Using SDL with OpenGL

by Ian Romanick

This work is licensed under the Creative Commons Attribution Non-commercial Share Alike (by-nc-sa)
License. To view a copy of this license, (a) visit http://creativecommons.org/licenses/by-nc-sa/3.0/;
or, (b) send a letter to Creative Commons, 171 2nd Street, Suite 300, San Francisco, California, 94105,
USA.

1 Introduction

OpenGL provides platform-independent access to accelerated 3D rendering. However, it takes more
than just 3D rendering capabilities to display graphics on the user’s screen. OpenGL relies on a set
of platform-dependent window system interface layers to bind OpenGL rendering to the rest of the
system. For example, X Windows based systems use GLX to associate a window with an OpenGL
rendering context. Microsoft’'s Windows and Apple’s OS X have similar interface layers.

These interfaces lie at the boundary of the platform-independent OpenGL API and the necessarily
platform-dependent window system API. To provide the rich and varied set of functionality on each
platform, these window system interface layers are also, by necessity, platform dependent. There exist a
few wrapper libraries that provided a limited set of functionality and hide these platform dependencies.
Two well known examples are GLUT and SDL.

This chapter will introduce some SDL for the purpose of interfacing with OpenGL. It is by no means
a comprehensive tutorial on SDL. Instead, this chapter focuses providing the basics of three key topics.

1. Creating a window suitable for OpenGL rendering.
2. Event loop.

3. Timing.

1.1 Creating a Drawing Surface

Before using any part of SDL, the library must be initialized. This gives the library an opportunity to
allocate internal data structures, connect with operating system resources, and perform other internal
bookkeeping.

int SDL_Init (Uint32 flags);

The f1ags parameter to SDL_Init selects the subsystems that will be initialized. This is a bitwise-or
of flag values for each subsystem. Only two subsystems, the video subsystem and the timer subsystem,
will be used in this chapter. Figure 1 shows the use of SDL_Init to initialize these subsystems. If the
initialization is successful, zero will be returned. Otherwise -1 will be returned.

Figure 1 SDL initialization.

1 if (SDL_Init (SDL_INIT_VIDEO | SDL_INIT_TIMER) < 0)
2 /* ... error path ... %/

3

4 atexit (SDL_Quit);

The call to atexit adds the function SDL_Quit to the list of functions that are automatically called
when the program terminates. This is a common idiom with SDL. The guarantees that all of the re-
sources used by SDL itself will be released when the program terminates, even if program is terminated
by crashing.

Creating the actual drawing surfaces consists of two primary steps. First, the desired attributes of
the drawing surface must be specified. Once the surface is fully described, it is created. The function
SDL_GL_SetAttribute specifies a minimum acceptable value for a specific attribute.

int SDL_GL_SetAttribute (SDL_GLattr attr, int wvalue);



http://creativecommons.org/licenses/by-nc-sa/3.0/

1 INTRODUCTION 1.2 Events

SDL_SetVideoMode creates the drawing surface!. The width and height parameters specify the
dimensions of the surface. The bpp parameter is not used for OpenGL surfaces and should be set to 0.

The flags parameter is a bitwise-or of flag values, much like the f1ags parameter to SDL_Ini-
t. For OpenGL surfaces, SDL_OPENGL must be set. If SDI._FULLSCREEN is set, the window will be
"fullscreen." This usually means that the video mode will be changed to match the dimensions of the
window. If SDIL_RESIZABLE is set, the window will be created with appropriate decorations so that
the user can resize the window. When this happens, SDL sends resize events to the application. These
events will be covered shortly.

The call to SDIL_SetVideoMode can fail for a variety of reasons, not the least of which is inability of
the system to satisfy all of the requested minimum values. For example, requesting 64 bits of red is sure
to fail on any current generation system.

SDL_Surface *SDL_SetVideoMode (int width, int height, int bpp, Uint32 flags);
Figure 2 demonstrates requesting at least 8 bits of red, green, and blue in the color buffer and 24 bits

in the depth buffer. Line 3 also requests that the surface be double buffered. Line 5 calls SDL_SetVvid-
eoMode to create an 800x600 window that can be used for OpenGL rendering.

Figure 2 Creating an SDL drawing surface.

SDL_GL_SetAttribute (SDL_GL_RED_SIZE, 8);
SDL_GIL_SetAttribute (SDL_GL_GREEN_SIZE, 8);
SDL_GL_SetAttribute (SDL_GL_BLUE_SIZE, 8);
SDL_GL_SetAttribute (SDL_GL_DEPTH_SIZE, 24);
SDL_GIL_SetAttribute (SDL_GL_DOUBLEBUFFER, 1);

screen = SDL_SetVideoMode (800, 600, 0, SDL_OPENGL) ;
if (screen == NULL)
/* ... error path ... */

OW 00 J o U1 v WDN

1.2 Events

Most graphical applications, including games, are driven by an event loop. As the name suggestions,
this is a loop in the main execution path of the code that processes a series of events. Events, in this
context, are occurrences outside the program that affect its behavior. These take the form of user input
from the keyboard or mouse, timers expiring, messages from the operating system, and so on. SDL has
a very flexible mechanism for receiving events.

