CG Programming IT — Assignment #2 (Tangent-space Lighting)

In this assignment you will explore several aspects of lighting and texture mapping. The ultimate goal is to
render an object using the Blinn-Phong lighting equation and a normal map.

Part 1: Due on 6-February-2013 at the end of class

Download the base code and get it to compile.

Modify the provided vertex shader, simple.vert, to pass the camera-space position and camera-space
normal to the fragment shader.

Modify the provided fragment shader, simple.frag, to use the values provided in the previous step to
calculate specular and diffuse lighting.

Use the provided utility routines to load an image of your choosing, and store it in a GL_TEXTURE_2D
texture.

Modify the vertex shader to pass the uv input to the fragment shader. This will be used as the texture
coordinate.

Modify the fragment shader and associated C++ drawing code to apply the texture to the object.

Part 2: Due on 13-February-2013 at the start of class

Modify the vertex shader to calculate the camera-space tangent vector.

Use the camera-space tangent vector and the camera-space normal vector to create a transformation matrix
(“TBN”) to transform the light vector and the camera vector (vector from the vertex to the camera) to
tangent-space (a.k.a. surface-space). Pass these vectors to the fragment shader.

Modify the fragment shader to perform lighting calculations in tangent-space instead of camera-space.

Use the provided utility routines to load another image of your choosing, and it store in another GL_TEXTURE_2D

texture. This image will be your normal map.

Modify the fragment shader and associated C++ drawing code to sample the normal map. Use the
sampled value as the surface-space normal in the lighting calculation.

of each function is
noted, as are the input
requirements and out-
put results.

of each function is
noted, as are the
input requirements
and output results.

cific purpose of each
function is noted.

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im- | Program implements | Program implements | Many required
plements all required | all required elements, | most required ele- | elements are
elements in a manner | but some elements | ments. Some of the | missing. User
that is readily appar- | may not function | implemented elements | interface is in-
ent when the program | correctly. User inter- | may mnot function | complete or is
is executed. User | face is complete and | correctly. User inter- | not responsive
interface is complete | responsive to input. face is complete and | to input.
and responsive to in- responsive to input.
put. Program doc-
uments user interface
functionality.

Correctness Program executes | Program executes | Program executes | Program does
without errors. Pro- | without errors. Pro- | without errors. Pro- | not execute due
gram handles all | gram handles most | gram handles some | to errors. Lit-
special cases. Pro- | special cases. special cases. tle or no error
gram contains error checking code
checking code. included.

Efficiency Program uses solution | Program uses an ef- | Program uses a log- | Program uses
that is easy to under- | ficient and easy to | ical solution that is | a difficult
stand and maintain. | follow solution (i.e., | easy to follow, butitis | and inefficient
Programmer has anal- | no confusing tricks). | not the most efficient. | solution. Pro-
ysed many alternate | Programmer has con- | Programmer has con- | grammer has
solutions and has cho- | sidered alternate solu- | sidered alternate solu- | not consid-
sen the most efficient. | tion and has chosen | tions. ered alternate
Programmer has in- | the most efficient. solutions.
cluded the reasons for
the solution chosen.

Presentation & | Program code is for- | Program code is | Program code is for- | Program code

Organization matted in a consistent | formatted in mostly | matted with multi- | is formatted
manner. Variables, | consistent with occa- | ple styles. Variables, | in an inconsis-
functions, and data | sional inconsistencies. | functions, and data | tent manner.
structures are named | Variables, functions, | structures are named | Variables, func-
in a logical, consistent | and data structures | in a logical but incon- | tions, and data
manner. Use of white | are named in a logi- | sistent manner. Use | structures are
space improves code | cal, mostly consistent | of white space neither | poorly named.
readability. manner. Use of white | helps or hurts code re- | Use of white

space neither helps or | ability. space hurts code
hurts code reability. reability.

Documentation Code clearly and ef- | Code documented | Code documented | No useful doc-
fectively documented | including descrip- | including descriptions | umentation ex-
including descriptions | tions of most global | of the most important | ists.
of all global variables | variables and most | global variables and
and all non-obvious lo- | non-obvious local | the most important
cal variables. The spe- | variables. =~ The spe- | local variables. The
cific purpose of each | cific purpose of each | specific purpose of
data type is noted. | data type is noted. | each data type is
The specific purpose | The specific purpose | noted. The spe-

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

