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1 Introduction

This chapter will introduce the reader to the OpenGL API mechanisms for loading simple vertex and
fragment shaders and the OpenGL API mechanisms for loading vertex data. Many of the concepts will
be glossed over or given only cursory explanations. The intention is simply to get a basic OpenGL
program up and running.

This chapter targets OpenGL implementations that only implement certain modern features. Only
functionality that remains in the core profile of OpenGL 3.1 will be covered. This functionality is pre-
sented in a backwards compatible manner. Everything covered in this chapter is also applicable to
OpenGL 2.0 implementations. The majority should also be directly applicable to OpenGL ES 2.0 imple-
mentations.

2 Shaders

The OpenGL Shading Language (GLSL hereafter) has been the standard for programmable shading in
OpenGL since 2002. GLSL has a largely C-like syntax with some additions specific to computer graphics.
The details of GLSL will be covered in a later chapter. The function of the trivial shaders presented in
this chapter (Figure 4 and Figure 5) should be apparent to anyone familiar with a C-like programming
language.

Structurally, shader programs are similar to C or C++ programs. In C, one or more source files are
compiled into object files. These object files are then linked to produce an executable program. Similarly,
in GLSL one or more source files are compiled into shader objects. These shader objects are then linked
to produce a program object. The resulting program object can then be used for rendering.

While there are a number of similarities between C programs and GLSL programs, there are a few
significant differences. C programs are built from source code on a developer’s system, and the result-
ing programs are distributed to users. GLSL programs are distributed as source code. The source code
is then compiled on the user’s system at run-time. While C programs are generally targeted at one pro-
cessor and operating system combination, a single OpenGL program may be run on dozens of different
graphics accelerators. Since each accelerator may have a different instruction set, it is impossible to
compile shader programs to machine code on the developer’s system. 1

Shaders programs further differ from C programs in that shaders programs consist of multiple dis-
tinct stages. At the very least a shader program will consist of a vertex shader and a fragment shader.
These shaders execute on data at different stages of the graphics pipeline.

2.1 Compiling Shaders

Creating a shader consists of three distinct steps. These steps must be repeated for each shader that will
be used.

1. Create the shader object.

2. Specify the source code for the shader.

3. Compile the shader object.

1 The situation is slightly different for applications using OpenGL ES and GLSL ES on embedded platforms. These application
may target one specific piece of hardware. There are extensions available for OpenGL ES that allow shaders to be compiled off-line
and stored as binary code along with the main application binary.
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2 SHADERS 2.1 Compiling Shaders

Figure 1 shows a sample program listing that performs all three steps. The call to glCreateShader
allocates a shader object from the GL. Since GL_VERTEX_SHADER is specified, the shader that is created
with be executed by the vertex processing unit.

Figure 1 Creation of a vertex shader

1 extern GLchar *vertex_code;
2 GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
3 glShaderSource(vertex_shader, 1, (const GLchar **) &vertex_code, NULL);
4 glCompileShader(vertex_shader);

The set of parameters to glShaderSource is very flexible. As a result, the proper usage may not be
initially obvious.

void glShaderSource(GLuint shader, GLsize count,
const GLchar **string, const GLint *length);

The first oddity is the string parameter. This is a pointer to a pointer to characters. The double
indirection allows applications to pass in an array of source strings. The count parameter specifies the
number of strings in this array. In Figure 1 vertex_code is a pointer to character (one indirection).
When passed to glShaderSource an additional indirection, by way of the & (address-of) operator, is
used. Since there is only a single source string, the count parameter in Figure 1 is 1.

While this flexibility may seem annoying and useless now, a later chapter will show how it can be
very useful. In the mean time you may want to create a simple wrapper function that takes a shader
and a single program string as parameters. The wrapper function would then call glShaderSource in
a manner similar to Figure 1.

