
CHAPTER 2 WHIRL Symbol Table
Specification
2.1 Introduction and Overview . 2

2.2 SCOPE . . 4

2.3 ST_TAB . 5

2.4 PU_TAB . 18

2.5 TY_TAB . 22

2.6 FLD_TAB . . 28

2.7 TYLIST_TAB . 30

2.8 ARB_TAB . 30

2.9 TCON_TAB . . 32

2.10 INITO_TAB . . 33

2.11 INITV_TAB . . 33

2.12 BLK_TAB . 36

2.13 STR_TAB . . 37

2.14 TCON_STR_TAB . 37

2.15 LABEL_TAB . 38

2.16 PREG_TAB . 39

2.17 ST_ATTR_TAB . 39

2.18 FILE_INFO . 40

2.19 Backend-Specific Tables . 41

2.20 Symbol Table Interfaces . 42
5/10/00

Page 2 Whirl Symbol Table Specification
2.1 Introduction and Overview

This document describes the symbol table portion of the WHIRL file pro-
duced and used by the SGI Pro64™ compiler. A separate document de-
scribes the WHIRL intermediate program representation.

The WHIRL symbol table is made up of a series of tables. They are de-
signed for compilation, optimization and storage efficiency. The way the
tables are organized closely corresponds to the compiler’s view of the
symbol table. The model also enhances locality in references to the ta-
bles.

The WHIRL symbol table is divided into the global part and the local part.
The local part is organized by program units (PUs). Figure 1 gives a pic-
torial overview of the WHIRL symbol table as produced by the front-ends.
There are different kinds of tables. The tables that can appear in both the
global and local part of the symbol table are:

1. ST_TAB — This is the fundamental building block of the symbol ta-
ble. In general, any symbol with a name occupies an entry in this ta-
ble. Any constant value that reside in memory (floating point and
string constants) also occupies an entry in this table.

2. INITO_TAB — Each entry specifies the initial value(s) of an initial-
ized data object. It in turn refers to one or more entries in the
INITV_TAB for initial values of each individual component of the
data object.

3. ST_ATTR_TAB — Each entry associates some miscellaneous at-
tributes with an entry in the ST_TAB.

The tables that can only appear in the global part of the symbol table are:

1. PU_TAB — Each entry represents a procedure that appears in the
source file as either function prototype or definition.

2. TY_TAB — Each entry represents a distinct type in the program. It in
turn refers to the FLD_TAB, TYLIST_TAB, ARB_TAB, or PU_TAB to
specify the full structure of each type.

3. FLD_TAB — Each entry specifies a field in a struct type.

4. TYLIST_TAB — Each entry specifies a parameter type in a function
prototype declaration.

5. ARB_TAB — Each entry gives information about a dimension of an
array type.
5/10/00

Introduction and Overview Page 3
6. TCON_TAB — The values of any non-integer constants are stored
here. For string constants, it in turn refers to the TCON_STR_TAB.

7. BLK_TAB — Each entry specifies layout information of a block of
data.

8. INITV_TAB — Each entry describes the initial value of a scalar com-
ponent of an initialized data object.

Figure 1 WHIRL Symbol Table produced by the front-ends

ST_TAB PU_TAB TY_TAB
TCON_TAB

STR_TAB

Global SYMTAB

PU1 SYMTAB

PUn SYMTAB

FLD_TAB ARB_TAB

TYLIST_TAB

INITV_TAB INITO_TAB

ST_TAB
LABEL_TAB PREG_TABINITO_TAB

TCON_STR_TAB

BLK_TAB

ST_ATTR_TAB

ST_TAB
LABEL_TAB PREG_TABINITO_TAB ST_ATTR_TAB

ST_ATTR_TAB
5/10/00

Page 4 Whirl Symbol Table Specification
9. STR_TAB — All strings are stored here. They include names of vari-
able, types, labels, etc.

10. TCON_STR_TAB — All string literals defined in the user program
are stored in this table.

The tables that can only appear in the local part of the symbol table are:

1. LABEL_TAB —Information associated with each WHIRL label used
in the PU is stored here.

2. PREG_TAB —Information associated with each pseudo-register
used in the PU is stored here.

Apart from the above tables, each compiler component is free to allocate
additional tables for its own internal use in storing extra information. The
additional tables are to have the same number of entries and be referred
to by the same type of index as one of the above tables. As a general rule,
the first entry of each table has index 1; index 0 is reserved to stand for
uninitialized index value. The design also assumes that any table will
never grow to more than 16 million entries, so that only 24 bits are need-
ed to contain a table index. An exception is STR_TAB, in which the index
is really a byte offset.

The tables listed so far mainly serves the purpose of communicating in-
formation gathered by the front-ends to the back-end phases during com-
pilation. The back-end optimization phases may create more information,
and the new information can reside in additional tables created for the
purpose of passing information to the other back-end components. These
tables will be prefixed by the name of the component that creates the in-
formation in the table, e.g. IPA_ST_TAB, WOPT_ST_TAB, etc. In particular,
BE_ST_TAB (Section 2.19.1) serves to communicate information among
the back-end components, including IPA.

The remaining sections of this chapter describe the symbol table struc-
tures in more details and the interfaces to them.

2.2 SCOPE

Depending on the context, a different set of symbol tables might become
visible. For example, in a nested procedure, three ST_TABs are visible —
its own local ST_TAB, the parent PU’s ST_TAB, and the global ST_TAB.
Associated with each PU, a SCOPE array is defined for specifying the list
of visible tables. The index to this array is the lexical scope. Index 0 is re-
5/10/00

ST_TAB Page 5
served. Index 1 refers to the global symbol tables, and index 2 refers to
the local symbol tables. A nested procedure will have an index starting at
3, depending on the level of nesting. The type of the SCOPE array index
is SYMTAB_IDX, which is an unsigned 8-bit integer.

Strictly speaking, SCOPE arrays are not part of the symbol table, and they
are never written out to a WHIRL file.Tables that can only appear in the
global part of the symbol table are always visible. So they are not explic-
itly described by the SCOPE array.

Each element of a SCOPE array has the following structure, size 24 bytes:

For the global scope (i.e., index 1of the SCOPE array), the fields pool, st,
label_tab, and preg_tab are not used, and contain the NULL pointer.

2.3 ST_TAB

Each entry of this table is an ST. A symbol in the program is uniquely
identified by a value of type ST_IDX.

Table 1 Layout of a SCOPE Array Element

Offset Field Type Description Field size

byte 0 pool MEM_POOL * pointer to the memory pool for local tables 1 word

byte 4 st ST * pointer to the ST for this PU 1 word

byte 8 st_tab ST_TAB * pointer to the table of ST entries 1 word

byte 12 label_tab LABEL_TAB * pointer to the table of labels 1 word

byte 16 preg_tab PREG_TAB * pointer to the table of pseudo registers 1 word

byte 20 inito_tab INITO_TAB * pointer to the table of INITO entries. 1 word

byte 24 st_attr_tab ST_ATTR_TAB * pointer to the table of ST_ATTR entries. 1 word
5/10/00

Page 6 Whirl Symbol Table Specification
2.3.1 ST_IDX

ST_IDX is of size 32 bits, and is composed of two parts:

The low order 8 bits are used to index into the SCOPE array in order to
get to the ST_TAB.

2.3.2 ST Entry

The ST entry has the following structure, size 32 bytes:

name_idx/tcon: If sym_class is CLASS_CONST, the tcon field holds the
index to the TCON_TAB. For all other sym_class values,
the name_idx field holds the index to the STR_TAB. If
the export class is EXPORT_LOCAL or

Table 2 Layout of ST_IDX

Field Description Field position and size

level lexical level least significant 8 bits

index index to ST_TAB most significant 24 bits

Table 3 Layout of ST

Offset Field Description Field size

byte 0 name_idx STR_IDX to the name string 1 word

byte 0 tcon TCON_IDX of the constant value 1 word

byte 4 flags misc. attributes of this entry 1 word

byte 8 flags_ext more flags for future extension 1 byte

byte 9 sym_class class of symbol 1 byte

byte 10 storage_class storage class of symbol 1 byte

byte 11 export export class of the symbol 1 byte

byte 12 type TY_IDX of the high-level type 1 word

byte 12 pu PU_IDX if program unit 1 word

byte 12 blk BLK_IDX if CLASS_BLOCK 1 word

byte 16 offset offset from base 2 words

byte 24 base_idx ST_IDX of the base of the allocated block 1 word

byte 28 st_idx ST_IDX for this entry 1 word
5/10/00

ST_TAB Page 7
EXPORT_LOCAL_INTERNAL, the name is optional.
And when there is no name, name_idx should be zero.

flags/flags_ext: Miscellaneous attributes, See Section 2.3.5.

sym_class: The class of symbol, see Table 4.

storage_class: The storage class of symbol, see Table 5.

export: The export class of symbol, see Section 2.3.4.

type/pu/blk: If sym_class is CLASS_FUNC, then the pu field holds
the index to the PU_TAB. If sym_class is
CLASS_BLOCK, this field holds the BLK_IDX. If
sym_class is CLASS_NAME, this field must be zero. For
all other valid sym_class values, the type field holds the
TY_IDX that describes the type of this symbol.

