
Figure 1: Arch of rotating cubes

CG Programming I – Assignment #3 (Cube arch scene)

In this assignment, you will implement a simple scene containing several animated cubes. This assignment is divided into
several parts. Each part is due in successive weeks.

1 Support Routines - due at the end of class 17-October-2012
In the first part, you will implement a series of C/C++ routines that will form the basis of the remaining parts.

• Using the provided GLUvec4 and GLUmat4 classes, implement the following functions:

– rotate x axis - Calculate a matrix that rotates around the X axis by some specified angle.

– rotate y axis - Calculate a matrix that rotates around the Y axis by some specified angle.

– look at - Calculate a basis matrix from an eye position, a “look at” position, and an up direction. Note:
This part is not due until the end of class 24-October-2012.

You may use the multiplication, addition, dot-product, and cross-product functions provided by the GLU3 library.
You may also use the translation matrix (gluTranslate, etc.) functions. The code for these functions is
available in glu3 scalar.h. You may look at this code if you wish. You may not use the rotation functions
(gluRotate4v, etc.) or look-at functions.

As you implement the matrix operations, implement unit test to verify the results. For example, the rotation routines
should produce predictable results at 0◦, 90◦, 180◦, 270◦, and 360◦. The look at function can be verified by com-
paring its result with the result of several simpler transformations (e.g., a series of rotations and translations) that are
composed together. The test functions should live in separate files and should have names like check rotation,
etc. These functions should always be called from main as early as possible. This helps identify regressions
quickly!

It is strongly advisable, though not required, to implement the unit test before implementing the functions that they
test. Without an implementation, the unit tests should all fail. This technique is called test-driven development1.

2 Cube Arch - due at the start of class 24-October-2012
The second part actually does some rendering!

• Generate a series of transformation matrices for a set of five cubes. The cubes will start stacked in a column. Each
cube will rotate around the edge with a positive X value that it shares with the cube below it. This should look like
an arm bending. Each cube will repeatedly rotate from 0◦ to 45◦ and back. At full rotation the top cube will be at
the same level as the base cube. The five cubes will (roughly) form an arch. See figure 1.

• Using the look at function, have the camera slowly orbit the stack of cubes.

1http://en.wikipedia.org/wiki/Test-driven_development

1



3 Instanced Drawing - due at the end of class 24-October-2012
Modify the drawing code (main.cpp) and add new shaders so that all five cubes can be drawn in a single draw call.
The five transformation matrices will be calculated in advance and passed to the vertex shader as an array (i.e., mat4
mvp[5];). The built-in variable gl InstanceID will be used to select the correct transformation for each instance.
Drawing is performed using glDrawElementsInstanced.

Allow the user the ability to toggle between instanded and non-instanced drawing using the ’i’ key. Since performance
data is logged while the test is running, make not of the change, if any, between the instanced and non-instanced versions.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