The mysterious length remains. This parameter is an optional array of integers that specify the
lengths of the strings in string. Assuming these strings are all C-style NUL-terminated strings, it is safe
to pass NULL for this parameter. Uses for this parameter will also be discussed in a later chapter.

After supplying the source for a shader, the shader must be compiled by calling glCompileShader.

void glCompileShader(GLuint shader);

Notice that glCompileShader does not return a value. This is common for OpenGL functions.
The assumption is that production code will not contain errors. By not immediately returning a value,
round-trips between the client and server can be avoided. The status of the compile can be queried by
calling glGetShader with the parameter GL_COMPILE_STATUS, as shown in Figure 2.

Figure 2 Querying compilation status

1 GLint status;
2
3 glGetShader(vertex_shader, GL_COMPILE_STATUS, &status);
4 if (status == GL_FALSE)
5 /* ... error path ... */

When C programs fail to compile, the compiler generates diagnostics explaining the failure. GLSL
compilers are similar in this respect. Since the GLSL compiler is invoked from within an application
program, the compiler diagnostics are not output to the user. They are instead stored in a per-shader
information log. The contents of this log can be retrieved by calling glGetShaderInfoLog.

void glGetShaderInfoLog(GLuint shader, GLsizei maxLength,
GLsize *length, GLchar *infoLog);

The maxLength specifies the size of the buffer passed via the infoLog pointer. The number of char-
acters actually written to this buffer will be stored in the value pointed to by length. Applications can
also query the size of the information log by calling glGetShader with the parameter GL_INFO_LOG-
_LENGTH.

Even if compilation succeeds, the compiler may store warnings or other informational messages in
the information log. It is common practice during development and in debug builds to either display or
log to disc any information logs generated by the compiler.
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2 SHADERS 2.2 Linking Programs

2.2 Linking Programs

The parallels between shader programs and C programs continue. After compiling a collection of C
source files, the resulting object files must be linked together to form an executable program. Similarly,
after compiling a collection of shader source files, the resulting shader objects must be linked together to
form a program object. Given a collection of compiled shader objects, creating a usable program object
consists of four steps.

1. Create the program object.

2. Attach compiled shader objects to the program object.

3. Place attributes.

4. Link the program object.

Figure 3 shows a sample program listing that performs three of the four steps. Placement of attributes
will be discussed in a later chapter. The call to glCreateShader allocates a shader object from the GL.

Figure 3 Creation and linking of a program

1 GLuint program = glCreateProgram();
2 glAttachShader(program, vertex_shader);
3 glAttachShader(program, fragment_shader);
4 glLinkProgram(program);

The interface to glAttachShader is very simple. It takes the name of the program object and the
name of a shader object to attach to it. In this context attach means that the shader is added to the list of
shaders that will be linked to form the final program. Shaders may be attached to multiple programs.

void glAttachShader(GLuint program, GLuint shader);

After attaching all of the shaders to the program, the program must be linked by calling glLinkP-
rogram. Notice that, like glCompileShader, glLinkProgram does not return value. The status of
the compile can be queried by calling glGetProgram with the parameter GL_LINK_STATUS.

void glLinkProgram(GLuint program);

Just like compiling a program, linking a program can generate errors and warning. Linker diag-
nostics are written to a program information log. Querying this log is nearly identical to querying the
shader information log. The contents of this log are queried by glGetProgramInfoLog, and the size of
the information log is queried by calling glGetProgram with the parameter GL_INFO_LOG_LENGTH.

void glGetProgramInfoLog(GLuint program, GLsizei maxLength,
GLsize *length, GLchar *infoLog);

At a bare minimum, a program must have a complete vertex shader with a main and a complete
fragment shader with a main. Some versions of OpenGL support additional, optional shader stages.
These shader stages are beyond the scope of this chapter. Figure 4 shows a sample vertex shader, and
Figure 5 shows a sample fragment shader. Additional requirements and restrictions will be covered in
later chapters.

