
Graphics Programming I – Assignment #1 (Lit cube scene)

Part 1 due on 4-May-2010

In this assignment, you will implement a simple scene containing several lit, animated cubes. This assignment
is divided into three parts. Each part is dues in successive weeks.

The first part requires only a single cube rotating in the scene.

• Using the provided GLUvec4 and GLUmat4 classes, implement the following functions:

– rotate x axis - Calculate a matrix that rotates around the X axis by some specified angle.

– rotate y axis - Calculate a matrix that rotates around the Y axis by some specified angle.

– perspective - Calculate a perspective projection matrix given a field-of-view angle (for the Y di-
mension), an aspect ratio, and near and far plane distances.

– look at - Calculate a basis matrix from an eye position, a “look at” position, and an up direction.

You may use the multiplication, addition, dot-product, and cross-product functions provided by the GLU3
library. The code for these functions is available in glu3 scalar.h. You may look at this code if you
wish. You may not use the rotation functions (gluRotate4v, etc.), look-at functions (gluLookAt4v, etc.),
or perspective matrix functions (gluPerspective4f, gluFrustum6f, etc.).

• Implement a routine that creats a buffer object and fills it with the vertexes of a cube. This code
should use the GLUcube class provided in the GLU3 library. You will need to implement a subclass of
GLUshapeConsumer to receive data from the GLUcube.

– Decide how to store vertex data for the cube. What data will be sotred for each vertex? What format
will be used?

– Decide how to store the element index data for the cube. What format will be used?

– Use GLUshape::vertex count to determine how much space is needed for the vertex data.

– Use GLUshape::element count to determine how much space is needed for the element index data.

– Create a buffer object with sufficient storage to hold all of the data.

– Use GLUshape::generate with your class derived from GLUshapeConsumer to store the data in the
buffer object.

• Implement a display routine that will render the cube rotated by some angle. glDrawElements will be
used to draw the data generated in the previous step. Do not use any other drawing function. The angle
of rotation varies by time. Pick some rotation speed, say 30◦ per second, and use the elapsed program
time to deterine the rotation angle each frame.

As you implement the matrix operations, implement simple test cases so that you can verify the results. For
example, the rotation routines should produce predictable results at 0◦, 90◦, 180◦, 270◦, and 360◦. Likewise,
certain sets of inputs to look at should produce predictable results. Verifying the output of these functions
before integrating with other code will make debugging much easier.

Part 2 due on 11-May-2010

The second part requires several additions. Instead of a single cube, five cubes must be rendered. The cubes
will start stacked in a column. Each cube will rotate around the edge with a positive X value that it shares
with the cube below it. The should look like an arm bending. Each cube will repeatedly rotate from 0◦ to 45◦

and back. At full rotation the top cube will be at the same level as the base cube. The five cubes will (roughly)
form an arch.

Implement simple view frustum culling.

• Calculate a bounding sphere for each box. Transform the center of the bounding sphere by the model-view
matrix.

1



• Calculate the plane equations for the camera-space view volume.

• Using the method described in the lecture notes to determine whether or not a sphere is inside the view
volume.

• Do not render cubes associated with spheres that are outside the view volume.

• To test this, perform culling for a view volume that is much smaller then camera’s actual view volume.
Using half the actual field-of-view is a good choice.

Part 3 due on 18-May-2010

The third and final part of the assignment is to add lighting to the scene.

• Supply per-vertex normals

– In addition to per-vertex position and color, specify per-vertex normals.

– Create a new attribute in the vertex shader called normal and pass the per-vertex normals in
through this attribute.

– In addition to passing in the model-view-projection matrix, pass the upper 3x3 portion of the model
matrix. Call this new matrix normal transform in the vertex shader.

– Transform the vertex normal by normal transform. Question to think about: what “space” is the
transformed normal in?

• Modify the vertex shader to perform per-vertex lighting.

– Supply the position of a point light to the vertex shader in a uniform called light pos. The point
light should orbit the cubes around the (world-space) Z-axis. The point light should be 8 units from
the origin.

– Supply the direction of a directional light to the vertex shader in a uniform called light dir.

– Calculate the diffuse and specular lighting contributions for the point light.

– Calculate the diffuse and specular lighting contributions for the directional light.

– Combine the lighting from both lights with the vertex color. Pass the resulting color to the fragment
shader in a varying called color.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