One exception is a CLASS_NAME symbol that has the
ST_ASM_FUNCTION_ST bit set, in which case the pu
field holds the index to the PU_TAB.

offset: The byte offset from base_idx. If base_idx is equal to
st_idx, then offset must be zero.

base_idx: This is the ST_IDX for the ST that describes the base
address (i.e., this symbol is an alias of the specified
symbol). If it is equal to it’s own st_idx, then the ad-
dress of this symbol is independently assigned. If
ST_IS_WEAK_ALIAS is set, base_idx is overloaded to
specify the corresponding strong definition (see Table
9 and Section 2.3.7). If ST_IS_SPLIT_COMMON is set,
base_idx is overloaded to be the full common defini-
tion. It is illegal to set both ST_IS_WEAK_ALIAS and
ST_IS_SPLIT_COMMON.

The following rules apply when setting the base ad-
dress of a symbol. If a symbol A is based on symbol B
(i.e. base_idx of A is equal to st_idx of B), then:

i. storage_class of A must be the same as
storage_class of B, except when the sym_class of B
is CLASS_BLOCK and storage_class of B is
SCLASS_UNKNOWN.
5/10/00

Page 8 Whirl Symbol Table Specification
ii. if sym_class of A is CLASS_BLOCK, sym_class of B
must be CLASS_BLOCK.

iii. offset of A plus the size of A must not be larger than
the size of B.

st_idx: ST_IDX of this symbol. This is used mainly for fast
conversion from a pointer to a given ST to the corre-
sponding ST_IDX.

2.3.3 Symbol Class and Storage Class

There is a symbol class and a storage class associated with each ST entry.
Both of which are enumeration type:

Table 4 Symbol Class

Name Value Description

CLASS_UNK 0 uninitialized

CLASS_VAR 1 data variable

CLASS_FUNC 2 function

CLASS_CONST 3 constant, a TCON holds the real value

CLASS_PREG 4 pseudo register

CLASS_BLOCK 5 base address for a block of data.

CLASS_NAME 6 placeholder for a named ST entry

Table 5 Storage Class

Name Value Description

SCLASS_UNKNOWN 0 no specific storage class (e.g., a block of
data of mixed storage classes)

SCLASS_AUTO 1 local stack variable

SCLASS_FORMAL 2 formal parameter

SCLASS_FORMAL_REF 3 reference parameter

SCLASS_PSTATIC 4 PU scope static data

SCLASS_FSTATIC 5 file scope static data

SCLASS_COMMON 6 common block (linker allocated)

SCLASS_EXTERN 7 unallocated external data or text

SCLASS_UGLOBAL 8 uninitialized global data
5/10/00

ST_TAB Page 9
Not all combinations of symbol class and storage class are valid. Only
those listed below are allowed:

SCLASS_DGLOBAL 9 initialized global data

SCLASS_TEXT 10 executable code

SCLASS_REG 11 register variable

SCLASS_CPLINIT 12 special data object describing initializa-
tion of static/global C++ classes.

SCLASS_EH_REGION 13 special table describing C++ exception
handling (See Section 2.3.6)

SCLASS_EH_REGION_SUPP 14 supplemental data structure for C++
exception handling (See Section 2.3.6)

SCLASS_DISTR_ARRAY 15 data object that is placed in the special Elf
section _MIPS_distr_array

SCLASS_COMMENT 16 names of such symbols are to be placed in
the special Elf section .comment.

SCLASS_THREAD_PRIVATE_FUNCS 17 data object that is placed in the special Elf
section _MIPS_thread_private_funcs

Table 6 Valid Symbol Class and Storage Class Combinations

Symbol class Storage class Description

CLASS_UNK SCLASS_UNKNOWN uninitialized

CLASS_VAR SCLASS_AUTO stack variable

CLASS_VAR SCLASS_FORMAL formal parameter

CLASS_VAR SCLASS_FORMAL_REF reference parameter

CLASS_VAR SCLASS_PSTATIC PU scope static variable

CLASS_VAR SCLASS_FSTATIC file scope variable

CLASS_VAR SCLASS_COMMON common block

CLASS_VAR SCLASS_EXTERN unallocated external variable

CLASS_VAR SCLASS_UGLOBAL uninitialized global variable

CLASS_VAR SCLASS_DGLOBAL initialized global variable

Table 5 Storage Class

Name Value Description
5/10/00

Page 10 Whirl Symbol Table Specification
CLASS_VAR SCLASS_CPLINIT special data object describ-
ing initialization of static/
global C++ classes.

CLASS_VAR SCLASS_EH_REGION special table describing C++
exception handling

CLASS_VAR SCLASS_EH_REGION_SUPP supplemental data structure
for C++ exception handling

CLASS_VAR SCLASS_DISTR_ARRAY data object that is placed in
the special Elf
section _MIPS_distr_array

CLASS_VAR SCLASS_THREAD_PRIVATE_FUNCS data object that is placed in
the special Elf section
_MIPS_thread_private_funcs

CLASS_FUNC SCLASS_EXTERN undefined function

CLASS_FUNC SCLASS_TEXT defined function

CLASS_CONST SCLASS_FSTATIC constant

CLASS_CONST SCLASS_EXTERN constant symbol defined in
another file (e.g. in IPA-gen-
erated symbol table)

CLASS_PREG SCLASS_REG pseudo register

CLASS_BLOCK all storage classes except
SCLASS_UNKNOWN and
SCLASS_REG

a block of data or text of the
specified storage class

CLASS_BLOCK SCLASS_UNKNOWN a block of data or text of
unspecified storage class
(e.g., a block of mixed stor-
age classes)

CLASS_NAME SCLASS_UNKNOWN an ST entry that only has a
name and nothing else, usu-
ally used as a place holder
for special symbols that are
passed to the linker

CLASS_NAME SCLASS_COMMENT an ST entry whose name is to
be placed in the Elf section
.comment

Table 6 Valid Symbol Class and Storage Class Combinations

Symbol class Storage class Description
5/10/00

ST_TAB Page 11
2.3.4 Export Scopes

This enumeration describes the possible scopes that symbols exported
from a file may map into, i.e., linker globals for DSO (dynamically shared
object)-related components.

Only an EXPORT_LOCAL or EXPORT_LOCAL_INTERNAL symbol must be
defined in the file being compiled. All others can be either defined or un-
defined. All symbols except EXPORT_PREEMTIBLE must be defined in
the current DSO or executable.

Only EXPORT_LOCAL and EXPORT_LOCAL_INTERNAL symbols are al-
lowed in a local ST_TAB. Symbols with all other export scopes must be
placed in the global ST_TAB. Furthermore, the ST entries of all functions,
regardless of export scope, must be placed in the global ST_TAB.

Table 7 Export Scopes

Export Scope Value Description

EXPORT_LOCAL 0 not exported, must be defined in current
file (e.g. C static data), address can be
exported from DSO using a pointer

EXPORT_LOCAL_INTERNAL 1 not exported, must be defined in current
file, only visible within current file, only
used within the DSO or executable

EXPORT_INTERNAL 2 exported, only visible and used within
the DSO or executable, must be defined
in current DSO or executable

EXPORT_HIDDEN 3 exported, name is hidden within DSO or
executable, address can be exported
from DSO using a pointer, must be
defined in current DSO or executable

EXPORT_PROTECTED 4 exported, non-preemptible, must be
defined in current DSO or executable

EXPORT_PREEMPTIBLE 5 exported, preemptible

EXPORT_OPTIONAL 6 correspond to STO_OPTIONAL in Elf
symbol table (see <sys/elf.h>)
5/10/00

Page 12 Whirl Symbol Table Specification
Valid combinations of export scopes and storage classes are listed in the
following table:.

