
CG Programming I – Assignment #5 (Bézier Surface)
Due at the final.

In this assignment, a cubic Bézier surface will be rendered. The 16 control points for the surface will vary from frame
to frame. Each frame, a set of matrices will be uploaded to the GPU. A vertex program will use these matrices to evaluate
positions on the surface. In addition to evaluating the surface positions at each (u, v) value, the u and v tangents will also
be calculated. These vectors will be used to further calculate the surface normal at each (u, v) value.

Part 1: Due on 28-November-2012 by the end of class

The first task is to derive the matrix form for evaluating a Bézier surface. This can be done in a similar manner as the
matrix form for evaluating a Bézier curve. Recall the definition of a Bézier curve,

p(u) =
n∑

i=0

Bn
i (u)ki (1)

where n is the order of the curve and ki represents one of the n + 1 control points. Equation (1) can be evaluated
independently for each dimension. Rewriting equation (1) for independent evaluation in the x-, y-, and z-dimensions in
R3 results in equation (2). px(u)

py(u)
pz(u)

 =

∑3
i=0 B3

i (u)ki,x∑3
i=0 B3

i (u)ki,y∑3
i=0 B3

i (u)ki,z

 (2)

Each row in the vector on the right-hand side of equation (2) is a dot-product of
[
B3

0 B3
1 B3

2 B3
3

]
and the x-, y-,

or z-components of the control points. This allows equation (2) to be rewritten as a matrix multiplication.
Let

ûT =
[
B3

0(u) B3
1(u) B3

2(u) B3
3(u)

]T
and

K =

k0,x k1,x k2,x k3,x

k0,y k1,y k2,y k3,y

k0,z k1,z k2,z k3,z


then

p(u) = Kû (3)

for a cubic Bézier curve in R3.
The evaluation of a Bézier surface proceeds similarly. Instead of n control points, the Bézier surface has an n ×m

grid of control points. For a cubic Bézier surface, n = m = 3. Recall the definition of a Bézier surface,

p(u, v) =
n∑

i=0

m∑
j=0

Bn
i (u)Bm

j (v)ki,j (4)

Using the distributive property, equation (4) can be rewritten as equation (5).

p(u, v) =
n∑

i=0

Bn
i (u)

 m∑
j=0

Bm
j (v)ki,j

 (5)

Notice that the inner summation in equation (5) is just the evaluation of a Bézier curve. The n results of the inner
summation is a set of n control points for another Bézier curve.

In a form similar to equation (3), derive a matrix form for evaluation of a Bézier surface. There are a few things to
keep in mind

• Be aware of orientation and dimensions of vectors and matrices.

• Be aware of the indices, i and j, on the input control points.

1



• Where as equation (3) has a single matrix, K, as input, the equation for a Bézier surface should have four matrices
as input.

Part 2: Due at the start of class 5-December-2012

To generate surface normals during the evaluation, the partial derivatives in the u and v directions must be evaluated.

n̂ =
(

∂p(u, v)
∂u

)
×
(

∂p(u, v)
∂v

)
These derivatives are shown in equations (6) and (7). Like in equation (5), the inner summation of each is just a Bézier

curve that generates control points for another Bézier curve. In this case, however, the inner Bézier curve is one order
lower than the original surface (i.e., quadratic instead of cubic).

∂p(u, v)
∂u

= m

n∑
j=0

Bn
j (v)

(
m−1∑
i=0

Bm−1
i (u) [pi+1,j − pi,j ]

)
(6)

∂p(u, v)
∂v

= n

m∑
i=0

Bm
i (u)

n−1∑
j=0

Bn−1
j (v) [pi,j+1 − pi,j ]

 (7)

Let
û′T =

[
B2

0(u) B2
1(u) B2

2(u)
]T

and

K ′ =

k0,x k1,x k2,x

k0,y k1,y k2,y

k0,z k1,z k2,z


then

dp(u)
du

= K ′û′ (8)

Equation (8) shows the matrix form for the evaluation of a quadratic Bézier curve in R3. Like in part 1, derive a matrix
form solution for both ∂p(u,v)

∂u and ∂p(u,v)
∂v .

Be prepared to hand in your equations at the beginning of class. We will discuss the solution first thing, so late work
will not be accepted. You may also e-mail your solution to me before class. I will respond as quickly as I can. This will
allow you to start on the next part soon, and that will be advantageous!