SDL provides two functions to receive events. SDL_PollEvent will return immediately. If no event
was available, it returns 0. SDI_WaitEvent, on the other hand, will block until an event is available.
Both functions return 1 if an event is available and fill in the supplied SDL_Event structure.

int SDL_PollEvent (SDL_Event xevent);
int SDL_WaitEvent (SDL_Event xevent);

While SDL_WaitEvent is blocking, it may give up the program’s CPU time and allow other pro-
grams to run. If there are no other programs to run, the operating system will put the CPU in a lower
power mode. This is critically very important for mobile systems. Spinning in a loop repeatedly calling
SDL_PollEvent will drain the battery much faster than blocking in SDL_WaitEvent.

A simple event loop is shown in Figure 3. The structure of this loop is important. The code blocks in
SDL_WaitEvent until a first event is available. Remaining events are processed, without blocking, by
calling SDL_PollEvent. After all events have been processed, a message is printed at line 15.

The only event processed by this event loop is SDL._QUIT, which is typically generated by the user
clicking the "window close" icon on the window. When this event is received, a flag is set that signals
the event loop to terminate.

The sDL_Event is a union of structures. Each structure contains a tag, called type, the tells which
type of event it is. This allows code to examine the type field of the SDL_Event event union, then

! This function is so named for largely historical reasons. SDL has its root in DOS and Linux console environments where
there was no window system. On these platforms the call to SDL_SetVideoMode would literally set the video mode.




1 INTRODUCTION

1.3 Timing

Figure 3 Simple SDL event loop.

1 bool done = false;

2

3 while (!done) {

4 SDL_Event event;

5

6 SDL_WaitEvent (&event) ;

7 do {

8 switch (event.type) {

9 case SDL_QUIT:
10 done = true;
11 break;
12 }
13 } while (SDL_PollEvent (&event));
14
15 printf ("got some events\n");
16 }

select the specific event structure from the union that contains the specific event data. This is used, for
example, to determine which key was pressed or released on the keyboard, the location of the mouse

pointer, or the direction the joystick is being pushed.

A slightly more complex event loop is shown in Figure 4. Here SDL_KEYDOWN and SDL_KEYUP

events are processed as keys are pressed and released on the keyboard.

Figure 4 SDL keyboard event loop.

1 bool done = false;

2

3 while (!done) {

4 SDL_Event event;

5

6 SDL_WaitEvent (&event) ;

7 do {

8 switch (event.type) {

9 case SDIL_QUIT:
10 done = true;

11 break;

12 case SDL_KEYUP:

13 case SDL_KEYDOWN:

14 printf (" ‘%c’ was %s\n",

15 event .key.keysym.sym,
16 (event.key.state == SDL_PRESSED) ? "pressed"
17 break;

18 }

19 } while (SDL_PollEvent (&event));

20 }

"released");

1.3 Timing

Graphical applications will typically only update their display in response to some stimulus. In many
cases this is input from the user. This is probably sufficient for a graphical editor, for example. However,
many other types of applications update their display in response to another type of stimulus: the
passage of time. A game, for example, will update the display 60 times per second whether the player
is doing anything or not. The event loop presented in the previous section has no way to "wake up" due

to the passage of time. This can be very easily added using a timer.

In SDL, timers can be created that will call a function a specific rate. After calling SDL_AddTimer,
every interval milliseconds? the function specified to cal1back will be called. It will be passed param

2 The SDL documentation states the the resolution of these timers is 10ms.




1 INTRODUCTION 1.3 Timing

as a parameter.

SDL_TimerID SDL_AddTimer (Uint32 interval, SDL_NewTimerCallback callback,
void xparam) ;

The function passed as callback must fit the prototype shown below. When called, param is the
value supplied as paramto SDL_AddTimer. interval is the current timer interval. The value returned
by the callback function will become the new timer interval. If zero is returned, the timer will be can-
celed. It is common practice to simply return interval.

typedef Uint32 (*SDL_NewTimerCallback) (Uint32 interval, void xparam);

Note that the timer mechanism does not generate events. The event loop still can’t wake up! How-
ever, the callback function can use SDL._PushEvent to generate an event. This function inserts a new
event in the event stream.

int SDIL_PushEvent (SDL_Event xevent);
Figure 5 and Figure 6 show examples of setting a timer and generating an event from the callback. If

this code were used with the event loop in the previous section, the SDI._WaitEvent call would wake
up approximately every 10ms (100 times per second).

Figure 5 Adding a timer.

1 SDL_TimerID timer_id = SDL_AddTimer (10, timer_callback, NULL);
2 if (timer_id == NULL)
3 /* ... error path ... */

Figure 6 Generating an event from the timer callback.

1 Uint32 timer_callback (Uint32 interval, void xnot_used)
2 A

3 SDL_Event e;

4

5 e.type = SDL_USEREVENT;
6 e.user.code = 0;

7 e.user.datal = NULL;

8 e.user.data2 = NULL;

9 SDL_PushEvent (& e);
10
11 return interval;
12 }




	Introduction
	Creating a Drawing Surface
	Events
	Timing


