Graphics Programming II – Assignment #2 Due on 10/27/2010

In this assignment, you will implement per-fragment lighting, normal mapping, and environment mapping. This should be implemented in several steps.

- Modify the vertex shader to emit the light position and the eye position in tangent space. To verify the credibility of the results, emit each as the per-vertex color. What sorts of colors should you expect to see?
- Modify the fragment shader to perform lighting calculations in tangent space. Initially implement just simple diffuse lighting. Once that works, add either Blinn or Phong specular lighting.
- Modify the fragment shader to procedurally generate per-fragment normals. Use the texture coordinates supplied to the vertex shader (in the attribute uv) as the parameters to the texture procedure. This means that the uv attribute will need to be passed from the vertex shader to the fragment shader in a varying.
- Load a cubic environment map of your choosing. In the fragment shader, calculate the ideal reflection vector (using the GLSL built-in function reflect). Use this vector to sample from the environment map. In what coordinate space should this vector be calculated? *Note:* Code will be provided to load textures from disk.
- In the fragment shader, calculate the Fresnel factor (using Schlick's approximation). Use the Fresnel factor to combine the environment map with the calculated lighting value.

Criteria	Excellent	Good	Satisfactory	Unacceptable
Completion	Program correctly im-	Program implements	Program implements	Many required
	plements all required	all required elements,	most required ele-	elements are
	elements in a manner	but some elements	ments. Some of the	missing. User
	that is readily appar-	may not function	implemented elements	interface is in-
	ent when the program	correctly. User inter-	may not function	complete or is
	is executed. User	face is complete and	correctly. User inter-	not responsive
	interface is complete	responsive to input.	face is complete and	to input.
	and responsive to in-		responsive to input.	
	put. Program doc-			
	uments user interface			
	functionality.			
Correctness	Program executes	Program executes	Program executes	Program does
	without errors. Pro-	without errors. Pro-	without errors. Pro-	not execute due
	gram handles all	gram handles most	gram handles some	to errors. Lit-
	special cases. Pro-	special cases.	special cases.	tle or no error
	gram contains error			checking code
	checking code.			included.
Efficiency	Program uses solution	Program uses an ef-	Program uses a log-	Program uses
	that is easy to under-	ficient and easy to	ical solution that is	a difficult
	stand and maintain.	follow solution (i.e.,	easy to follow, but it is	and inefficient
	Programmer has anal-	no confusing tricks).	not the most efficient.	solution. Pro-
	ysed many alternate	Programmer has con-	Programmer has con-	grammer has
	solutions and has cho-	sidered alternate solu-	sidered alternate solu-	not consid-
	sen the most efficient.	tion and has chosen	tions.	ered alternate
	Programmer has in-	the most efficient.		solutions.
	cluded the reasons for			
D	the solution chosen.	D 1- :-	D	D
Presentation & Organization	Program code is formatted in a consistent	Program code is formatted in mostly	Program code is formatted with multi-	Program code is formatted
	manner. Variables,	consistent with occa-	ple styles. Variables,	in an inconsis-
	functions, and data	sional inconsistencies.	functions, and data	tent manner.
	structures are named	Variables, functions,	structures are named	Variables, func-
	in a logical, consistent	and data structures	in a logical but incon-	tions, and data
	manner. Use of white	are named in a logi-	sistent manner. Use	structures are
	space improves code	cal, mostly consistent	of white space neither	poorly named.
	readability.	manner. Use of white	helps or hurts code re-	Use of white
		space neither helps or	ability.	space hurts code
		hurts code reability.		reability.
Documentation	Code clearly and ef-	Code documented	Code documented	No useful doc-
	fectively documented	including descrip-	including descriptions	umentation ex-
	including descriptions	tions of most global	of the most important	ists.
	of all global variables	variables and most	global variables and	
	and all non-obvious lo-	non-obvious local	the most important	
	cal variables. The spe-	variables. The spe-	local variables. The	
	cific purpose of each	cific purpose of each	specific purpose of	
	data type is noted.	data type is noted.	each data type is	
	The specific purpose	The specific purpose	noted. The spe-	
	of each function is	of each function is	cific purpose of each	
ı	of cach function is			
	noted, as are the input	noted, as are the	function is noted.	
			function is noted.	

This rubric is based loosely on the "Rubric for the Assessment of Computer Programming" used by Queens University (http://educ.queensu.ca/compsci/assessment/Bauman.html).