
CG Programming I – Assignment #4 (Slinky)
Due 21-November-2012

In this assignment, a skinned mesh vertex shader and forward kinematic solver. The provided base code implements
a large portion, and the sections where code must be implemented are marked with FINISHME comments. This applies
to both the C++ code and the vertex shader.

The vertex shader receives an array of transformation matrices as uniform inputs. In addition, each vertex receives
indices of two matrices and a single weight as inputs. The specified weight value is the weight of the first transformation
matrix. The weight of the second transformation matrix can be derived using 1− w.

I recommend implementing this is three main steps.

• All vertices use matrix 0 as the transformation. Modify the vertex shader to use one of the matrix indices specified
as the transformation matrix.

• Currently the C++ specifies the same transformation for all of the transformation matrices sent to the vertex shader.
Modify the C++ to generate a separate transformation for each matrix. Each matrix should rotate around a separate
pivot point with the same rotation angle. This will be very similar to the cube arch from the previous assignment.

• Modify the vertex shader to both specified transformations with the specified weights. Average the matrices together
to generate a new transformation matrix. Then use this new transformation matrix to transform the point.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


