that gives the stride in the pro-
gression. Kid 2 evaluates to the number of values in the progression.

❑ ARRAYEXP res=i,f,z [VH]
This operator indicates that Kid 0 is an array expression with the number
of dimensions num_dim equal to the kid_count-1. Kid 1 to Kid num_dim
give the number of elements for each dimension. An ARRAYEXP is re-
quired at the root of a tree that specifies array expressions. This means
that it will occur at the statement level for aggregate stores. Within the
tree, ARRAYEXP is not required unless an operand is of different shape
(i.e. smaller number of dimensions) than what is expected by its parent.
The ARRAYEXP node can also be used with only one child to indicate that
the child expression is an array expression. This can occur due to the re-
quirement that all array valued children of the ARRSECTION node are so
indicated.

❑ ARRSECTION res=A4,A8 [VH]
This node corresponds to the ARRAY, except that it generates an aggre-
gate of addresses. The number of indices is given by (kid_count-1)/2.
The field element_size gives the size of each array element in bytes. Kid
0 is the address of the base of the array. Kids 1 to n give the sizes of all
the dimensions of the array as declared. Each of Kids n+1 to 2n is either
an integer expression or a one-dimensional array integer expression that
indexes into the array at the corresponding dimension, adjusted so that
the array index has a zero lower bound. The resulting array expression
has a number of dimension corresponding to the number of kids from
n+1 to 2n that are array expressions. It is required that each array-valued
index child be either an TRIPLET or an ARRAYEXP of only one dimen-
sion, although the ARRAYEXP may be the marker (1 child) form.

❑ WHERE [VH]
This is a structured control flow statement that implements the Fortran 90
masked assignment. It has three kids. Kid 0 must be a boolean-typed ar-
ray expression that forms the mask. Kid 1 and 2 are BLOCKs consisting
of only ISTORE nodes for aggregates of array elements. The shape of ar-
rays or array sections being stored into must be the same as the shape of
the boolean array expression of Kid 0. For each array element, either Kid
1 or Kid 2 is executed depending on the value of the mask. When an ele-
ment of the mask in Kid 0 is true, only the stores specified in Kid 1 are
performed to the corresponding elements of the arrays or array sections.
When an element of the mask in Kid 0 is false, only the stores specified
5/10/00

ASCII WHIRL Format Page 49
in Kid 2 are performed to the corresponding elements of the arrays or ar-
ray sections.

1.18 ASCII WHIRL Format

Although the WHIRL exists internally in the form of trees, it can be
translated to the ASCII format for perusal. The IR portion of WHIRL has
a standard ascii format that allows it to be edited and translated back to
binary form. The symbol table portion of WHIRL, however, cannot be
translated back to binary form. Thus, to produce a valid WHIRL binary
file from ascii WHIRL, it is necessary to specify the original WHIRL file
that contains the valid symbol table. When the ascii IR is translated back
into binary form, the original symbol table is incorporated into the output
WHIRL file.

In the ASCII WHIRL format, each line corresponds to one WHIRL node,
with the name of the operator being the first field of each line. Additional
fields in the node are displayed following the operator name. res and desc
are printed as first and second prefixes of the operator name. By conven-
tion, the res or desc is omitted if there is only one legal type for that field
allowed for that operator. For operators in which desc is always the same
as, or can be derived from res, desc is also omitted.

In order to display the tree structures, ASCII WHIRL is a mixture of pre-
fix and postfix notations. It takes advantage of the two-dimensional na-
ture of the print-out by using indentations to display the nesting
relationships. For each level down the tree, it indents by one more col-
umn to the right. This allows the kids of an operator to be identified easi-
ly by matching indentations. The indentation is for displaying purpose
only. The ASCII-to-binary translator ignores indentations when it scans
the content of each line.

Statements belonging to the same BLOCK are printed in the order of exe-
cution. Expressions are printed in postfix notation, while the structured
control flow constructs are printed in prefix notation. This ensures that
the order of appearances of the operands in WHIRL corresponds more
closely to the generated assembler output.