Table 8 Valid Combinations of Storage Class and Export Scopes

Storage class Export scopes Description

SCLASS_UNKNOWN
SCLASS_AUTO
SCLASS_FORMAL
SCLASS_FORMAL_REF
SCLASS_PSTATIC
SCLASS_FSTATIC
SCLASS_CPLINIT
SCLASS_EH_REGION
SCLASS_EH_REGION_SUPP
SCLASS_DISTR_ARRAY
SCLASS_THREAD_PRIVATE_FUNCS
SCLASS_COMMENT

EXPORT_LOCAL
EXPORT_LOCAL_INTERNAL

file or PU scope variables

SCLASS_COMMON
SCLASS_EXTERN
SCLASS_UGLOBAL
SCLASS_DGLOBAL

EXPORT_INTERNAL
EXPORT_HIDDEN
EXPORT_PROTECTED
EXPORT_PREEMPTIBLE

DSO scope data or text
symbols

SCLASS_COMMON
SCLASS_DGLOBAL

EXPORT_LOCAL
EXPORT_LOCAL_INTERNAL

member of a common or
data block; these symbols
must have base_idx point-
ing to an ST entry with
the same storage class

SCLASS_EXTERN EXPORT_LOCAL
EXPORT_LOCAL_INTERNAL

local symbols that are not
defined in the current file;
use in IPA-generated file
where a CLASS_CONST
symbol is defined in a
separate file.

SCLASS_TEXT EXPORT_LOCAL
EXPORT_LOCAL_INTERNAL

static functions

SCLASS_TEXT EXPORT_INTERNAL
EXPORT_HIDDEN
EXPORT_PROTECTED
EXPORT_PREEMPTIBLE

global functions

SCLASS_REG EXPORT_LOCAL
EXPORT_LOCAL_INTERNAL

registers
5/10/00

ST_TAB Page 13
2.3.5 ST Flags

Associated with each ST entry are one or more attributes that describe
specific property of it. Some of them are mutually exclusive and some of
them are related. They are described in the following table:

Table 9 Miscellaneous Attributes of an ST Entry

Flag/Value Description

ST_IS_WEAK_SYMBOL
0x00000001

weak name
• not valid for EXPORT_LOCAL or

EXPORT_LOCAL_INTERNAL
• see Section 2.3.7 for semantics of weak symbols

ST_IS_SPLIT_COMMON
0x00000002

part of a split common
• base_idx gives the ST_IDX of the corresponding complete

common definition
• ST_IS_WEAK_SYMBOL must not be set

ST_IS_NOT_USED
0x00000004

symbol is not referenced

ST_IS_INITIALIZED
0x00000008

initialized static or global variable
• only valid for CLASS_VAR, CLASS_CONST, and

CLASS_BLOCK
• only valid for SCLASS_PSTATIC, SCLASS_FSTATIC,

SCLASS_EXTERN, SCLASS_DGLOBAL, SCLASS_UGLOBAL,
SCLASS_CPLINIT, SCLASS_EH_REGION,
SCLASS_EH_RGION_SUPP, SCLASS_DIST_ARRAY, and
SCLASS_THREAD_PRIVATE_FUNCS.

• also valid for SCLASS_UNKNOWN if symbol class is
CLASS_BLOCK

• for SCLASS_UGLOBAL, ST_INIT_VALUE_ZERO must be set
(uninitialized globals and globals explicitly initialized to
zero are equivalent)

• must be set for SCLASS_DGLOBAL
• for CLASS_VAR, if ST_INIT_VALUE_ZERO is not set, there

must be a corresponding INITO entry

ST_IS_RETURN_VAR
0x00000010

return value for Fortran function
• only valid for SCLASS_AUTO

ST_IS_VALUE_PARM
0x00000020

parameter is passed by value
• only valid for SCLASS_FORMAL

ST_PROMOTE_PARM
0x00000040

parameter has been promoted from chars/short to int or from
float to double
• only valid for C/C++
5/10/00

Page 14 Whirl Symbol Table Specification
ST_KEEP_NAME_W2F
0x00000080

whirl2f should neither declare nor rename this symbol
• only valid for CLASS_VAR

ST_IS_DATAPOOL
0x00000100

Fortran data pools

ST_IS_RESHAPED
0x00000200

symbol has a distribute_reshape pragma supplied for it
• only valid for CLASS_VAR

ST_EMIT_SYMBOL
0x00000400

must appear in the symbol table of the Elf object file
• only valid for CLASS_VAR, CLASS_NAME, and

CLASS_FUNC,
• used by C++ to force certain local symbols to be written

out to the Elf object file

ST_HAS_NESTED_REF
0x00000800

symbol is referenced by a PU nested in the current PU
• only valid for SCLASS_AUTO, SCLASS_PSTATIC,

SCLASS_FORMAL, and SCLASS_FORMAL_REF.

ST_INIT_VALUE_ZERO
0x00001000

uninitialized global or static symbol
• only valid for CLASS_VAR
• only valid for SCLASS_EXTERN, SCLASS_UGLOBAL,

SCLASS_FSTATIC, and SCLASS_PSTATIC
• ST_IS_INITIALIZED must be set
• also valid for symbol explicitly initialized to zero

ST_GPREL
0x00002000

can be accessed via an offset from the global pointer
• only valid for CLASS_VAR and CLASS_CONST
• not valid for SCLASS_AUTO, SCLASS_FORMAL, and

SCLASS_FORMAL_REF

ST_NOT_GPREL
0x00004000

can not be accessed via an offset from the global pointer
• only valid for CLASS_VAR and CLASS_CONST
• not valid for SCLASS_AUTO, SCLASS_FORMAL, and

SCLASS_FORMAL_REF

ST_IS_NAMELIST
0x00008000

special symbol for namelists
• only valid for CLASS_VAR
• used by whirl2f to identify namelist symbols

ST_IS_F90_TARGET
0x00010000

symbol may be accessed by dereferencing an F90 pointer
• only valid for CLASS_VAR
• if not set, no direct load or store to this symbol can alias

with any load or store through an F90 pointer
• if not set, no indirect load or store through an F90 pointer

can access this item

Table 9 Miscellaneous Attributes of an ST Entry

Flag/Value Description
5/10/00

ST_TAB Page 15
ST_DECLARED_STATIC
0x00020000

VMS formals declared static
• only valid for CLASS_VAR

ST_IS_EQUIVALENCED
0x00040000

part of an Fortran equivalence
• only valid for CLASS_VAR

ST_IS_FILL_ALIGN
0x00080000

symbol has a fill_symbol or align_symbol pragma supplied
• only valid for CLASS_VAR

ST_IS_OPTIONAL_ARGUMENT
0x00100000

formal parameter is optional
• only valid for SCLASS_FORMAL and

SCLASS_FORMAL_REF
• it is illegal to speculate loads/stores of this symbol

ST_PT_TO_UNIQUE_MEM
0x00200000

memory location pointed to by this symbol cannot be
accessed via any other way
• only valid for SCLASS_VAR
• only valid for pointer, or non-scalar type that contains

pointers
• only valid for compiler-generated symbols
• for non-scalar type, such as a struct that contains a pointer

or an array of pointers, this flag applies to all pointers
within the structure

• a pointer with this bit set refers to a memory location that is
never accessed indirectly via any other pointer or directly
via any local or global variable in the entire program

• the compiler phase that sets this bit must guarantee that the
above property holds even through inlining or other code
motion

• copying such pointers to another pointers is allowed, as
long as these other pointers are never derefereced

ST_IS_TEMP_VAR
0x00400000

compiler generated temporary variable or formal parameters
• only valid for SCLASS_AUTO, SCLASS_FORMAL, and

SCLASS_FORMAL_REF

ST_IS_CONST_VAR
0x00800000

read-only static or global variable
• only valid for CLASS_VAR
• not valid for SCLASS_AUTO, SCLASS_FORMAL, and

SCLASS_FORMAL_REF
• compiler can allocate this symbol in read-only data seg-

ment

Table 9 Miscellaneous Attributes of an ST Entry

Flag/Value Description
5/10/00

Page 16 Whirl Symbol Table Specification
2.3.6 Exception Handling Region

Symbols of storage class SCLASS_EH_REGION are allocated by the code
generator for the tables that control exception-handling. These tables are

ST_ADDR_SAVED
0x01000000

the address of this symbol is saved to another variable
• not valid for SCLASS_REG

ST_ADDR_PASSED
0x02000000

the address of this symbol is passed to another PU as actual
parameter
• not valid for SCLASS_REG
• this flag is now re-computed by the compiler backend and

is not set by the frontend

ST_IS_THREAD_PRIVATE
0x04000000

symbol is a private data object of an MP program
• storage of this symbol is not shared by the threads of an MP

program

ST_PT_TO_COMPILER_GENERATED_MEM
0x08000000

symbol is a pointer to compiler-allocated memory space
• only valid for pointer type
• only valid for compiler-generated symbols
• pragmas or other data object attributes specified by users do

not apply to this memory location because it is not visible
to them

ST_IS_SHARED_AUTO
0x10000000

an automatic variable that is accessed within a parallel region
and has shared scope
• only valid for SCLASS_AUTO

ST_ASSIGNED_TO_DEDICATED_PREG
0x20000000

symbol is associated to a dedicated (hardware) register
• compiler should always keep this symbol’s value in the

specified register
• only valid for CLASS_VAR
• must be volatile type

ST_ASM_FUNCTION_ST
0x40000000

name of this symbol is an assembly language code corre-
sponding to a program unit
• only valid for symbols in the global symbol table
• only valid for CLASS_NAME, SCLASS_UNKNOWN
• only valid for EXPORT_LOCAL
• not valid for nested PU
• must have valid PU_IDX, and the corresponding PU entry

must have PU_NO_DELETE and PU_NO_INLINE bits set,
with a 0 TY_IDX.

