CG Programming II — Assignment #3 (BRDF's)
Due on 27-February-2013 by the end of class

In this assignment you will enhance the lighting algorithm implemented in the previous assignment. Using the
previous assignment (tangent-space normal mapping) as a starting point, you will

Implement Schlick’s approximation to the Fresnell function. Use this function to generate (gray scale)
colors for the rendered object.

Implement the modified Cook-Torrance lighting algorithm using the Beckmann distribution instead of the
weighted Gaussian distribution from the paper.

Implement the isotropic Ward lighting model. Your C++ should implement a simple user interface to
switch between the two lighting models at run time. There are several ways to acomplish this with different
trade-offs.

As a separate text document, describe your implementation of switching lighting models and explain the
trade-offs of that choice and at least one other possible implementation.

Implement the anisotropic Ward lighting model. Implement a simple user interface to adjust the a,, oy,
and rotation of the tangent frame. You only need to support switching between the aniostropic Ward
model and the modified Cook-Torrance model. The isotropic Ward model is just a stepping stone to the
anisotropic model.

of each function is
noted, as are the input
requirements and out-
put results.

of each function is
noted, as are the
input requirements
and output results.

cific purpose of each
function is noted.

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im- | Program implements | Program implements | Many required
plements all required | all required elements, | most required ele- | elements are
elements in a manner | but some elements | ments. Some of the | missing. User
that is readily appar- | may not function | implemented elements | interface is in-
ent when the program | correctly. User inter- | may mnot function | complete or is
is executed. User | face is complete and | correctly. User inter- | not responsive
interface is complete | responsive to input. face is complete and | to input.
and responsive to in- responsive to input.
put. Program doc-
uments user interface
functionality.

Correctness Program executes | Program executes | Program executes | Program does
without errors. Pro- | without errors. Pro- | without errors. Pro- | not execute due
gram handles all | gram handles most | gram handles some | to errors. Lit-
special cases. Pro- | special cases. special cases. tle or no error
gram contains error checking code
checking code. included.

Efficiency Program uses solution | Program uses an ef- | Program uses a log- | Program uses
that is easy to under- | ficient and easy to | ical solution that is | a difficult
stand and maintain. | follow solution (i.e., | easy to follow, butitis | and inefficient
Programmer has anal- | no confusing tricks). | not the most efficient. | solution. Pro-
ysed many alternate | Programmer has con- | Programmer has con- | grammer has
solutions and has cho- | sidered alternate solu- | sidered alternate solu- | not consid-
sen the most efficient. | tion and has chosen | tions. ered alternate
Programmer has in- | the most efficient. solutions.
cluded the reasons for
the solution chosen.

Presentation & | Program code is for- | Program code is | Program code is for- | Program code

Organization matted in a consistent | formatted in mostly | matted with multi- | is formatted
manner. Variables, | consistent with occa- | ple styles. Variables, | in an inconsis-
functions, and data | sional inconsistencies. | functions, and data | tent manner.
structures are named | Variables, functions, | structures are named | Variables, func-
in a logical, consistent | and data structures | in a logical but incon- | tions, and data
manner. Use of white | are named in a logi- | sistent manner. Use | structures are
space improves code | cal, mostly consistent | of white space neither | poorly named.
readability. manner. Use of white | helps or hurts code re- | Use of white

space neither helps or | ability. space hurts code
hurts code reability. reability.

Documentation Code clearly and ef- | Code documented | Code documented | No useful doc-
fectively documented | including descrip- | including descriptions | umentation ex-
including descriptions | tions of most global | of the most important | ists.
of all global variables | variables and most | global variables and
and all non-obvious lo- | non-obvious local | the most important
cal variables. The spe- | variables. =~ The spe- | local variables. The
cific purpose of each | cific purpose of each | specific purpose of
data type is noted. | data type is noted. | each data type is
The specific purpose | The specific purpose | noted. The spe-

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

