CG Programming I – Assignment #2 (Matrix math) Due on 17-October-2012 at the start of class

Submit solutions to each of the following.

- Prove (mathematically) either $R_{\theta}^{-1} = R_{-\theta}$ or $T_{x,y}^{-1} = T_{-x,-y}$.
- In a software development environment, explain why a proof such as the preceeding is important.

• Let
$$A = \begin{pmatrix} 3 & 7 & 5 \\ 8 & 1 & 4 \\ 6 & 2 & 9 \end{pmatrix}$$
 and $B = \begin{pmatrix} 2 & 5 & 6 \\ 3 & 7 & 1 \\ 9 & 8 & 4 \end{pmatrix}$. Calculate $AB = X$.

- Using the same values of A and B from the previous, calculate $B^T A^T = Y$.
- What is the relationship between X and Y?

Criteria	Excellent	Good	Satisfactory	Unacceptable
Completion	Program correctly im-	Program implements	Program implements	Many required
	plements all required	all required elements,	most required ele-	elements are
	elements in a manner	but some elements	ments. Some of the	missing. User
	that is readily appar-	may not function	implemented elements	interface is in-
	is executed User	face is complete and	correctly User inter	complete or is
	interface is complete	responsive to input	face is complete and	to input
	and responsive to in-	responsive to input.	responsive to input.	to input.
	put. Program doc-		rosponorio to input	
	uments user interface			
	functionality.			
Correctness	Program executes	Program executes	Program executes	Program does
	without errors. Pro-	without errors. Pro-	without errors. Pro-	not execute due
	gram handles all	gram handles most	gram handles some	to errors. Lit-
	special cases. Pro-	special cases.	special cases.	tle or no error
	gram contains error			checking code
Efficiency	Program uses solution	Program uses an ef-	Program uses a log-	Program uses
	that is easy to under-	ficient and easy to	ical solution that is	a difficult
	stand and maintain.	follow solution (i.e.,	easy to follow, but it is	and inefficient
	Programmer has anal-	no confusing tricks).	not the most efficient.	solution. Pro-
	ysed many alternate	Programmer has con-	Programmer has con-	grammer has
	solutions and has cho-	sidered alternate solu-	sidered alternate solu-	not consid-
	sen the most efficient.	tion and has chosen	tions.	ered alternate
	cluded the reasons for	the most encient.		solutions.
	the solution chosen.			
Presentation &	Program code is for-	Program code is	Program code is for-	Program code
Organization	matted in a consistent	formatted in mostly	matted with multi-	is formatted
	manner. Variables,	consistent with occa-	ple styles. Variables,	in an inconsis-
	functions, and data	sional inconsistencies.	functions, and data	tent manner.
	structures are named	Variables, functions,	structures are named	Variables, func-
	in a logical, consistent	and data structures	in a logical but incon-	tions, and data
	space improves code	col mostly consistent	of white space poither	structures are
	readability	manner Use of white	helps or hurts code re-	Use of white
	100000000000000000000000000000000000000	space neither helps or	ability.	space hurts code
		hurts code reability.	·	reability.
Documentation	Code clearly and ef-	Code documented	Code documented	No useful doc-
	fectively documented	including descrip-	including descriptions	umentation ex-
	including descriptions	tions of most global	of the most important	ists.
	and all non obvious lo	variables and most	the most important	
	cal variables The spe-	variables The spe-	local variables The	
	cific purpose of each	cific purpose of each	specific purpose of	
	data type is noted.	data type is noted.	each data type is	
	The specific purpose	The specific purpose	noted. The spe-	
	of each function is	of each function is	cific purpose of each	
	noted, as are the input	noted, as are the	function is noted.	
	requirements and out-	input requirements		
	put results.	and output results.		

This rubric is based loosely on the "Rubric for the Assessment of Computer Programming" used by Queens University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).