Table 9 Miscellaneous Attributes of an ST Entry

Flag/Value Description
5/10/00

ST_TAB Page 17
allocated in a special section created by the linker; they never correspond
directly to program entities. They have no existence before code genera-
tion, so they are never referred to in the WHIRL.

Symbols of storage class SCLASS_EH_REGION_SUPP represent initial-
ized variables created by the frontend to provide supplementary informa-
tion about exception-handling actions to be taken by the exception-
handling runtimes when an exception is thrown. They are allocated in a
second special section created by the linker. They appear in the ereg_supp
field of the WHIRL, but only the exception-handling part of the code gen-
erator should ever look at them.

The data in the sections corresponding to the storage classes
SCLASS_EH_REGION and SCLASS_EH_REGION_SUPP should be read
only by the exception-handling runtimes and should never be modified
once it is generated.

Symbols of storage class SCLASS_EH_REGION or
SCLASS_EH_REGION_SUPP have a very unique semantic with respect to
storage and scope. They are local to the PU in terms of scope, meaning
that they can only be referenced from within the defining PU. Their stor-
age is not allocated form the stack, but from the global storage area.
Hence, multiple instances of the same PU (e.g., recursive calls) share the
same memory locations and values of these symbols. However, they dif-
fer from SCLASS_PSTATIC symbols in that when the defining PU is
cloned or inlined, new copies of these symbols need to be created.

2.3.7 Semantics of Weak Symbols

The semantics of a weak symbol depends on its storage_class and
base_idx, which is summarized in the following table:

1. This refers to defined variables or functions that are marked weak. Af-
ter layout, they can be based on other symbols. The weak flag means that

Table 10 Semantics of Weak Symbols

storage_class base_idx != st_idx base_idx == st_idx

SCLASS_TEXT
SCLASS_UGLOBAL
SCLASS_DGLOBAL

weak symbol that has storage
allocated1

weak definition before data
layout2

SCLASS_EXTERN
weak symbol with an alias to a
strong definition3

undefined weak symbol4
5/10/00

Page 18 Whirl Symbol Table Specification
they can be preempted by a strong definition. When they are preempted,
their associated storage is either wasted or can be deleted.

2. Similar to (1), with the exception that storage of this symbol has not
been laid out.

Basically, treat (1) and (2) as regular variable or function definitions, with
the exception that they might be preempted by a strong definition. Once
preempted, they corresponding storage cannot be referenced via this
symbol name.

3. This is a weak alias to a strong definition. The name of this symbol is
bound with the storage owned by the corresponding strong definition
(specified by base_idx). The weak attribute makes this binding preempt-
ible.

4. This symbol has no storage of its own and is not associated with any
other symbol. The linker should not complain when no definition can be
found, and should assign 0 as its address.

2.4 PU_TAB

Each entry of this table gives information about each PU that appears in
the source file either as procedure declaration or function prototype. The
index to this table, PU_IDX, can be used as a PU identifier.

The PU entry has the following structure, size 24 bytes:

target_idx: Index to TARGET_INFO_TAB, which contains the tar-
get-specific information about this PU such as register

Table 11 Layout of PU

Offset Field Description Field size

byte 0 target_idx TARGET_INFO_IDX to the target-specific info. 1 word

byte 4 prototype TY_IDX to give the prototype type information 1 word

byte 8 lexical_level lexical level (scope) of symbols in this PU 1 byte

byte 9 gp_group gp-group number of this PU 1 byte

byte 10 src_lang source language of this PU 1 byte

byte 11 unused unused, must be filled with zeros. 5 bytes

byte 16 flags flags associated with this function prototype 2 words
5/10/00

PU_TAB Page 19
usage information, etc. The TARGET_INFO_TAB is cur-
rent undefined and is reserved for future expansion. In
the current release, target_idx must be zero.

prototype: The TY_IDX for the type of the function.

lexical_level: Lexical level of symbols defined in this PU (i.e. index
to the SCOPE array, see Section 2.2). It is always
greater than 1.

gp_group: Gp-group id for this PU; used in multi-got program.
Single GOT programs have gp_group zero.

src_lang: Source language of this PU, see Table 13.

unused: For alignment of flags, must be filled with zeros.

flags: Miscellaneous attributes, see Table 12.

Table 12 Miscellaneous Attributes of an PU Entry

Flag/Value Description

PU_IS_PURE
0x00000001

pure function
• does not modify the global state
• does not make reference to the global state

PU_NO_SIDE_EFFECTS
0x00000002

does not modify the global state

PU_IS_INLINE_FUNCTION
0x00000004

inline keyword specified
• function may be inlined

PU_NO_INLINE
0x00000008

function must not be inlined
• mutually exclusive with PU_MUST_INLINE

PU_MUST_INLINE
0x00000010

function must be inlined
• mutually exclusive with PU_NO_INLINE

PU_NO_DELETE
0x00000020

function must never be deleted

PU_HAS_EXC_SCOPES
0x00000040

has C++ exception handling region, or would
have if exceptions were enabled.
• PU_CXX_LANG must be set

PU_IS_NESTED_FUNC
0x00000080

a nested function
• lexical_level must be larger than 2
5/10/00

Page 20 Whirl Symbol Table Specification
PU_HAS_NON_MANGLED_CALL
0x00000100

function is called with non-reshaped array as
actual parameter
• must keep a copy of the function with non-man-

gled name

PU_ARGS_ALIASED
0x00000200

parameters might point to same or overlapping
memory location
• PU_F77_LANG or PU_F90_LANG must be set

PU_NEEDS_FILL_ALIGN_LOWERING
0x00000400

contains symbols that have the fill_symbol or
align_symbol pragma specified

PU_NEEDS_T9
0x00000800

register $t9 must contain the lowest address of the
PU

PU_HAS_VERY_HIGH_WHIRL
0x00001000

PU has very high WHIRL

PU_HAS_ALTENTRY
0x00002000

PU contains alternate entry points
• PU_F77_LANG or PU_F90_LANG must be set

PU_RECURSIVE
0x00004000

PU is self-recursive, or is part of a multi-function
recursion

PU_IS_MAINPU
0x00008000

main entry point of a program

PU_UPLEVEL
0x00010000

other PU nested in this one

PU_MP_NEEDS_LNO
0x00020000

must invoke LNO on this PU, regardless of compi-
lation options

PU_HAS_ALLOCA
0x00040000

contains calls to alloca

PU_IN_ELF_SECTION
0x00080000

the code generator must put this PU in its own Elf
section

PU_HAS_MP
0x00100000

contains a MP construct

PU_MP
0x00200000

a PU created by the MP lowerer

PU_HAS_NAMELIST
0x00400000

has namelist declaration
• PU_F77_LANG or PU_F90_LANG must be set

PU_HAS_RETURN_ADDRESS
0x00800000

contain references to the special symbol
__return_address

Table 12 Miscellaneous Attributes of an PU Entry

Flag/Value Description
5/10/00

PU_TAB Page 21
PU_HAS_REGION
0x01000000

PU has regions in it

PU_HAS_INLINES
0x02000000

PU has inlined code in it

PU_CALLS_SETJMP
0x04000000

PU contains calls to setjmp.

PU_CALLS_LONGJMP
0x08000000

PU contains calls to longjmp.

PU_IPA_ADDR_ANALYSIS
0x10000000

the ST_ADDR_SAVED bits for all symbols refer-
enced in this PU are set by IPA’s address analysis
• the compiler backend should trust the (more

accurate) results of IPA and need not recompute
the ST_ADDR_SAVED bits for this PU

PU_SMART_ADDR_ANALYSIS
0x20000000

suppress the conservative address-taken valida-
tion
• do not perform conservative address-taken veri-

fication, which might set the ST_ADDR_SAVED
bit unnecessarily

• set when more accurately address analysis has
been performed.

0x40000000 obsolete

PU_HAS_GLOBAL_PRAGMAS
0x80000000

a dummy PU that contains global pragmas
• a place holder for all global scope pragmas

PU_HAS_USER_ALLOCA
0x0000000100000000

PU contains user-specified call to alloca()
• if this pu is inlined, an explicitly deallocation

needs to be generated

PU_HAS_UNKNOWN_CONTROL_FLOW
0x0000000200000000

PU has control flow going in or out of the pu
scope that do not following calling convention
• tail-call optimization should be disabled

Table 12 Miscellaneous Attributes of an PU Entry

Flag/Value Description
5/10/00

Page 22 Whirl Symbol Table Specification
2.5 TY_TAB

Each entry of this table is a TY. Any high level type in the program is
uniquely identified by a value of type TY_IDX.

