
CG Programming II – Assignment #2 (Tangent-space Lighting)

In this assignment you will explore several aspects of lighting and texture mapping. The ultimate goal is to
render an object using the Blinn-Phong lighting equation and a normal map.

Part 1: Due on 6-February-2013 at the end of class

• Download the base code and get it to compile.

• Modify the provided vertex shader, simple.vert, to pass the camera-space position and camera-space
normal to the fragment shader.

• Modify the provided fragment shader, simple.frag, to use the values provided in the previous step to
calculate specular and diffuse lighting.

• Use the provided utility routines to load an image of your choosing, and store it in a GL TEXTURE 2D
texture.

• Modify the vertex shader to pass the uv input to the fragment shader. This will be used as the texture
coordinate.

• Modify the fragment shader and associated C++ drawing code to apply the texture to the object.

Part 2: Due on 13-February-2013 at the start of class

• Modify the vertex shader to calculate the camera-space tangent vector.

• Use the camera-space tangent vector and the camera-space normal vector to create a transformation matrix
(“TBN”) to transform the light vector and the camera vector (vector from the vertex to the camera) to
tangent-space (a.k.a. surface-space). Pass these vectors to the fragment shader.

• Modify the fragment shader to perform lighting calculations in tangent-space instead of camera-space.

• Use the provided utility routines to load another image of your choosing, and it store in another GL TEXTURE 2D
texture. This image will be your normal map.

• Modify the fragment shader and associated C++ drawing code to sample the normal map. Use the
sampled value as the surface-space normal in the lighting calculation.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


