
CG Programming III – Assignment #3 (SSAO)
Due on 06/12/2013 at the final

In this assignment you will be required to partially implement screen-space ambient occlusion. There are two
major portions of the SSAO pipeline, and you will implement one of them: the geometry-aware filter.

Augment your current demo by adding many more torii to the scene. Two good scenarios will show the effect
of the filter:

• Stack of tires: Add several torii stacked on top of each other like a stack of tires. The torii should not
intersect, and there should not be a gap between them.

• Donut X: Add some torri that intersect each other in an X formation.

Perform some preliminary refactoring of your demo.

• Generate a new FBO with color and depth. This FBO should exactly match the dimensions of the window.
Both the color and depth attachments to this FBO should be textures (not renderbuffers).

• Modify the main scene rendering pass to render to this FBO instead of the window.

• Configure the main scene FBO as the GL READ FRAMEBUFFER and the window was the GL DRAW FRAMEBUFFER.
Use glBlitFramebuffer to copy the the scene to the window. The demo should produce the same output
as before the new FBO was added.

• Create a new shader program. This program will have a simple “pass through” vertex shader that copies
the input vertex to gl Position and applies a scale-and-bais operation to the vertex before writing it to
a vec2 output. The fragment shader will output the color read from a texture using the vertex shader
vec2 output as the texture coordinate. I will refer to this as the “filter shader”.

• Configure the window as both the GL READ FRAMEBUFFER and GL DRAW FRAMEBUFFER, and bind the tex-
ture attached to the FBO to texture unit 0. Using the shader program from the previous step, draw
two triangles to cover the square from (−1,−1, 0) to (1, 1, 0). This will replace the previously added
glBlitFramebuffer call. The demo should still produce the same output.

Once you get to this point, make a backup copy of your project.

Before implementing the bilateral filter, you will implement a simple Gaussian filter.

• Generate a 1D table of Gaussian filter weights. The filter diameter should be 5. Let σ = 5/6 and

G(x) = 1√
2πσ2

e
x2

2σ2 for x ∈ [−2, 2]. See Wikipedia1 for more details. Add this table as a constant array of

floats to your filter fragment shader. Call this table w.

• Modify the main function in the filter fragment shader to use textureOffset to read a row of five pixels
around the input texture coordinate. Each pixel value should be multiplied with the corresponding entry
in the w table (e.g., the pixel at offset -2 goes with entry 0, offset -1 with entry 1, etc.). Sum the results
and output the resulting color. It should look a littler blurrier.

• Encapsulate one iteration of the code from the previous step in a macro called S. S should take two integer
parameters: the x offset and the y offset. Replace the previous code with five invocations of the new
macro. y offset will always be 0 in this step. Use x offset + 2 as the table index.

• Modify S to also use y offset to determine the filter weight. Multiply the value from w for the x offset with
a value from w for the y offset. The result should be similar to before, but darker.

• Instead of invoking S five times, invoke it 25 times: use a 5× 5 grid of pixels. This result should be much
blurrier than before. You’ve now implemented a simple Gaussian blur.

1http://en.wikipedia.org/wiki/Gaussian_blur

1

Now you will begin implementing the bilateral filter. This special filter blurs data while respecting geometric
discontinuities.

• Modify the filter fragment shader to have a second texture. Bind the depth buffer from the rendering
FBO to this texture2.

• Recall the definition of the bilater filter:

Ap =
1

k(p)

∑
p′∈Ω

gd(p
′ − p)gr(zp − zp′)Ap′

where

k(p) =
∑
p′∈Ω

gd(p
′ − p)gr(zp − zp′)

If gr always returns 1 and gd(p
′ − p) is the Gaussian weight function, the bilateral filter is exactly the

Gaussian filter that you just implemented.

• Add a function to the filter fragment shader, float Gr(float a, float b). The function should return
a value that is inversely proportational to the difference of the input values. Since |zp − zp′ | ∈ [0, 1],
something like exp(1 - abs(a - b))) or pow(1 - abs(a - b), 2.) should work nicely (try plotting
these on the range [0, 1] in Excel or gnuplot).

• Modify S to use Gr as the gr from the bilateral filter equation. This means you will also need to add a
new variable, k that acculuates the Gr values. This will be used as k(p) in the bilateral filter equation.

2Use sampler2D, not sampler2DShadow. Also, do not set GL TEXTURE COMPARE MODE to GL COMPARE REF TO TEXTURE.

2

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3

