
CG Programming II – Assignment #1 (Vertex Fetcher)

In this assignment you will use several pieces of functionality of the OpenGL API and of the hardware vertex
fetcher. This will include the use of vertex array objects, instanced rendering, and asynchronous buffer mapping.

Part 1: Due on 16-January-2013 at the start of class

• Download the base code and get it to compile.

• Modify the provided vertex shader, simpler.vert, to use mvp and mv normal as attributes (using the in
modifier) instead of as uniforms. Use the layout qualifier to place these attributes at locations 4 and 8,
respectively.

• Modify the Init function in main.cpp to create a new buffer object that is large enough to hold all
of the instance transformation data that is calculated in Redisplay. These are the transforms and
normal transforms arrays.

• Modify the Redisplay function in main.cpp to use glBufferSubData to copy the instance transformation
data into the buffer object created in Init.

• Modify Redisplay to set the attribute pointers for the 8 attributes using glVertexAttribPointer. Be
very careful about the values used for the attribute base offset and stride.

• Modify Redisplay to set the instance divisor to 1 for each of the 8 attributes using glVertexAttribDivisor.

• Replace the glDrawElements loop in Redisplay with a single call to glDrawElementsInstanced.

Part 2: Due on 16-January-2013 at the end of class

• Modify Init to create and initialize a single vertex array object to encapsulate all of the attribute settings.

• Use the new vertex array object in Redisplay instead of resetting all of the data every frame.

Part 3: Due on 23-January-2013 at the start of class

At each step rendering should work and look the same. The only thing that may change is the performance.

• Modify the buffer object created to hold instance data to be large enough to hold instance data for several
frames (e.g., make it 3 or 4 times as large as it currently is).

• Modify Redisplay to map a subrange of the where data for the current frame should be placed using
glMapBufferRange. The access parameter should be GL MAP WRITE BIT | GL MAP INVALIDATE RANGE BIT.
Initially, map the buffer once per frame, and always use an offset of 0. This allows you to leave the rest
of the code unmodified. Write the transformation data directly to the mapping. Before rendering be sure
to call glUnmapBuffer!

• Modify the code to write the data for each frame to a previously unused location in the buffer. To do
this, track the offset in the buffer of the first free location. Initially this will be zero, and each frame it
will increment by the amount of data written to the buffer. When the offset is too close to the end of the
buffer to hold all of the data, reset it back to zero.

Since the location of the instance data in the buffer changes each frame, the attribute pointers will also
need to be modified each frame.

• Modify the previous change to only be used if the implementation does not supprot the GL ARB base instance
extension. If the implementation does support that extension, use glDrawElementsInstancedBaseInstance
instead of glDrawElementsInstance. Carefully set the baseinstance parameter so that the correct trans-
formation data is used.

1

• Modify the glMapBufferRange call to also use GL MAP UNSYNCHRONIZED BIT for every mapping except
when the buffer offset wraps around to zero.

• Modify the code the calculates the transformation data to split the calculation into parts. First generate
data for and render one small set of instances. Then generate data for and render the remaining groups
of instances. Play with the sizes (and count) of the groups to see what happens to overall performance.
For example, there are 42 total instances. Generate data for 5 instances and start them drawing. Then
divide the remaining 37 instances into two groups of 13 and one group of 11. In pseudo code, you can
probably implement this like

const unsigned t o t a l i n s t a n c e s = 42 ;
const unsigned f i r s t g r o u p s i z e = 5 ;
const unsigned o t h e r g r o u p s i z e = 13 ;

for (unsigned i = 0 ; i < t o t a l i n s t a n c e s ; /∗ empty ∗/) {
unsigned g r o u p s i z e = (i == 0) ? f i r s t g r o u p s i z e : o t h e r g r o u p s i z e ;

i f (i + g r o u p s i z e > t o t a l i n s t a n c e s)
g r o u p s i z e = t o t a l i n s t a n c e s − i ;

for (unsigned j = 0 ; j < g r o u p s i z e ; j++) {
/∗ genera te t rans format ion data f o r t h i s group . ∗/

}

glDrawElementsInstanced (. . . , g r o u p s i z e) ;

i += g r o u p s i z e ;
}

2

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3