To facilitate visual inspection and parsing by the ASCII WHIRL reader,
keywords are inserted. Figure 4 shows the keywords used in displaying
the structured control flow statements. The comment character # is used
to specify that the rest of the line is to be ignored. This allows the compil-
er to insert information in the ascii WHIRL dump that helps debugging.
5/10/00

Page 50 WHIRL Intermediate Language Specification
In particular, the original text of the source line can be printed next to the
WHIRL code generated from it.

Figure 5 ASCII Formats for Structured Control Flow Statements

FUNC_ENTRY
IDNAME
IDNAME

BODY
BLOCK
...
END_BLOCK

DO_LOOP
<index var>
INIT

COMP

INCR

BODY

<initialization statement>

<comparison for end condition>

<increment statement>

...

DO_WHILE

BODY
<index var>

WHILE_DO

BODY
<index var>

IF

THEN
<condition>

BLOCK
...
END_BLOCK

BLOCK
...
END_BLOCK

BLOCK
...
END_BLOCK

BLOCK
...
END_BLOCK

ELSE
BLOCK
...
END_BLOCK

END_IF

(Inserted keywords are in bold face.)
5/10/00

Index of Operators

A
ABS 38
ADD 40
AFFIRM 23
AGOTO 17
ALLOCA 40
ALTENTRY 17
ARRAY 45
ARRAYEXP 48
ARRSECTION 48
ASHR 44
ASM_INPUT 40
ASM_STMT 21
ASSERT 23

B
BACKWARD_BARRIER 24
BAND 43
BIOR 43
BLOCK 13
BNOR 43
BNOT 38
BXOR 43

C
CALL 19
CAND 43
CASEGOTO 16
CEIL 38
CIOR 44
COMMA 44
COMMENT 23
COMPGOTO 16
COMPOSE_BITS 44
CONST 32
CSELECT 45
CVT 34
CVTL 34

D
DEALLOCA 24
DIV 41
DIVREM 42
DO_LOOP 14
DO_WHILE 15

E
EQ 42
EVAL 22
EXTRACT_BITS 39

F
FALSEBR 17
FIRSTPART 38
FLOOR 38
FORWARD_BARRIER 23
FUNC_ENTRY 13

G
G
G
G
G

H
H
H

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L
L
L
L
L
L
L
L
L
L
L
L
L
L
L

M
M
M
M
M
M
M
M
M
M
M
M

N
N

E 43
OTO 15
OTO_OUTER_BLOCK 16
T 43

IGHMPY 41
IGHPART 39

CALL 20
DNAME 32
F 15
LDA 39
LDBITS 29
LOAD 27
LOADX 27
NTCONST 32
NTRINSIC_CALL 21
NTRINSIC_OP 46
O 21
O_ITEM 46
STBITS 29
STORE 28
STOREX 28

ABEL 18
AND 43
DA 32
DA_LABEL 32
DBITS 29
DID 27
DMA 32
E 43
IOR 43
NOT 39
OOP_INFO 18
OWPART 39
SHR 44
T 43

ADD 45
AX 42
AXPART 39
IN 42
INMAX 42
INPART 39
LOAD 28
OD 41
PY 40
STORE 28
SUB 45

E 43

N
N
N

P
P
P
P
P
P
P
P

R
R
R
R
R
R
R
R
R
R
R

S
S
S
S
S
S
S
S
S

T
T
T
T
T
T

V
V

W
W
W

X
X
X
X

EG 37
MADD 45
MSUB 45

AIR 40
AREN 38
ARM 39
ICCALL 20
RAGMA 22
REFETCH 22
REFETCHX 22

COMMA 45
ECIP 38
EGION 14
EGION_EXIT 17
EM 41
ETURN 17
ETURN_VAL 18
ND 38
ROTATE 44
SQRT 38

ECONDPART 38
ELECT 45
HL 44
QRT 38
TBITS 29
TID 27
UB 40
WITCH 16

AS 34
RAP 23
RIPLET 47
RUEBR 17
RUNC 38

FCALL 20

HERE 48
HILE_DO 15

GOTO 16
MPY 41
PRAGMA 22

Page 52 WHIRL Intermediate Language Specification
5/10/00

	CHAPTER 1 WHIRL Intermediate Language Specification
	1.1 Introduction
	1.2 Compilation Targets
	1.3 The Levels of WHIRL
	Table 1 Differences between high and low level representations
	Figure 1 Continuous Lowering in the SGI Pro64 Compiler

