CG Programming I — Assignment #4 (Slinky)
Due 21-November-2012

In this assignment, a skinned mesh vertex shader and forward kinematic solver. The provided base code implements
a large portion, and the sections where code must be implemented are marked with F INISHME comments. This applies
to both the C++ code and the vertex shader.

The vertex shader receives an array of transformation matrices as uniform inputs. In addition, each vertex receives
indices of two matrices and a single weight as inputs. The specified weight value is the weight of the first transformation
matrix. The weight of the second transformation matrix can be derived using 1 — w.

I recommend implementing this is three main steps.

* All vertices use matrix 0 as the transformation. Modify the vertex shader to use one of the matrix indices specified
as the transformation matrix.

 Currently the C++ specifies the same transformation for all of the transformation matrices sent to the vertex shader.
Modify the C++ to generate a separate transformation for each matrix. Each matrix should rotate around a separate
pivot point with the same rotation angle. This will be very similar to the cube arch from the previous assignment.

* Modify the vertex shader to both specified transformations with the specified weights. Average the matrices together
to generate a new transformation matrix. Then use this new transformation matrix to transform the point.

Criteria Excellent Good Satisfactory Unacceptable

Completion Program correctly im- | Program implements all | Program implements | Many required el-
plements all required el- | required elements, but | most required elements. | ements are miss-
ements in a manner that | some elements may not | Some of the imple- | ing. User inter-
is readily apparent when | function correctly. User | mented elements may | face is incomplete
the program is executed. | interface is complete | not function correctly. | or is not respon-
User interface is com- | and responsive to input. | User interface is com- | sive to input.
plete and responsive to plete and responsive to
input. Program doc- input.
uments user interface
functionality.

Correctness Program executes with- | Program executes with- | Program executes with- | Program does not
out errors. Program | out errors. Program | out errors. Program | execute due to er-
handles all special | handles most special | handles some special | rors. Little or
cases. Program contains | cases. cases. no error checking
error checking code. code included.

Efficiency Program uses solution | Program uses an effi- | Program uses a logi- | Program uses
that is easy to under- | cient and easy to follow | cal solution that is easy | a difficult and
stand and maintain. | solution (i.e., no confus- | to follow, but it is not | inefficient solu-
Programmer has anal- | ing tricks). Programmer | the most efficient. Pro- | tion. Programmer
ysed many alternate | has considered alternate | grammer has considered | has not consid-
solutions and has cho- | solution and has chosen | alternate solutions. ered alternate
sen the most efficient. | the most efficient. solutions.
Programmer has in-
cluded the reasons for
the solution chosen.

Presentation & | Program code is format- | Program code is format- | Program code is format- | Program code is

Organization ted in a consistent man- | ted in mostly consistent | ted with multiple styles. | formatted in an
ner. Variables, func- | with occasional incon- | Variables, functions, | inconsistent man-
tions, and data struc- | sistencies. Variables, | and data structures are | ner. Variables,
tures are named in alog- | functions, and data | named in a logical but | functions, and
ical, consistent manner. | structures are named | inconsistent manner. | data structures are
Use of white space im- | in a logical, mostly | Use of white space | poorly named.
proves code readability. | consistent manner. Use | neither helps or hurts | Use of white

of white space neither | code reability. space hurts code
helps or hurts code reability.
reability.

Documentation Code clearly and effec- | Code documented in- | Code documented | No useful docu-
tively documented in- | cluding descriptions of | including descriptions | mentation exists.
cluding descriptions of | most global variables | of the most important
all global variables and | and most non-obvious | global variables and the
all non-obvious local | local variables. The | most important local
variables. The specific | specific purpose of each | variables. The specific
purpose of each data | data type is noted. The | purpose of each data
type is noted. The spe- | specific purpose of each | type is noted. The
cific purpose of each | function is noted, as are | specific purpose of each
function is noted, as are | the input requirements | function is noted.
the input requirements | and output results.
and output results.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