Once a program object is successfully linked, it can be used for rendering. A program is activated
by calling glUseProgram. A program remains active until another program is used. If a program has
not been successfully linked, glUseProgram will generate the error GL_INVALID_OPERATION, and
the previously active program will remain active.

void glUseProgram(GLuint program);

Applications can query the currently active program by calling glGetIntegervwith the parameter
GL_CURRENT_PROGRAM. In doing so, a library routine could save the current program, activate a new
program, perform some rendering, and restore the original program.
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Figure 4 Sample vertex shader

1 void main(void)
2 {
3 gl_Position = gl_Vertex;
4 }

Figure 5 Sample fragment shader

1 void main(void)
2 {
3 gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);
4 }

3 Shader Data

Producing a program object for even the most sophisticated rendering algorithm is only half of the
equation. Every program needs data on which to operate. In this section one fundamental form of
program data will be introduced: attributes. Other forms of program data will be covered in later
chapters.

3.1 Buffer Objects

Each vertex of each triangle rendered in a scene has some data associated with it. At the very least, the
vertex has a position. It may also have colors, a normal, texture coordinates, and other data. This data
is supplied in the form of attributes.

All data to be used as attributes must come from special buffers allocated from the GL. These buffer
objects are regions of memory controlled by the GL. This allows the implementation to arbitrate CPU
and GPU access to the buffer. In addition, it allows the implementation to place the buffer in the fastest
memory for a particular operation. For example, a buffer may be placed in CPU host memory when
being used by the CPU, and it might be moved to dedicated GPU memory when being accessed by the
GPU.

Buffer objects share a common interface design with many other objects in the OpenGL API. This
interface consists of several elements, but only a few of these elements will be covered here.

• Gen routine to create a name for the object.

• Delete routine to delete a set of generated names.

• Bind routine to make the object active for use or for editing.

• Data allocation routine to create storage for the object.

• SubData routine to update the contents of the object’s storage.

Buffer objects also offer the unique ability to provide direct, pointer based access to the object’s data.
This will be discussed in more detail below.

Buffer object names are created by calling glGenBuffers. This function creates n handles to buffer
objects and stores the names in the array specified by buffers.

void glGenBuffers(GLsizei n, GLuint *buffers);

A name can be activated by calling glBindBuffer. The buffer specifies the name to be bound.
The target specifies the binding point. The binding point determines which part of the GL will access
the buffer. Several binding points exist, but for now only GL_ARRAY_BUFFER will be considered.

void glBindBuffer(GLenum target, GLuint buffer);

Once a name is bound, storage for the object’s data can be created by calling glBufferData. Notice
that glBufferData does not take a buffer name has a parameter. Instead it uses the name most recently
bound to target.
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void glBufferData(GLenum target, GLsizeiptr size, const GLvoid *data,
GLenum usage);

In addition to creating storage for the object’s data, this function can be used to provide initial values
for the data. This data is read from the data. If a non-NULL pointer is supplied, size bytes will be copied
from that pointer into the object’s storage. If this pointer is NULL, the buffer will contain uninitialized
values.

The usage is one of the most vexing parts of the buffer object interface for both application devel-
opers and driver writers. It will be discussed in detail in a later chapter. For now, simply use the value
GL_STATIC_DRAW.

Notice the careful distinction between the name of an object and its storage. One can make a similar
distinction between a FILE handle used for file I/O and the storage of a file. This analogy works rather
well for many OpenGL objects. Once we have a storage created for a buffer object, we can perform read
and write through the buffer object using glGetBufferSubData and glBufferSubData.

void glGetBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, void *data);

void glBufferSubData(GLenum target, GLintptr offset,
GLsizeiptr size, const void *data);

For many uses, this interface is very cumbersome. Image an application that wants to use a 3D model
loading library. This library has several interfaces that take pointers to buffers as parameters, and the
buffers are filled with data from the 3D model file. To use these interfaces with glBufferSubData, the
application would have to allocate a temporary buffer, call into the 3D model loading library, copy the
data into the buffer object, then free the temporary buffer. This usage is inefficient, cumbersome, and
error prone.

