CG Programming IT — Assignment #2 (Tangent-space Lighting)

In this assignment you will explore several aspects of lighting and texture mapping. The ultimate goal is to
render an object using the Blinn-Phong lighting equation and a normal map.

Part 1: Due on 6-February-2013 at the end of class

Download the base code and get it to compile.

Modify the provided vertex shader, simple.vert, to pass the camera-space position and camera-space
normal to the fragment shader.

Modify the provided fragment shader, simple.frag, to use the values provided in the previous step to
calculate specular and diffuse lighting.

Use the provided utility routines to load an image of your choosing, and store it in a GL_TEXTURE_2D
texture.

Modify the vertex shader to pass the uv input to the fragment shader. This will be used as the texture
coordinate.

Modify the fragment shader and associated C++ drawing code to apply the texture to the object.

Part 2: Due on 13-February-2013 at the start of class

Modify the vertex shader to calculate the camera-space tangent vector.

Use the camera-space tangent vector and the camera-space normal vector to create a transformation matrix
(“TBN”) to transform the light vector and the camera vector (vector from the vertex to the camera) to
tangent-space (a.k.a. surface-space). Pass these vectors to the fragment shader.

Modify the fragment shader to perform lighting calculations in tangent-space instead of camera-space.

Use the provided utility routines to load another image of your choosing, and it store in another GL_TEXTURE_2D

texture. This image will be your normal map.

Modify the fragment shader and associated C++ drawing code to sample the normal map. Use the
sampled value as the surface-space normal in the lighting calculation.
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This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).