Table 13 Source Language of a PU

Flag/Value Description

PU_UNKNOWN_LANG
0x00

Source language unknown

PU_MIXED_LANG
0x01

PU contains code from multiple source languages
• resulted from cross-file inlining

PU_C_LANG
0x02

Source language is C

PU_CXX_LANG
0x04

Source language is C++

PU_F77_LANG
0x08

Source language is Fortran 77

PU_F90_LANG
0x10

Source language is Fortran 90

PU_JAVA_LANG
0x20

Source language is Java
5/10/00

TY_TAB Page 23
2.5.1 TY_IDX

TY_IDX is of size 32 bits, and is composed of two parts. The high order 24

bits is the index to TY_TAB. The low order 8 bits contains information that
qualifies the type. Among the low order 8 bits is the alignment informa-
tion. The actual alignment is given by 2align.

TY_IDX appears appear in many different places:

1. in WHIRL nodes that access data objects.

2. in ST entries.

3. in components for type specification: TY, FLD, TYLIST.

Each TY has a natural (and maximum) alignment, which can be deter-
mined by analysis of the details of the type. Thus, we omit the natural
alignment information from the TY. The alignment of a TY directly affects
the alignment in the TY_IDX of an object that encloses or refers to it, un-
less the object’s own alignment is modified by pragmas or type casts. An
optimization phase may also improve the alignment of an object by forc-
ing better placement during data layout, in which case it only needs to fix
up the alignment of the ST’s TY_IDX. Whenever the alignment in the
TY_IDX of the WHIRL node and the TY_IDX of the ST being accessed by
the WHIRL node do not agree, code generation picks the more efficient
(better) alignment of the two. Thus, if a phase worsens the alignment of
an object, it has to fix the TY_IDX in all the WHIRL references to it, which
is normally impossible.

Table 14 Layout of TY_IDX

Offset1

1. Bit offsets assume big Endian bit ordering. For example, the index field
is always the most significant 24 bits, regardless of the Endianess of the
machine.

Field Description Field size

bit 0 align alignment 5 bits

bit 5 const const type qualifier 1 bit

bit 6 volatile volatile type qualifier 1 bit

bit 7 restrict restrict type qualifier 1 bit

bit 8 index index to TY_TAB 24 bits
5/10/00

Page 24 Whirl Symbol Table Specification
The above rule dealing with alignment also applies to the other type qual-
ifying bits: whenever a type qualifying bit is different between the
TY_IDX of the WHIRL node and the TY_IDX of the ST being accessed by
the WHIRL node, code generation picks the more efficient of the two.

2.5.2 TY entry

The TY entry has the following structure, size 24 bytes:

size: The size of the type in bytes. For KIND_FUNCTION and
KIND_VOID, the size is zero. For KIND_ARRAY, this is
the size of the entire array, except when for variable
length arrays, the size is zero.

kind: Field describing if the type is a scalar, structure, etc.
See Table 16.

mtype: WHIRL data type, see Table 17. See Table 20 for valid
combinations of mtype and kind.

flags: Miscellaneous attributes, see Table 18.

fld/tylist/arb: Index to one of the tables that provide additional type
information, depending on the value of kind (see Table

Table 15 Layout of TY

Offset Field Description Field size

byte 0 size size of the type in bytes 2 words

byte 8 kind kind of type 1 byte

byte 9 mtype corresponding WHIRL data type 1 byte

byte 10 flags TY flags 2 bytes

byte 12 fld FLD_IDX for struct/class field information 1 word

byte 12 tylist TYLIST_IDX for function prototype 1 word

byte 12 arb ARB_IDX for array bound description 1 word

byte 16 name_idx STR_IDX to the name string 1 word

byte 20 etype TY_IDX of array element (array only) 1 word

byte 20 pointed TY_IDX of the pointed-to type (pointers only) 1 word

byte 20 pu_flags function-specific attributes 1 word
5/10/00

TY_TAB Page 25
16). For KIND_SCALAR, KIND_POINTER and
KIND_VOID, this field is zero.

name_idx: The name of the type. For anonymous types, this field
should be zero.

etype/pointed/pu_flags:For KIND_ARRAY, etype gives the type of the array
element. For KIND_POINTER, pointed gives the type
that it points to. For KIND_FUNCTION, pu_flags con-
tains attributes of the function. For all other values of
kind, this field is zero.
5/10/00

Page 26 Whirl Symbol Table Specification
Types that are structurally identical can share common TY entries in
order to minimize the size of TY_TAB.

Table 16 Kinds of TY

Name Value Description

KIND_INVALID 0 invalid or uninitialized

KIND_SCALAR 1 integer or floating point, no kids

KIND_ARRAY 2 array, arb_idx points to array bound description, etype
gives the type of the array element

KIND_STRUCT 3 structure or union, fld_idx points to the field description

KIND_POINTER 4 pointers, pointed gives the type that it points to

KIND_FUNCTION 5 function or procedure, tylist_idx points to the list of
TY_IDX for the return type and parameter types.

KIND_VOID 6 C void type, no kids

Table 17 WHIRL Basic Data Type

Flag Value Description

MTYPE_UNKNOWN 0 unknown type

MTYPE_B 1 boolean

MTYPE_I1 2 8-bit signed integer

MTYPE_I2 3 16-bit signed integer

MTYPE_I4 4 32-bit signed integer

MTYPE_I8 5 64-bit signed integer

MTYPE_U1 6 8-bit unsigned integer

MTYPE_U2 7 16-bit unsigned integer

MTYPE_U4 8 32-bit unsigned integer

MTYPE_U8 9 64-bit unsigned integer

MTYPE_F4 10 32-bit IEEE floating point

MTYPE_F8 11 64-bit IEEE floating point

MTYPE_F10 12 80-bit IEEE floating point

MTYPE_F16 13 128-bit IEEE floating point

MTYPE_STR
MTYPE_STRING

14 character string

MTYPE_FQ 15 SGI long double
5/10/00

TY_TAB Page 27
MTYPE_M 16 memory chunk, for structures

MTYPE_C4 17 32-bit complex

MTYPE_C8 18 64-bit complex

MTYPE_CQ 19 128-bit complex

MTYPE_V 20 void type

MTYPE_BS 21 bits

MTYPE_A4 22 32-bit address

MTYPE_A8 23 64-bit address

MTYPE_C10 24 80-bit IEEE complex

MTYPE_C16 25 128-bit IEEE complex

MTYPE_I16 26 128-bit signed integer

MTYPE_U16 27 128-bit unsigned integer

Table 18 Miscellaneous Attributes of a TY Entry

Flag/Value Description

TY_IS_CHARACTER
0x0001

Fortran character type

TY_IS_LOGICAL
0x0002

Fortran logical type

TY_IS_UNION
0x0004

type is a union
• only valid for KIND_STRUCT

TY_IS_PACKED
0x0008

struct or class is packed

TY_PTR_AS_ARRAY
0x0010

treat pointer as array (used by whirl2c/whirl2f)

TY_ANONYMOUS
0x0020

anonymous struct/class/union
• only valid for KIND_STRUCT

TY_SPLIT
0x0040

split from a larger common block

TY_IS_F90_POINTER
0x0080

pointer is subject to F90 alias rules

TY_NOT_IN_UNION
0x0100

type cannot be part of a union

Table 17 WHIRL Basic Data Type

Flag Value Description
5/10/00

Page 28 Whirl Symbol Table Specification
2.6 FLD_TAB

Each entry of this table gives information about a field in a struct or
union. The TY of the struct type points to the FLD entry for the first field.

TY_NO_ANSI_ALIAS
0x0200

ANSI alias rules do not apply

TY_IS_NON_POD
0x0400

a C++ non-pod structure
• constructor/destructor calls must be gener-

ated when creating a temp. variable of this
type (usually done by the frontend)

Table 19 Attributes of a Function

Flag/Value Description

TY_RETURN_TO_PARAM
0x00000001

a function returning a struct that is larger than
twice the size of the largest integer type
• an additional argument (first) is passed which

contains the address where the return value is to
be placed

TY_IS_VARARGS
0x00000002

allows variable number of arguments
• the last formal parameter is a descriptor of the

variable part of the parameter list

TY_HAS_PROTOTYPE
0x00000004

function has ANSI-style prototype defined.

