
CG Programming III – Assignment #4 (SSAO)
Due on 03/23/2011

In this assignment you will be required to implement screen space ambient occlusion (SSAO). To show SSAO
in action, render a scene with a large number of objects in close proximity to each other.

• Draw multiple objects in the scene. These can either be simple solids (e.g., the torus or sphere) or models
loaded from disk. There should be a large number of object, and they should be in close enough proximity
to exhibit ambient occlusion effects.

• Include a single light source in the scene.

• Render the scene to an off-screen rendering target (FBO).

• Implement SSAO as a post-processing pass. Use the depth buffer from the FBO as an input to determine
AO values. Modulate the AO values with data read from the color buffer from the FBO. Write the
resulting colors to the screen.

You should be able to modify assignment #2 as the basis for this assignment. You may want to remove the
shadow mapping code.

The SSAO implementation may be simplified from a “production quality” implementation in a couple of
ways.

• Instead of sampling the screen geometry using a rotated random grid, select samples using an ordered
grid.

• Skip the application of a geometry-aware filter to remove noise caused by the sampling pattern.

One of the more difficult parts of SSAO is correctly implementing the back-projection to calculate eye-
space positions from screen coordinates and depth buffer values. It may difficult to determine the origin of
implementation bugs. Is the problem in the projection? Is the problem in the AO calculate (that uses the
back-projected location)? Is the problem elsewhere? During development, it may be beneficial to write the
eye-space position of each fragment to a separate floating point rendering target. This can then be used to
develop the AO calculations.

One drawback of this approach is that most hardware cannot render to floating point and fixed point render
targets at the same time. This means that two rendering passes will be required. The first pass will generate
the color data to which the AO values will be applied. The second pass will generate the eye-space position
values that will be used to calculate the AO values.

There is no requirement to use this approach during development. However, it may make debugging a lot
easier along the way. In the final version, you must use the standard back-projection technique.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


