
Graphics Programming II – Assignment #3
Due on 3/21/2012 (at the final)

For this assignment, you will have a choice: BRDFs or post-processing. Pick one.

1 BRDFs

Implement an anisotropic BRDF

• Render a scene with at least four objects and a moving camera. The sphere scene from the previous
assignments is acceptable.

• Apply the Cook-Torrance BRDF and the new anisotropic BRDF to at least two objects.

• Each object in the scene must have different BRDF control parameters. Control parameters include things
such as the m parameter to the Cook-Torrance BRDF or the αx and αy parameters to the Ward BRDF.
Surface diffuse or specular color do not count.

Implementing the Ward anisotropic BRDF from the Cook-Torrance BRDF is a good choice. Much of the
Cook-Torrance shader code can be reused for the Ward BRDF.

Extra credit will be given for implementing a BRDF that was not covered in class. The Oren-Nayar BRDF
is a good choice for diffuse objects. Please let me know what extra credit BRDF you plan to implement before
you start. There are a few BRDFs that we did not cover in class that are too similar to ones that we did cover
to qualify.

2 Post-processing

Implement a full-screen post-processing effect on the scene from assignment #2.

• Render the scene as normal, then copy it to a texture.

• Implement a shader that will perform the desired post-processing effect.

• Using the texture containing the rendered scene, apply the post-processing effect and draw to the window.

Implementing a simple box filter or Gaussian blur is a good choice. Extra credit will be given for imple-
menting either filter as two O(n) passes instead of a single O(n2) pass.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


