
CS 341 – Assignment #3
Problems 1, 2 and 3: due 11-May-2011
Problem 4: due 25-May-2011

1 Problem 1

3.57 from the book.

2 Problem 2

Reoragnize the following C structure to have optimal packing.

struct S {
char c1 ;
int ∗p1 ;
unsigned short s1 ;
u i n t 6 4 t u l l 1 ;
char c2 ;
double d1 ;

} ;

Provide:

• The size, in bytes, of the original ordering on x86.

• Justification for the ordering that you choose.

• The size, in bytes, of the optimized ordering on x86.

3 Problem 3

Implement a binary search routine over integers in assembly. The function should be C callable with the
following prototype:

/∗∗
∗ Search an array f o r a key va lue
∗
∗ \param data Pointer to the data to be searched .
∗ \param n Number o f data e lements s t o r ed in data .
∗ \param key Value to f i nd .
∗
∗ \ re turn
∗ The index in \c data con ta in ing \c key i f found , or −1 o the rw i s e .
∗/

int search (const int ∗data , int n , int key) ;

Use the code in the accompanying unit test.c to verify your implementation. Add the following to the
top of your main.cpp

extern ”C” int check (void) ;

and call check from your main.

1

4 Problem 4

Implement a n-bit unsigned integer radix sort in x86 assembly. Assume that n is a compile-time constant of
your choosing. Either 4 or 8 is a good value. The function should be C callable with the following prototype:

/∗∗
∗ Sort the data in inc r ea s in g (l owe s t to h i g h e s t) order
∗
∗ \param data Pointer to the data to be so r t ed .
∗ \param count Number o f data e lements to be so r t ed .
∗/

void s o r t (unsigned ∗data , unsigned count) ;

Use the code in the accompanying sort test.c to verify your implementation. If you get compilation errors in
sort test.c, try commenting out the #define DO TIMING line. Add the following to the top of your main.cpp

extern ”C” int check (void) ;

and call check from your main.

Your initial implementation should use a large temproary data buffer as temporary storage for the par-sorted
array. Do this by creating an uninitialized data section (also called BSS). Code NASM code below creates
a variable called temp space that is, essntially, an array of (512 × 16) 32-bit words (either int or unsigned
storage). The code from the previous assignment already had an empty BSS section. You can simply add the
temp space declaration to that existing section.

[section .bss align =16]
temp space resd 512 ∗ 16 ; r e s e r v e space f o r 512 ∗ 16 unsigned i n t e g e r s

Your final implementation should call malloc and free to alocate temporary storage. You will need to make
several additions to your assembly code to do this.1 These are:

• Add external declarations for the functions that you will call:

extern malloc , f r e e

• Add the call to malloc:

push eax ; amount o f space to a l l o c a t e
ca l l mal loc
add esp , 4 ; keep the s t a c k ba lanced !
mov [ebp − 8] , eax ; s t o r e the re turned po in t e r somewhere

• Add the call to free:

push dword [ebp − 8] ; po in t e r to the data to be f r e ed
ca l l f r e e
add esp , 4 ; keep the s t a c k ba lanced !

Remember that after calling either malloc or free the values previously in EAX, ECX, and EDX will be lost.2

The pointer returned by malloc can either be stored in local storage on the stack frame or in a register. The
offset from EBP to the local stack frame is just an example.

In either case, only one block of storage needs to be allocated. This block must be partitioned into per-bucket
blocks. The easy way to do this is to allocate enough storage so that each bucket has space for the entire array.
The entire storage space is then partitioned into fixed size chunks. In C, this would look like:

1See http://www.caswenson.com/past/2009/9/26/assembly_language_programming_under_os_x_with_nasm/ for more details.
2See http://www.agner.org/optimize/calling_conventions.pdf for more details.

2

unsigned ∗buckets [NUM BUCKETS] ;
unsigned ∗ s t o rage = mal loc (s izeof (unsigned) ∗ n ∗ NUM BUCKETS) ;

for (unsigned i = 0 ; i < NUM BUCKETS; i++)
buckets [i] = &sto rage [i ∗ n] ;

On each pass through the main loop, data is copied into the proper buckets. When this kind of partitioning is
used, at the end of the data is copied out of the buckets into the original storage.

At least two pieces of stack storage are needed to implement the radix sort. Storage is needed for the bucket
pointers (called buckets in the C code above), and storage is needed for the counters of the number of elements
in each bucket. Like most assemberls, NASM is a macro assembler. This means it has some features somewhat
like the C preprocessor to make programming a little less painful. In NASM you can create defines to make
keeping track of magic values in the code a little easier. The NASM documentation3 explains all of these
features. For example, you might do the following:

%define RADIX BITS 4
%define RADIX BUCKETS (1<<4)

; O f f s e t s to parameters passed in
%define DATA OFFSET 8
%define COUNT OFFSET 12

; O f f s e t s to s t o rage f o r non−s c ra t ch r e g i s t e r s . These are examples .
%define ESI SAVE OFFSET (−4)
%define EBX SAVE OFFSET (−8)

; There i s one bucke t po in t e r (4 by t e s) f o r each bucke t
%define BUCKET POINTER OFFSET (−(RADIX BUCKETS ∗ 4) + ECX SAVE OFFSET)

; There i s one bucke t counter (4 by t e s) f o r each bucke t
%define BUCKET COUNTER OFFSET (−(RADIX BUCKETS ∗ 4) + BUCKET POINTER OFFSET)

[global s o r t]
s o r t :

push ebp
mov ebp , esp
add esp , BUCKET COUNTER OFFSET ; Reserve space f o r l o c a l s
mov [ebp + ESI SAVE OFFSET] , es i ; Save e s i
mov [ebp + EBX SAVE OFFSET] , ebx ; Save ebx

; code goes here

mov esi , [ebp + ESI SAVE OFFSET] ; Restore e s i
mov ebx , [ebp + EBX SAVE OFFSET] ; Restore ebx
mov esp , ebp
pop ebp
ret

By doing this, the code is a lot more readable (e.g., it’s more obvious that you typed EBX SAVE OFFSET vs.
ESI SAVE OFFSET than -8 vs. -4). The code is also a lot easier to change. If you decided to add another stack
variable or another “save” location, only the defines need to be updated (as opposed to updating every place
the offsets are used).

Extra credit: Allocating O(2nm) memory, where n is the number of radix bits and m is the number of elements
in the array to be sorted, for temporary storage is wasteful. It is possible to implement a radix sort using only

3http://www.nasm.us/xdoc/2.09.08/html/nasmdoc4.html

3

O(m) memory for temporary storage. This requires doing extra work to calculate how many slots are needed
for each bucket. There are several benefits to this approach:

• Use less memory.

• Avoid the extra copy at the end of the main loop.

• Eliminate the need for the bucket usage counters. These are only needed in the basic implementation
because the bucket base pointers are needed for the extra data copies. Note, however, that usage counters
for the next radix implementation are still needed to partition the bucket storage space on the next pass.

Extra credit will be given for implementations that use only O(m) memory for temporary storage and avoid the
extra copy. I strongly recommend doing the simpler implementation first. This implementation is a bit more
complex, and you’re much more likely to be successful starting from a working sort routine.

4