Table 20 Valid Combinations of TY Kinds and WHIRL Data Types

Kind Valid WHIRL data type

KIND_SCALAR all mtypes except MTYPE_UNKNOWN
and MTYPE_V

KIND_ARRAY MTYPE_UNKNOWN and MTYPE_M

KIND_STRUCT MTYPE_M

KIND_POINTER MTYPE_U4 or MTYPE_U8 (for MIPS)
MTYPE_A4 or MTYPE_A8 (for Merced)

KIND_FUNCTION MTYPE_UNKNOWN

KIND_VOID MTYPE_V

Table 18 Miscellaneous Attributes of a TY Entry

Flag/Value Description
5/10/00

FLD_TAB Page 29
The remaining fields follow in consecutive FLD_TAB entries until a flag
indicates it is the last field.

The FLD entry has the following structure, size 24 bytes:

name_idx: STR_IDX to the name string, 0 if anonymous.

type: The TY_IDX of this field. If ofst is equal to the total size
of the struct, the size of the type pointed to by type
must be zero.

Table 21 Layout of FLD

Offset Field Description Field size

byte 0 name_idx STR_IDX to the name string 1 word

byte 4 type TY_IDX of field 1 word

byte 8 ofst offset within struct in bytes 2 words

byte 16 bsize bit field size in bits 1 byte

byte 17 bofst bit field offset starting at byte specified by 1 byte

byte 18 flags FLD flags 2 bytes

byte 20 st ST_IDX to the ST entry, if any. 4 bytes

Table 22 Miscellaneous Attributes of an FLD Entry

Flag/Value Description

FLD_LAST_FIELD
0x0001

indicate the last field in a struct

FLD_EQUIVALENCE
0x0002

this field belongs to an equivalence of a com-
mon block (i.e., overlaps in memory with other
common block element(s))

FLD_BEGIN_UNION
0x0004

beginning of a union in a Fortran record

FLD_END_UNION
0x0008

end of a union in a Fortran record

FLD_BEGIN_MAP
0x0010

beginning of a map in a Fortran record

FLD_END_MAP
0x0020

end of a map in a Fortran record

FLD_IS_BIT_FIELD
0x0040

indicate a bit field
• bsize and bofst are valid only if this flag is set
5/10/00

Page 30 Whirl Symbol Table Specification
ofst: The byte offset of this field within the struct. This
must be less than or equal to the total size of the struct.
When the offset is equal to the size of the struct, type
must be an TY_IDX of a type with zero size.

bsize: The size of the bit field in number of bits. Valid only if
FLD_IS_BIT_FIELD is set; must be zero otherwise.

bofst: The bit field offset starting at the byte specified by ofst.
Valid only if FLD_IS_BIT_FIELD is set; must be zero
otherwise.

flags: Miscellaneous attributes, see Table 22.

st: ST_IDX to the (optional) ST entry corresponding to this
field.

� typically used for common block elements where
each element has a separate ST entry.

� the ST entry must be one in the global symbol table.

� when not set, must be zero.

2.7 TYLIST_TAB

Each entry of this table gives the type of each parameter in a function
prototype. The TY of the function prototype points to the TYLIST entry
that gives the return type. The ensuing entries give the types of the pa-
rameters. A TY_IDX value of 0 specifies the end of the parameter list.

The TYLIST entry has the following structure:

2.8 ARB_TAB

Each entry of this table gives information about a dimension of an array.
The TY of the array type points to the ARB entry for the first dimension,
indicated by ARB_FIRST_DIMEN. For C/C++ arrays, this corresponds to

Table 23 Layout of TYLIST

Offset Field Description Field size

byte 0 type TY_IDX to the type 1 word
5/10/00

ARB_TAB Page 31
the leftmost dimension. For Fortran arrays, this corresponds to the right-
most dimension. The remaining dimensions follow in consecutive
ARB_TAB entries until an entry with ARB_LAST_DIMEN set. The dimen-
sion of the array must be specified in dimension of every entry.

The ARB entry has the following structure, size 32 bytes:

Table 24 Layout of ARB

Offset Field Description Field size

byte 0 flags misc. attributes 2 bytes

byte 2 dimension dimension of the array 2 bytes

byte 4 unused unused, must be filled with zeros 1 word

byte 8 lbnd_val constant lower bound value 2 words

byte 8 lbnd_var ST_IDX of variable that stores the non-constant
lower bound

1 word

byte 12 lbnd_unused filler for lbnd_var, must be zero 1 word

byte 16 ubnd_val constant upper bound value 2 words

byte 16 ubnd_var ST_IDX of variable that stores the non-constant
upper bound

1 word

byte 20 ubnd_unused filler for ubnd_var, must be zero 1 word

byte 24 stride_val constant stride 2 words

byte 24 stride_var ST_IDX of variable that stores the non-constant
stride

1 word

byte 28 stride_unused filler for stride_var, must be zero 1 word

Table 25 Miscellaneous Attributes of an ARB Entry

Flags/Value Description

ARB_CONST_LBND
0x0001

lower bound is constant

ARB_CONST_UBND
0x0002

upper bound is constant

ARB_CONST_STRIDE
0x0004

stride is constant

ARB_FIRST_DIMEN
0x0008

current dimension is first

ARB_LAST_DIMEN
0x0010

current dimension is last
5/10/00

Page 32 Whirl Symbol Table Specification
2.9 TCON_TAB

Each entry of this table is the TCON for storing integer, floating point or
string constant values. The first three entries of this table are reserved.
The first entry (index 0) is reserved for uninitialized index value. The sec-
ond entry (index 1) always contains 4-byte floating point value 0.0. the
third entry (index 2) always contains 8-byte floating point value 0.0.
These entries are shared. All other values are entered independently with-
out checking for duplicates.

The TCON entry has the following structure, size 40 bytes:

Table 26 Layout of TCON

Offset Field Description Field size

byte 0 ty WHIRL data type, see Table 17 1 word

byte 4 flags misc. attributes 1 word

byte 8 ival signed integer (MTYPE_I1, MTYPE_I2, and
MTYPE_I4)

1 word

byte 8 uval unsigned integer (MTYPE_U1, MTYPE_U2, and
MTYPE_U4)

1 word

byte 8 i0 64-bit signed integer (MTYPE_I8) 2 words

byte 8 k0 64-bit unsigned integer (MTYPE_U8) 2 words

byte 8 fval 32-bit floating point (MTYPE_F4)
real part for 32-bit complex (MTYPE_C4)

1 word

byte 8 dval 64-bit floating point (MTYPE_F8)
real part for 64-bit complex (MTYPE_C8)

2 words

byte 8 qval 128-bit floating point (MTYPE_FQ)
real part for 128-bit complex (MTYPE_CQ)

4 words

byte 8 sval string literal (MTYPE_STR/MTYPE_STRING)
• byte 8 holds a character pointer (1 word)
• byte 12 holds the number of bytes of the

string (1 word)

3 words

byte 24 fival imaginary part for 32-bit complex
(MTYPE_C4)

1 word

byte 24 dival imaginary part for 64-bit complex
(MTYPE_C8)

2 words

byte 24 qival imaginary part for 128-bit complex
(MTYPE_CQ)

4 words
5/10/00

INITO_TAB Page 33
2.10 INITO_TAB

Each entry of this table connects an initialized global or static data object
with an INITV entry (see Section 2.11), which describes the initial values.
Each entry of this table is an INITO, which is identified by a value of type
INITO_IDX.

2.10.1 INITO_IDX

INITO_IDX has an identical structure as a ST_IDX. It is of size 32 bits, and
is composed of two parts:

The low order 8 bits are used to index into the SCOPE array in order to
get to the INITO_TAB.

2.10.2 INITO Entry

The INITO entry has the following structure, size 8 bytes:

2.11 INITV_TAB

Each entry of this table specifies the initial value of a scalar component of
a data object. Initial values of complex data objects are described by a
tree of INITV entries, the root of which specified by the INITV_IDX of an
INITO.

