
CG Programming III – Assignment #3 (SSAO)
Due on 06/13/2012 (at the final)

In this assignment you will be required to implement a portion of screen-space ambient occlusion. The
implementation wil proceed in three phases. The first phase modifies the rendered scene to produce ambient
occlusion effects.

• Render a lot more objects to the scene. All of the objects may be the same, but there should be a lot of
them. The should be arranged so that, from the camera’s point of view, there are a lot of “creases” and
interesting topology that will lead to ambient occlusion.

• Disable shadows.

The second phase builds some infrastructure for post-processing. Recall that SSAO is, at its roots, a post-
processing effect.

• Render the scene to an FBO. This FBO should (initially) be configured with a color texture attachment
and a depth texture attachment. For visualization, the FBO should be copied to the window using
glBlitFramebuffer.

• Disable the FBO-to-window copy.

• Using the color texture attached to the FBO, draw two triangles that cover the whole screen and copy
the texture. The rendered result should be identical to the results produced by the (now removed)
glBlitFramebuffer call.

You should be able to simply modify assignment #1 to use shadow maps instead of shadow textures.

• Add two extra (color) attachments to the FBO, and modify the rendering shader to output the camera-
space surface normal and the camera-space position to these outputs.

• Modify the texture-to-window shader to copy the camera-space surface normals (instead of the rendered
colors) to the window. These will need to be remapped from [−1, 1] to [0, 1]. Verify that the results look
sensible.

• Modify the texture-to-window shader to copy the camera-space positions to the window. These will need
to be remapped from the range of possible values in the view frustum to [0, 1]. Verify that the results look
sensible. You’ll have to do some trig to figure out what this range is. See below for partial derivation.

• Implement C code that will calculate the dimensions of region of space at the near and far planes that
project to a single pixel. Provide this data as uniforms to your texture-to-window shader.

• Derive a formula to determine the area that projects to a pixel at any position in the view frustum. This
is the radius of the occluding sphere for the SSAO calculation. Modify the texture-to-window shader to
calculate the radius of each pixels. These will need to be remapped from [rnear, rfar] to [0, 1]. Verify that
the results look sensible.

• Modify the texture-to-window shader to calculate the SSAO factor from the lecture notes. A 17 by 17
grid of sample positions should be sufficient for this step.

Recall that the near plane is perpendicular to a view vector through the middle of the screen. Let n be the
distance to the near plane. Let θ be the field of view angle. These are used to construct a right triangle. The
length of the side opposite the camera is

n cos θ (1)

This is half the height of the screen in camera space. If the screen is h pixels high, each pixel is

2n/h cos θ (2)

1



high in camera space.
The width of a pixel can be determined by multiplying the result of equation 2 by the aspect ratio. Similar

calculations can also be performed for the far plane.
Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

2



This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