	1.3.1 Very High (VH) WHIRL
	1.3.2 High (H) WHIRL
	1.3.3 Mid (M) WHIRL
	1.3.4 Low (L) WHIRL
	1.3.5 Very Low (VL) WHIRL

	1.4 The Components of WHIRL
	1.4.1 Operators
	1.4.2 Result and Descriptor Types
	1.4.3 Supported Data Types
	1.4.4 Kid Pointers
	1.4.5 Next and Previous Pointers
	1.4.6 Offset
	1.4.7 Mapping Mechanism
	1.4.8 Source Position Information
	1.4.9 Additional Fields
	1.4.10 WHIRL Node Layout
	Table 2 Layout of the WHIRL node

	1.5 Structured Control Flow Statements
	FUNC_ENTRY [VH—VL]
	BLOCK [VH—VL]
	REGION [H—VL]
	DO_LOOP [VH—H]
	DO_WHILE [VH—H]
	WHILE_DO [VH—H]
	IF [VH—H]

	1.6 Other Control Flow Statements
	GOTO [VH—VL]
	GOTO_OUTER_BLOCK [VH—VL]
	SWITCH [VH]
	CASEGOTO [VH]
	COMPGOTO [VH—M]
	XGOTO [L—VL]
	AGOTO [VH—VL]
	REGION_EXIT [VH—VL]
	ALTENTRY [VH—VL]
	TRUEBR [VH—VL]
	FALSEBR [VH—VL]
	RETURN [VH—VL]
	RETURN_VAL res=any [VH—H]
	LABEL [VH—VL]
	LOOP_INFO [H—VL]

	1.7 Calls
	CALL res=any [VH—VL]
	ICALL res=any [VH—VL]
	VFCALL res=any [VH—H]
	Figure 2 Form for VFCALL

	PICCALL res=any [L—VL]
	INTRINSIC_CALL res=any [VH—M]
	IO [VH—H]
	ASM_STMT [VH—VL]

	1.8 Other Statements
	EVAL [VH—VL]
	PRAGMA [VH—VL]
	XPRAGMA [VH—VL]
	PREFETCH [H—VL]
	PREFETCHX [M—VL]
	COMMENT [VH—VL]
	TRAP [VH—VL]
	ASSERT [VH—VL]
	AFFIRM [VH—VL]
	FORWARD_BARRIER [VH—VL]
	BACKWARD_BARRIER [VH—VL]
	DEALLOCA [VH—VL]

	1.9 Memory Accesses
	LDID res=B,i,f,z,M desc=all [VH—VL]
	STID desc=all [VH—VL]
	ILOAD res=i,f,z,M desc=all [VH—VL]
	ILOADX res=f desc=f [M—VL]
	MLOAD [M—L]
	ISTORE desc=all [VH—VL]
	ISTOREX desc=f [M—VL]
	MSTORE [M—L]

	1.10 Bit-field Representation
	LDBITS res=i desc=i,I1,I2 [VH—VL]
	STBITS desc=i,I1,I2 [VH—VL]
	ILDBITS res=i desc=i,I1,I2 [VH—VL]
	ISTBITS desc=i,I1,I2 [VH—VL]

	1.11 Pseudo-registers
	1.12 Other Leaf Operators
	LDA res= A4,A8 [VH—VL]
	LDMA res= A4,A8 [VH—VL]
	LDA_LABEL res= A4,A8 [VH—VL]
	IDNAME [VH—VL]
	INTCONST res=B,i [VH—VL]
	CONST res=i,f,z [VH—VL]