Table 27 Layout of INITO_IDX

Field Description Field position and size

level lexical level least significant 8 bits

index index to INITO_TAB most significant 24 bits

Table 28 Layout of INITO

Offset Field Description Field size

byte 0 st_idx ST_IDX of the variable to be initialized 1 word

byte 4 val INITV_IDX of the initial values description 1 word
5/10/00

Page 34 Whirl Symbol Table Specification
The INITV entry has the following structure, size 16 bytes:

Table 29 Layout of INITV

Offset Field Description Field size

byte 0 next INITV_IDX for the value of the next array element or
the field in a struct

1 word

byte 4 kind kind of the INITV, see Table 30. 2 bytes

byte 6 repeat1 repeat factor except for INITVKIND_VAL 2 bytes

byte 8 st ST_IDX of symbol for INITVKIND_SYMOFF 1 word

byte 8 lab LABEL_IDX of symbol for INITVKIND_LABEL 1 word

byte 8 lab1 LABEL_IDX of label for INITVKIND_SYMDIFF(16) 1 word

byte 8 mtype WHIRL data type for INITVKIND_ZERO and
INITVKIND_ONE

1 word

byte 8 tc TCON_IDX for INITVKIND_VAL 1 word

byte 8 blk INITV_IDX for INITVKIND_BLOCK 1 word

byte 8 pad padding in bytes 1 word

byte 12 ofst byte offset from st for INITVKIND_SYMOFF 1 word

byte 12 st2 ST_IDX of symbol for INITVKIND_SYMDIFF(16) 1 word

byte 12 repeat2 repeat factor for INITVKIND_ZERO, INITVKIND_ONE,
and INITVKIND_VAL

1 word

byte 12 unused filler for INITVKIND_BLOCK, INITVKIND_PAD, and
INITVKIND_LABEL, must be zero

1 word

Table 30 INITVKIND

Name Value Description

INITVKIND_SYMOFF 1 value is the address of the symbol (st) plus offset (ofst)

INITVKIND_ZERO 2 integer value zero

INITVKIND_ONE 3 integer value one

INITVKIND_VAL 4 an integer, floating point, or string, specified by a
TCON (tc)

INITVKIND_BLOCK 5 specifies another list or tree of INITVs

INITVKIND_PAD 6 amount of padding in bytes

INITVKIND_SYMDIFF 7 value is the difference of the addresses of a label and a
symbol (lab1 − st2)
5/10/00

INITV_TAB Page 35
next/blk: The values of a data object are specified by a tree of
INITVs, with the root of the tree pointed to by the INI-
TO. INITVs specifying scalars are linked up by the next
field, each of which contains an INITV_IDX. The end of
a link is specified by a zero INITV_IDX. Aggregate val-
ues are grouped into a separate links headed by the blk
field, which must not be the zero INITV_IDX.

kind: Kind of this INITV entry, see Table 30.

repeat1: Specifies the repeat factor of the value in this INITV en-
try. This cuts down the number of unnecessary dupli-
cates. A repeat factor of one means only one instance
of the value is needed. The repeat factor is never zero,
except for INITVKIND_ZERO, INITVKIND_ONE, and
INITVKIND_VAL, which use repeat2 instead.

st/ofst: For INITVKIND_SYMOFF, the value of this entry is
equal to the address of the symbol specified by st, plus
the byte offset specified by ofst.

label: For INITVKIND_LABEL, the value of this entry is equal
to the address of the label specified by lab.

lab1/st2: For INITVKIND_SYMDIFF or INITVKIND_SYMDIFF16,
the value of this entry is equal to the difference be-
tween the addresses of the label specified by lab1 and
of the symbol specified by st2. It is a signed value
equal to (lab1 − st2). For INITVKIND_SYMDIFF16, the
size of the value is 2 bytes.

mtype/repeat2: For INITVKIND_ZERO and INITVKIND_ONE, this entry
specifies an integral value of zero and one respective-
ly. The WHIRL data type (signed/unsigned, size, etc.)
is specified by mtype. It uses repeat2 as its repeat factor
instead of repeat1.

INITVKIND_SYMDIFF16 8 same as INITVKIND_SYMDIFF, except the value is 2
bytes in size

INITVKIND_LABEL 9 value is the address of the label (lab)

Table 30 INITVKIND

Name Value Description
5/10/00

Page 36 Whirl Symbol Table Specification
tc/repeat2: For INITVKIND_VAL, this specifies a TCON for the sca-
lar constant value. It uses repeat2 as its repeat factor
instead of repeat1.

pad: For INITKIND_PAD, this specifies the padding in bytes.
The padded value is undefined.

2.12 BLK_TAB

Each entry of this table gives information about the layout of a data
block, which corresponds to a contiguous chunk of memory in the user
program. Program variables are laid out with respect to data blocks. This
table is created by the back end and is usually local to the back end, but
can be written out to the file.

The BLK entry has the following structure, size 16 bytes:

Table 31 Layout of BLK

Offset Field Description Field size

byte 0 size size of the block 2 words

byte 8 align alignment of the blocks: 1, 2, 4, 8 2 bytes

byte 10 flags flags for this field, see Table 32 2 bytes

byte 12 section_idx section index (0 if not a section)
• refers to the section info in data_layout.cxx

2 bytes

byte 14 scninfo_idx Elf scninfo_idx (0 if not a section)
• refers to the Elf section info in cgemit.cxx

2 bytes
5/10/00

STR_TAB Page 37
2.13 STR_TAB

This table holds all character strings for names of symbols, types, labels,
etc. This table can be viewed as a block of storage area for character
strings. STR_IDX is the index to this table, and is actually an offset in this
block of storage; it gives the byte offset of the starting character of a liter-
al string. All strings are null-terminated, and the first character of the
block is always nul. Thus, a zero STR_IDX represents a null string. Wide
characters or unicode for names are not yet supported.

2.14 TCON_STR_TAB

This table holds all character strings defined in the user program. It is
very similar to STR_TAB, with the exception that the strings need not be
null-terminated, and nul characters are allowed anywhere within the
string. The exact length of each string is explicitly specified.

Table 32 Miscellaneous Attributes of an BLK Entry

Flag/Value Description

BLK_SECTION
0x0001

represents an Elf section

BLK_ROOT_BASE
0x0002

block should not be merged

BLK_IS_BASEREG
0x004

block that maps into a register

BLK_DECREMENT
0x0008

grow block by decrementing

BLK_EXEC
0x0010

executable instructions (SHF_EXEC)

BLK_NOBITS
0x0020

occupies no space in file (SHT_NOBITS)

BLK_MERGE
0x0040

merge duplicates in linker (SHF_MERGE)

BLK_COMPILER_LAYOUT
0x0080

layout of all symbols within this block is
done by the compiler
• this implies that user’s code cannot

legally use address arithmetic to move
from one of the symbols to another
5/10/00

Page 38 Whirl Symbol Table Specification
2.15 LABEL_TAB

Each entry of this table is a LABEL, which gives the information associat-
ed with a WHIRL label. The index to this table is the WHIRL label number.

The LABEL entry has the following structure:

Table 33 Layout of LABEL

Offset Field Description Field size

byte 0 name_idx STR_IDX to the name string,
must be zero if no name

1 word

byte 4 flags LABEL flags 3 bytes

byte 7 kind kind of label 1 byte

Table 34 LABEL Kind

Name Value Description

LKIND_DEFAULT 0 ordinary label

LKIND_ASSIGNED 1

LKIND_BEGIN_EH_RANGE 2

LKIND_END_EH_RANGE 3

LKIND_BEGIN_HANDLER 4

LKIND_END_HANDLER 5

Table 35 Miscellaneous Attributes of an LABEL Entry

Flag/Value Description

LABEL_TARGET_OF_GOTO_OUTER_BLOCK
0x000001

control might be passed from outside of
the current block to this label.

LABEL_ADDR_SAVED
0x000002

address of this label is saved to a variable

LABEL_ADDR_PASSED
0x000040

address of this label is passed to another
PU as actual parameter
5/10/00

PREG_TAB Page 39
2.16 PREG_TAB

Each entry of this table is a PREG, which gives the information associat-
ed with a pseudo-register in WHIRL. Pseudo-register numbers 0 — 71 are
reserved for dedicated hardware pseudo-registers. All compiler-generat-
ed pseudo-registers start with number 72. As a result, the index to this ta-
ble is the pseudo-register number, minus 71 (Note: by definition, index 0
to the PREG_TAB is reserved for undefined value).

The PREG entry has the following structure:

2.17 ST_ATTR_TAB

Each entry of this table associates certain attribute with an ST entry. Sym-
bol attributes specified here usually cannot be represented by a single bit,
and are possessed by a very small subset of the ST entries, and thus are
too expensive to be included as part of the ST entry proper. For most PU,
this table is expected to be empty.

The ST_ATTR entry has the following structure, size 12 bytes:

Table 36 Layout of PREG

Offset Field Description Field size

byte 0 name_idx STR_IDX to the name string,
must be zero if no name

1 word

Table 37 Layout of ST_ATTR

Offset Field Description Field size

byte 0 st_idx ST_IDX of the corresponding symbol 1 word

byte 4 kind kind of the ST_ATTR, see Table 38 1 word

byte 8 reg_id dedicated (physical) register associated with
this symbol
• symbol must have

ST_ASSIGNED_TO_DEDICATED_PREG bit set

1 word

byte 8 section_name STR_IDX of the name of the Elf section where
this symbol is defined
• symbol must be in global scope

1 word
5/10/00

Page 40 Whirl Symbol Table Specification
2.18 FILE_INFO

This structure is not really part of the symbol table, it holds miscella-
neous information that is derived from the symbol table but does not fit
well in any global symbol table. Typically, this information is needed by
the compiler backend to set up proper mode of operation before any PU is
processed.

