
CG Programming I – Assignment #1 (Points in the complex plane)

In this lab, you will implement several methods of rotation in the 2D plane. Rotations will be implemented
using three different methods, and each method should produce identical results. Each of the three methods
will be displayed simultaneously.

In addition, a simple fragment shader will render point-sprites in the shape of ellipses. The gl PointCoord
will be used to determine the location within each point-sprite. This coordinate will be evaluated against the
equation of an ellipse. Coordinates inside the ellipse will be rendered in some color, and coordinates outside
the ellipse will not be rendered.

A fair amount of base code will be provided (please refer to the course website for links). A video of the expected
final output will be shown in class. The assignment will be implemented in three parts. Each part will be due
in successive weeks.

Part 1: Due on 3-October-2012 by the end of class

• Download the base code and get it to compile.

• Modify explicit rotation.vert to rotate the incoming complex number, stored in the attribute z, using
a direct application of the rotation formula.

Part 2: Due on 10-October-2012 at the start of class

• Modify angle addition.vert to convert the incoming modulus and angle, stored in the .x and .y
components, respectively, of the attribute z, to real and imaginary components. Store these in the .x and
.y components of gl Position.

• Implement rotation by adding the rotation angle to the angle of the complex number (from z.y).

• Modify Redisplay in main.cpp to calculate the rotation matrix corresponding to the rotation angle stored
in angle offset. Store this in the variable m. This variable is already passed into the various shaders.

At this point all three regions of the screen should display the same rotating configuration of squares.

Part 3: Due on 10-October-2012 at the end of class

The final part will combine the ideas of rotation in the complex plane developed in the first parts of the
assignment with coordinate frames and a simple procedural texture generator.

• In the fragment shader, emit the incoming gl PointCoord as the red and green components of the
gl FragColor. gl PointCoord takes values on the range [0, 1]× [0, 1], with (0, 0) at the upper-left corner
of the sprite and (1, 1) at the lower-right. This should produce a predictable color pattern on each sprite.

• Since [0, 1] × [0, 1] is not a useful coordinate space for performing the ellipse calculation, convert this
range to traditional Cartesian coordinates [−1, 1]× [1, 1]. In this new coordinate space, (−1,−1) is in the
lower-left and (1, 1) is in the upper-right. This should also produce a predictable color pattern on each
sprite. Color components less than 0 will be clamped to 0 (i.e., black) in the output.

• Modify the fragment shader to draw an ellipse on the sprite. Apply the Cartesian coordinate calculated
in the previous step to the equation of an ellipse (below). Each fragment with a coordinate inside the
ellipse should get one color value written to gl FragColor and each fragment outside the ellipse should
get a different color.

In the equation of an ellipse, a and b are the lengths of the X and Y axes of the ellipse.

x2

a2
+

y2

b2
= 1

1



• Notice how parts of sprites outside the ellipse obscure parts of other sprites. Modify the fragment shader
to discard fragments outside the ellipse instead of giving them a different color.

• Rotate the ellipses so that they maintain a consident orientation with the pattern of moving sprites. It
should appear as though the whole image is rotating instead of the individual sprites rotating. The only
coordinates available to transform are the coordates of the coordinate frame (basis). Since the basis is
being transformed instead of vectors in the basis, the transformation must be implemented in a slightly
different manner.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