There is, however, a better way. It is possible to get a pointer to the memory containing the buffer
object’s data. This memory can be used just like any memory allocated using malloc or new. This access
is gained by mapping 2 the buffer object. Once the object’s storage no longer needs to be accessed, the
object is unmapped. The GL still has to arbitrate access to the object’s storage. It is therefore impossible
to use the buffer for drawing calls while it is mapped.

A buffer object is mapped by calling glMapBuffer. As with glBufferData, the target selects
the buffer to be mapped. The access tells the GL how the mapped data will be used. A buffer can
be mapped for reading (GL_READ_ONLY), writing (GL_WRITE_ONLY), or reading and writing (GL_R-
EAD_WRITE). It is very important to use the correct access mode. For example, if a buffer is mapped
for reading and the application tries to write data to the buffer, the application will probably crash.
However, not all implementations will work this way. You may end up with an application that happens
to work on one implementation but crash on another. Figure 6 shows how a buffer could be filled with
data by mapping.

void *glMapBuffer(GLenum target, GLenum access);

void glUnmapBuffer(GLenum target);

It is common practice for applications to treat glBufferData as the primary memory allocation
interface for any sort of vertex data. Uses of the glBufferData interface for other types of data, such
as images, will be discussed in a later chapter.

3.2 Attributes

Once data is loaded into a buffer object, the GL needs to be told how load data from the buffer into the
shader. It also needs to be told which attributes to load the data into. The function glVertexAttri-
bPointer is used for this purpose. The word "Pointer" in the function name and the parameter name
pointer are somewhat misleading holdovers from older versions of OpenGL. Pointers are not used.
Instead, the values used are offsets into buffer object currently bound to the GL_ARRAY_BUFFER target.

void glVertexAttribPointer(GLuint index, GLint size, GLenum type,
GLboolean normalized, GLsizei stride,

2 Files can be accessed in a similar way using the mmap function.
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Figure 6 Filling a buffer with data by mapping

1 GLuint buffer;
2
3 glGenBuffers(1, &buffer);
4 glBindBuffer(GL_ARRAY_BUFFER, buffer);
5 glBufferData(GL_ARRAY_BUFFER, (2 * steps) * sizeof(float),
6 NULL, GL_STATIC_DRAW);
7
8 float *data = (float *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
9

10 // Generate X and Y coordinates aroud a circle.
11 for (unsigned i = 0; i < steps; ++i) {
12 const float angle = (2 * M_PI * i) / steps;
13 data[(i * 2) + 0] = sin(angle); data[(i * 2) + 1] = cos(angle);
14 }
15
16 glUnmapBuffer(GL_ARRAY_BUFFER);

const GLvoid *pointer);

The index parameter specifies which vertex shader attribute will receive the data. The size param-
eter specifies the number of components are in each element of the buffer. In Figure 6, each element is a
pair of X and Y coordinates. The size would be 2. The type specifies the data type of the components.
Table 1 shows a complete table of the available types and the enumerant values to use. For Figure 6,
GL_FLOAT would be used.

Table 1 Enumerants for C types

C / C++ Type Enumerant
GLbyte GL_BYTE
GLubyte GL_UNSIGNED_BYTE
GLshort GL_SHORT
GLushort GL_UNSIGNED_SHORT
GLint GL_INT
GLuint GL_UNSIGNED_INT
GLfloat GL_FLOAT
GLdouble GL_DOUBLE

Integral types, such as GLubyte, can be interpreted two ways. One way is to interpret them as
encoding values in their natural range, such as [0, 255] for GLubyte or [-32768, 32767] for GLshort. The
other way is to interpret them as encoding values from [0, 1] for unsigned types of [-1, 1] for signed
types. The normalized parameter selects this behavior. Passing GL_TRUE will cause integral types to
be interpreted as [0, 1] for unsigned types of [-1, 1] for signed types. The parameter is ignored for GLfloat
and GLdouble data.