	1.13 Type Conversions
	CVT res=i,f desc=B,i,f [VH—VL]
	CVTL res=i [VH—VL]
	TAS res=i,f [VH—VL]

	1.14 High Level Type Specification
	Figure 3 Effects of CSEs on TAS’s
	Figure 4 Example of appearance of TAS

	1.15 Expression Operators
	1.15.1 Unary Operations
	NEG res=i,f,z [VH—VL]
	ABS res=i,f [VH—VL]
	SQRT res=f [VH—VL]
	RSQRT res=f [VH—VL]
	RECIP res=f [VH—VL]
	FIRSTPART res=f desc=FQ,z [VH—M]
	SECONDPART res=f desc=FQ,z [VH—M]
	PAREN res=f,z [VH—VL]
	RND res=i desc=f [VH—VL]
	TRUNC res=i desc=f [VH—VL]
	CEIL res=i desc=f [VH—VL]
	FLOOR res=i desc=f [VH—VL]
	BNOT res=i [VH—VL]
	LNOT res=B,i desc=B,i [VH—VL]
	LOWPART res=i [M—VL]
	HIGHPART res=i [M—VL]
	MINPART res=i [M—VL]
	MAXPART res=i [M—VL]
	ILDA res= A4,A8 [VH]
	EXTRACT_BITS res= I4,I8,U4,U8 [VH—VL]
	PARM res=i,f,z,M,V [VH—VL]
	ASM_INPUT res=i,f,z [VH—VL]
	ALLOCA res=A4,A8 [VH—VL]

	1.15.2 Binary Operations
	PAIR res=FQ,z [VH—M]
	ADD res=i,f,z [VH—VL]
	SUB res=i,f,z [VH—VL]
	MPY res=i,f,z [VH—VL]
	HIGHMPY res=i [VH—VL]
	XMPY res=i [M—VL]
	DIV res=i,f,z [VH—VL]
	MOD res=i [VH—VL]
	REM res=i [VH—VL]
	Table 3 Examples to show relationship between MOD and REM

	DIVREM res=i [M—VL]
	MAX res=i,f [VH—VL]
	MIN res=i,f [VH—VL]
	MINMAX res=i,f [M—VL]
	EQ res=B,i desc=B,i,f,z [VH—VL]
	NE res=B,i desc=B,i,f,z [VH—VL]
	GE res=B,i desc=i,f [VH—VL]
	GT res=B,i desc=i,f [VH—VL]
	LE res=B,i desc=i,f [VH—VL]
	LT res=B,i desc=i,f [VH—VL]
	BAND res=i [VH—VL]
	BIOR res=i [VH—VL]
	BNOR res=i [VH—VL]
	BXOR res=i [VH—VL]
	LAND res=i [VH—VL]
	LIOR res=i [VH—VL]
	CAND res=i [VH—H]
	CIOR res=i [VH—H]
	SHL res=i [VH—VL]
	ASHR res=i [VH—VL]
	LSHR res=i [VH—VL]
	COMPOSE_BITS res= I4,I8,U4,U8 [VH—VL]
	RROTATE res=U4,U8 desc=U1,U2,U4,U8 [VH]
	COMMA res=i,f,z,M [VH]
	RCOMMA res=i,f,z,M [VH]

	1.15.3 Ternary Operations
	SELECT res=i,f desc=B,i [H—VL]
	CSELECT res=i,f,M,V desc=i [VH]
	MADD res=f [VL]
	MSUB res=f [VL]
	NMADD res=f [VL]
	NMSUB res=f [VL]

	1.15.4 N-ary Operations
	ARRAY res=A4,A8 [VH—H]
	INTRINSIC_OP res=I1,I2,U1,U2, i,f,z,M [VH—M]
	IO_ITEM [VH—H]

	1.16 Intrinsics
	1.17 Aggregates Specification
	TRIPLET res=i [VH]
	ARRAYEXP res=i,f,z [VH]
	ARRSECTION res=A4,A8 [VH]
	WHERE [VH]

	1.18 ASCII WHIRL Format
	Figure 5 ASCII Formats for Structured Control Flow Statements

	Index of Operators

