
CG Programming III – Assignment #1 (shadow textures)

In this assignment you will be required to implement shadow textures. To show shadow textures in action,
render a scene with at least two objects and a single light source. Select some set of objects to be shadow
casters and some (disjoint) set to be shadow receivers.

This assignment will be graded in two parts. Each part has a separate due date.

Part 1 due on 10-April-2013

• Add code to the initialization path to create a framebuffer object with a single color attachment. This
color attachment should be a texture (as opposed to being a renderbuffer). The framebuffer should be
one quarter the screen size (half width and half height).

• At the end of your drawing routine, just before SDL GL SwapBuffers, use glBlitFramebuffer to copy
the framebuffer to the lower left corner of the screen. At this point, that will just be a black rectangle.

• Refactor the drawing code to a separate routine.

• Modify the main drawing routine to call the refactored drawing routine twice. The first time should draw
to the FBO, and the second time should draw to the screen. The FBO copied to the screen will no longer
be a black rectangle, and it will also be different than the image drawn to the screen due to the lack of a
depth buffer.

• Before drawing to the FBO, set the clear color to white. Set a different shader. This shader will always
output black from the fragment shader.

• Before drawing to the FBO, set a different view-projection matrix. This matrix should view the scene
from the point-of-view of the light instead of the camera.

At this point, the body of your main drawing routine will look something like:

// Render the shadow t e x t u r e
glBindFramebuffer (GL FRAMEBUFFER, shadowFBO) ;
glViewport (0 , 0 , shadowFBO width , shadowFBO height) ;
g lC l ea rCo lo r (1 . , 1 . , 1 . , 1 .) ;
glUseProgram (shadow render program) ;
draw scene (l i gh t v i ew mat r i x , shadow caste r s) ;

// Render the scene
glBindFramebuffer (GL FRAMEBUFFER, 0) ;
g lViewport (0 , 0 , window width , window height) ;
g lC l ea rCo lo r (clearR , clearG , clearB , c learA) ;
glUseProgram (render program) ;
draw scene (camera view matrix , shadow caste r s) ;
draw scene (camera view matrix , shadow rece ive r s) ;

// Copy the shadow t e x t u r e image on top o f the lower l e f t
// corner o f the scene .
glBindFramebuffer (GL READ FRAMEBUFFER, shadowFBO) ;
glBindFramebuffer (GL DRAW FRAMEBUFFER, 0) ;
g lB l i tFramebu f f e r (0 , 0 , shadowFBO width , shadowFBO height ,

0 , 0 , shadowFBO width , shadowFBO height ,
GL COLOR BUFFER BIT,
GL NEAREST) ;

SDL GL SwapBuffers () ;

1

The program should render the scene with the shadow texture superimposed over the lower-left corner of the
window.

Part 2 due on 24-April-2013

The second part uses the texture generated in the first part as the shadow texture.

• Create a dummy, 1x1 texture that contains a single white texel.

• In the drawing pass that renders the actual (shadowed) scene, use the dummy texture when drawing the
shadow casters. Use the texture from shadowFBO when drawing the shadow receivers.

• Modify the fragment shader to apply a texture using projective texturing. Since the texture is white in
the non-shadow regions and black in the shadow regions, simply modulate the shadow texture color with
the final computed color. Be sure to apply the near-plane test mentioned in the lecture notes to prevent
anti-shadows!

It is strongly recommended, though not required, that something be drawn at the position of the light. Using
a small sphere or a single point primivite should work.

2

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3

