
CG Programming III – Assignment #2 (shadow maps)
Due on 05/15/2013

In this assignment you will be required to implement shadow maps. To show shadow maps in action, render
a scene with at least two objects and a single light source. One of the objects must show self-shadowing. The
light source and the objects must move in such a way that object can be both receivers and casters. One way
to do this is to have multiple objects arranged in a plane with a light source orbiting them.

Part 1 - Shadow maps

For the most part, you will modify your existing shadow texture implementation to use shadow maps instead.

• Convert the “shadow” FBO to have a single GL DEPTH COMPONENT texture attachment instead of the
current RGB color texture attachment.

• Convert the main rendering shader to use a sampler2DShadow sampler instead of a sampler2D.

• Use the GL DEPTH COMPONENT texture as the texture for the scene. Be sure to set the GL TEXTURE COMPARE MODE

to GL COMPARE REF TO TEXTURE.

• Modify the scene to include more objects, have a moving light source, etc.

At this point, you should have shadow textures working.

Part 2 - PCF

• Add keyboard (or joystick, etc.) controls to your main program for a adjusting a floating point value
on the range [.2, 5]. Pass this value divided by the width of the shadow map (your shadow map should
be square for this to work properly) into your shadow mapping shader as a uniform. I will refer to this
variable as r.

• Add an array of 36 “random” values that represent points inside a circle of radius 1.0. You may want to
write a separate program in C, Javascript, or whatever to generate the set of points. Being able to write
programs that generate other programs can be very useful.

• Using the random points and r, implement a percentage-closer filter (PCF) in your shadow mapping
shader. You will have to manually project the shadow map coordinate (by dividing by w) and bias the
position by the random points scaled by r. As r gets larger, the shadow boundaries should get softer.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