A FILE_INFO has the following structure, size 8 bytes:

Table 38 Kinds of ST_ATTR

Name Value Description

ST_ATTR_DEDICATED_REGISTER 0 dedicated register

ST_ATTR_SECTION_NAME 1 section name

Table 39 Layout of FILE_INFO

Offset Field Description Field size

byte 0 flags misc. attributes, see Table 40 1 word

byte 4 gp_group gp-group id of this file, 0 for
single-GOT file

1 byte

byte 5 unused unused, must be zero 3 bytes

Table 40 Miscellaneous Attributes of FILE_INFO

Flag/Value Description

FI_IPA
0x00000001

IPA generated file

FI_NEEDS_LNO
0x00000002

some PUs in this file has the flag
PU_MP_NEEDS_LNO set

FI_HAS_INLINES
0x00000004

some PUs in this file has the flag
PU_HAS_INLINES set

FI_HAS_MP
0x00000008

some PUs in this file has the flag
PU_HAS_MP set
5/10/00

Backend-Specific Tables Page 41
2.19 Backend-Specific Tables

This section describes addition symbol tables that are created and used
solely by the compiler backend. Each entry in these tables holds addition
information associated with the corresponding regular symbol table en-
tries. They are discarded at the end of the backend’s processing and are
never written out to a file.

Note that these tables are not part of the WHIRL symbol table specifica-
tion and are implementation specific. The following descriptions apply
only to the current implementation of the SGI Pro64 compilers.

2.19.1 BE_ST_TAB

This table is parallel to the ST_TAB. Each entry of this table is a BE_ST,
which corresponds to an ST entry. The same ST_IDX is used to index an
BE_ST entry in a BE_ST_TAB and the corresponding ST entry in the
ST_TAB.

The BE_ST entry has the following structure, size 8 bytes:

Table 41 Layout of BE_ST

Offset Field Description Field size

byte 0 flags BE_ST flags 1 word

byte 4 io_auxst pointer to an internal data structure used by the
Fortran I/O routines.

1 word

Table 42 Miscellaneous Attributes of an BE_ST entry

Flag/Value Description

BE_ST_ADDR_USED_LOCALLY
0x00000001

address of this symbol is taken somewhere within
the current PU
• this flag is computed based on the backend’s

analysis

BE_ST_ADDR_PASSED
0x00000002

address if this symbol is passed by reference
• this flag is computed based on the backend’s

analysis
• this flag is different from ST_ADDR_PASSED,

which is set by the frontend based on the source
language’s semantics
5/10/00

Page 42 Whirl Symbol Table Specification
2.20 Symbol Table Interfaces

The symbol table interfaces are described in a separate document. An on-
line version can be found in http://sahara.mti.sgi.com/Projects/Symtab/port-
ing.html/.

BE_ST_W2FC_REFERENCED
0x00000004

whirl2c or whirl2f sees a reference to this symbol

BE_ST_UNKNOWN_CONST
0x00000008

symbol is a constant but with unknown value
• generated by LNO

BE_ST_PU_HAS_VALID_ADDR_FLAGS
0x00000010

indicate that the BE_ST_ADDR_USED_LOCALLY
and BE_ST_ADDR_PASSED bits are valid for the
PU specified by corresponding ST entry.
• valid only for CLASS_FUNC
• depending on the optimization level, the above

two BE_ST_ADDR flags might not be valid
• tail-call optimization can be performed only

when BE_ST_PU_HAS_VALID_ADDR_FLAGS is
set

BE_ST_PU_NEEDS_ADDR_FLAG_ADJUST
0x00000020

indicate that the ST_ADDR_SAVED and
ST_ADDR_PASSED bits are no longer valid
• typically set by the MP-lowerer
• needs to recompute the above two bits before

moving on the next phase in the backend

Table 42 Miscellaneous Attributes of an BE_ST entry

Flag/Value Description
5/10/00

	CHAPTER 2 Whirl Symbol Table Specification
	2.1 Introduction and Overview
	Figure 1 Whirl Symbol Table produced by the front-ends
	1. ST_TAB — This is the fundamental building block of the symbol table. In general, any symbol wi...
	2. INITO_TAB — Each entry specifies the initial value(s) of an initialized data object. It in tur...
	3. ST_ATTR_TAB — Each entry associates some miscellaneous attributes with an entry in the ST_TAB.
	1. PU_TAB — Each entry represents a procedure that appears in the source file as either function ...
	2. TY_TAB — Each entry represents a distinct type in the program. It in turn refers to the FLD_TA...
	3. FLD_TAB — Each entry specifies a field in a struct type.
	4. TYLIST_TAB — Each entry specifies a parameter type in a function prototype declaration.
	5. ARB_TAB — Each entry gives information about a dimension of an array type.
	6. TCON_TAB — The values of any non-integer constants are stored here. For string constants, it i...
	7. BLK_TAB — Each entry specifies layout information of a block of data.
	8. INITV_TAB — Each entry describes the initial value of a scalar component of an initialized dat...
	9. STR_TAB — All strings are stored here. They include names of variable, types, labels, etc.
	10. TCON_STR_TAB — All string literals defined in the user program are stored in this table.
	1. LABEL_TAB —Information associated with each whirl label used in the pu is stored here.
	2. PREG_TAB —Information associated with each pseudo-register used in the pu is stored here.

	2.2 SCOPE
	Table 1 Layout of a SCOPE Array Element

	2.3 ST_TAB
	2.3.1 ST_IDX
	Table 2 Layout of ST_IDX

	2.3.2 ST Entry
	Table 3 Layout of ST
	i. storage_class of A must be the same as storage_class of B, except when the sym_class of B is C...
	ii. if sym_class of A is CLASS_BLOCK, sym_class of B must be CLASS_BLOCK.
	iii. offset of A plus the size of A must not be larger than the size of B.

	2.3.3 Symbol Class and Storage Class
	Table 4 Symbol Class
	Table 5 Storage Class
	Table 6 Valid Symbol Class and Storage Class Combinations

	2.3.4 Export Scopes
	Table 7 Export Scopes
	Table 8 Valid Combinations of Storage Class and Export Scopes

	2.3.5 ST Flags
	Table 9 Miscellaneous Attributes of an ST Entry

	2.3.6 Exception Handling Region
	2.3.7 Semantics of Weak Symbols
	Table 10 Semantics of Weak Symbols

	2.4 PU_TAB
	Table 11 Layout of PU
	Table 12 Miscellaneous Attributes of an PU Entry
	Table 13 Source Language of a pu

	2.5 TY_TAB
	2.5.1 TY_IDX
	Table 14 Layout of TY_IDX
	1. in whirl nodes that access data objects.
	2. in ST entries.
	3. in components for type specification: TY, FLD, TYLIST.

	2.5.2 TY entry
	Table 15 Layout of TY
	Table 16 Kinds of TY
	Table 17 Whirl Basic Data Type
	Table 18 Miscellaneous Attributes of a TY Entry
	Table 19 Attributes of a Function
	Table 20 Valid Combinations of TY Kinds and whirl Data Types

	2.6 FLD_TAB
	Table 21 Layout of FLD
	Table 22 Miscellaneous Attributes of an FLD Entry

	2.7 TYLIST_TAB
	Table 23 Layout of TYLIST

	2.8 ARB_TAB
	Table 24 Layout of ARB
	Table 25 Miscellaneous Attributes of an ARB Entry

	2.9 TCON_TAB
	Table 26 Layout of TCON

	2.10 INITO_TAB
	2.10.1 INITO_IDX
	Table 27 Layout of INITO_IDX

	2.10.2 INITO Entry
	Table 28 Layout of INITO

	2.11 INITV_TAB
	Table 29 Layout of INITV
	Table 30 INITVKIND

	2.12 BLK_TAB
	Table 31 Layout of BLK
	Table 32 Miscellaneous Attributes of an BLK Entry

	2.13 STR_TAB
	2.14 TCON_STR_TAB
	2.15 LABEL_TAB
	Table 33 Layout of LABEL
	Table 34 LABEL Kind
	Table 35 Miscellaneous Attributes of an LABEL Entry

	2.16 PREG_TAB
	Table 36 Layout of PREG

	2.17 ST_ATTR_TAB
	Table 37 Layout of ST_ATTR
	Table 38 Kinds of ST_ATTR

	2.18 FILE_INFO
	Table 39 Layout of FILE_INFO
	Table 40 Miscellaneous Attributes of FILE_INFO

	2.19 Backend-Specific Tables
	2.19.1 BE_ST_TAB
	Table 41 Layout of BE_ST
	Table 42 Miscellaneous Attributes of an BE_ST entry

	2.20 Symbol Table Interfaces