Part 3: Due at the final exam.

Using the equation defined in part 1, implement C++ code and vertex shader code to evaluate a Bézier surface.
Per-frame control points are calculated (and clearly marked) in the supplied main.cpp. Modify the C++ to convert
these control points to the required matrix form and supply this data the GPU shader. Implement a vertex shader in
bez-surf.vert to evaluate the surface. The supplied simple.vert provides an example of accessing the (u, v) for
each tessellated vertex in the patch. Code in build all shaders will need to be modified to load bez-surf.vert
instead of simple.vert.

The matrices used in the surface evaluation will have 3 rows (because we’re operating in R3) and 4 columns (because
it is a cubic surface). The GLSL type for this kind of matrix is mat4x3. The surface evaluation shader should have an
array of four of these matrices. For example,

un i fo rm mat4x3 P [ 4 ] ;

declares a uniform variable P as an array of four mat4x3.
In order to supply data to the shader, the “location” of the uniform must be retrieved. This is somewhat like opening

a file for write access. In main.cpp the bezier patch program::get uniform locations gets the loca-
tions for each of the uniforms in the shader. Code must be added to this function (and data members must be added to
bezier patch program) to get and store the locations of any uniforms added to the shader.

For the simple vertex shader, a 3 × 3 matrix is used for the model-view matrix for the surface normal. Code in
Redisplay prepares and uploads the data.
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/ / S i n c e t h e model−v iew m a t r i x i s an o r t h o n o r m a l b a s i s , we can j u s t
/ / use t h e upper 3 x3 p o r t i o n f o r t r a n s f o r m i n g normals .
c o n s t f l o a t mv normal [ 9 ] = {

mv . c o l [ 0 ] . v a l u e s [ 0 ] , mv . c o l [ 0 ] . v a l u e s [ 1 ] , mv . c o l [ 0 ] . v a l u e s [ 2 ] ,
mv . c o l [ 1 ] . v a l u e s [ 0 ] , mv . c o l [ 1 ] . v a l u e s [ 1 ] , mv . c o l [ 1 ] . v a l u e s [ 2 ] ,
mv . c o l [ 2 ] . v a l u e s [ 0 ] , mv . c o l [ 2 ] . v a l u e s [ 1 ] , mv . c o l [ 2 ] . v a l u e s [ 2 ] ,

} ;
g l U n i f o r m M a t r i x 3 f v ( p a t c h p r og r am−>mv normal uni form , 1 , f a l s e , mv normal ) ;

Similar code will be needed to upload the matrices used for the surface evaluation. The array to store all of the data
for these matrices will be 48 elements (12 elements for each matrix times 4 matrices). The upload of this data will use
the function glUniformMatrix4x3fv. Like all functions in the glUniform family, the second parameter to this
function is the number of array elements to upload. In this instance, “array elements” is the number GLSL array elements.
The GLSL array is mat4x3[4], and we want to upload all four elements.

Extra credit: Due at the final exam.

Using the matrices supplied to the vertex shader, calculate, in the vertex shader, the matrices used to calculate each of
the partial derivatives. Using these matrices, calculate the partial derivatives and the surface normal. Change the value of
the DO LIGHTING define in simple.frag to perform lighting.

Debugging the calculation of normal vectors can be difficult. Since you can’t single-step through a shader and inspect
values, a different method is needed to visualize values that are generated by the code. A common way to do this is to emit
a specific piece of data as the color. The fragment shader contains a debug define SHOW NORMALS. If DO LIGHTING is
zero and SHOW NORMALS is non-zero, the value of normal cs in the fragment shader will be written as the color. If
the vertex shader writes the object-space normal instead of the camera-space normal to normal cs, you should be able
to make some reasonable guess about what the normals should be in certain places at certain times.

For example, when the Bézier surface is flat, all of the normals should be (0, 1, 0). Therefore, the colors should be
(.5, 1, .5) across the whole surface. The expected value is not (0, 1, 0). Color values must be on the range [0, 1], but
normals can point in any direction, including negative directions. To visualize vectors as colors, the vectors have to be
remapped from [−1, 1] to [0, 1]. Zero in the [−1, 1] space maps to .5 in the [0, 1] space.
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Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

4


