CG Programming II — Assignment #3 (BRDF's)
Due on 27-February-2013 by the end of class

In this assignment you will enhance the lighting algorithm implemented in the previous assignment. Using the
previous assignment (tangent-space normal mapping) as a starting point, you will

Implement Schlick’s approximation to the Fresnell function. Use this function to generate (gray scale)
colors for the rendered object.

Implement the modified Cook-Torrance lighting algorithm using the Beckmann distribution instead of the
weighted Gaussian distribution from the paper.

Implement the isotropic Ward lighting model. Your C++ should implement a simple user interface to
switch between the two lighting models at run time. There are several ways to acomplish this with different
trade-offs.

As a separate text document, describe your implementation of switching lighting models and explain the
trade-offs of that choice and at least one other possible implementation.

Implement the anisotropic Ward lighting model. Implement a simple user interface to adjust the a,, oy,
and rotation of the tangent frame. You only need to support switching between the aniostropic Ward
model and the modified Cook-Torrance model. The isotropic Ward model is just a stepping stone to the
anisotropic model.
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gram  handles all | gram handles most | gram handles some | to errors. Lit-
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This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).