The stride parameter describes the distance, in bytes, from the start of one element to the start of
the next. In Figure 6 the data is tightly packed. The distance between two elements is just the size of an
element. In this case, that is 2 * sizeof(GLfloat). As shorthand, a stride of 0 may be specified for
packed data. This signals the GL to calculate the actual stride based on size and type.

Once pointers have been set, any attributes that will be used need to be enabled by calling glEna-
bleVertexAttribArray. The index selects the array to be enabled. A previously enabled array can
be disabled by calling glDisableVertexAttribArray.

void glEnableVertexAttribArray(GLuint index);

void glDisableVertexAttribArray(GLuint index);

The topic of attributes will receive fuller treatment in a later chapter. For now, only attribute 0 will
be used. This attribute is special in two ways. First, some data must be sourced through attribute 0.
Second, attribute 0 is delivered to the vertex shader through the built-in attribute name gl_Vertex.
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Figure 7 shows how the buffer object created in Figure 6 can be set to attribute 0. The BUFFER_OF-
FSET macro converts the buffer offset to a pointer. This is done to prevent errors or warnings from the
C compiler.

Figure 7 Specifying a vertex attribute pointer

1 #define BUFFER_OFFSET(i) ((char *)NULL + (i))
2
3 glBindBuffer(GL_ARRAY_BUFFER, buffer);
4 glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(GLfloat),
5 BUFFER_OFFSET(0));

4 Putting It Together

Figure 8 shows a simple initialization routine and main display function that combines all of these
elements. Lines 6 through 16 create a buffer object and fill it with data representing a rectangle. Line
18 binds the data in the buffer object to vertex attribute 0. Please note that there is no error checking
performed in this code. Even in correct code creation of the buffer object could fail due to lack of
memory. The error checking is omitted purely to improve clarity of the code.

Lines 20 through 31 compile the vertex and fragment shaders and link them together. Line 33 makes
the program active. Again, there is no error checking in this code.

Line 40 draws the two triangles stored in the buffer object. There is no error checking necessary in
this code. Note, however, that display assumes the attribute array pointer and enable state has not
changed, and it assumes that the correct program is active.
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Figure 8 Sample program

1 GLuint program;
2 GLuint buffer;
3
4 void init(void)
5 {
6 glGenBuffers(1, &buffer);
7 glBindBuffer(GL_ARRAY_BUFFER, buffer);
8 glBufferData(GL_ARRAY_BUFFER, 4 * 2 * sizeof(GLfloat),
9 NULL, GL_STATIC_DRAW);

10
11 GLfloat *data = (GLfloat *) glMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);
12 data[0] = -0.75f; data[1] = -0.75f;
13 data[2] = -0.75f; data[3] = 0.75f;
14 data[4] = 0.75f; data[5] = 0.75f;
15 data[6] = 0.75f; data[7] = -0.75f;
16 glUnmapBuffer(GL_ARRAY_BUFFER);
17
18 glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 0, BUFFER_OFFSET(0));
19
20 GLuint vs = glCreateShader(GL_VERTEX_SHADER);
21 glShaderSource(vs, 1, (const GLchar **) &vertex_shader_code, NULL);
22 glCompileShader(vs);
23
24 GLuint fs = glCreateShader(GL_FRAGMENT_SHADER);
25 glShaderSource(fs, 1, (const GLchar **) &fragment_shader_code, NULL);
26 glCompileShader(fs);
27
28 program = glCreateProgram();
29 glAttachShader(program, vs);
30 glAttachShader(program, fs);
31 glLinkProgram(program);
32
33 glUseProgram(program);
34 }
35
36
37 void display(void)
38 {
39 glClear(GL_COLOR_BUFFER_BIT);
40 glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
41 SDL_GL_SwapBuffers();
42 }
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