
Graphics Programming I – Assignment #1 (2D ellipses)

Part 1: Due on 13-April-2010

In the first part of the assignment you will implement an SDL-based framework for running OpenGL code.
This framework will consist of four parts:

• Initialization routine and support code: this routine will contain all of the code to initialize SDL. This
includes initializing a timer with a callback that will generate events. The callback function will use a
global flag to enable or disable generation of events. Initially this flag will be disabled.

• Window creation routine: this routine creates an SDL drawing surface with the attributes required by
your application. For this project, the requirements are at least 5 bits of red, green, and blue for the color
buffer. This function takes the height and width of the desired surface as parameters.

• Event loop: this is the main loop of the program. This routine will enable generation of timer events (by
setting the global flag) and process events as they are received. At the very least, the event loop must
respond to the SDL QUIT event and to a keyboard press of “q” by terminating the event loop.

After processing all user input, if a timer event was received, the event loop calls the drawing routine.

• Drawing routine: the initial version of the drawing routine will be very simple. Each time the drawing
routine is called, it will set the clear color to a new value by calling glClearColor. The window will then
be cleared by calling glClear with GL COLOR BUFFER BIT set in the parameter. So that the new window
color will be displayed, SDL GL SwapBuffers will be called.

Setting the red, green, and blue components of the clear color to a value based on the sine of the elapsed
time since program start should provide reasonable colors.

The “Using SDL with OpenGL” tutorial at http://people.freedesktop.org/~idr/OpenGL_tutorials/

will be very helpful for this stage.

Part 2: Due on 20-April-2010

In this part of the assignment, you will implement a simple 2D graphics effect using GLSL shaders. Using
the fragment shader, draw a grid of ellipses. The axes of each ellipse will oscillate between 10 pixels and 100
pixels.

It is recommended that this assignment be implemented in three phases.

• Implement set of utility routines to compile a shader, generate a program from a pair of shaders, and
create an empty buffer object. Use the gluLoadTextFile and gluUnloadTextFile routines in the supplied
GLU3 library to load a simple vertex and fragment shader. Use these shaders to render a simple triangle
strip in the shape of a rectangle.

The “GLSL Hello World” tutorial at http://people.freedesktop.org/~idr/OpenGL_tutorials/ will
be very helpful for this stage.

• In the fragment shader, divide screen space into a grid of 100 pixel by 100 pixel cells. This is done using
the mod function on gl FragCoord. The result of mod(gl FragCoord, 100.0) is the pixel location within
a cell. This value will be on the range [0, 99]. Convert this to a Cartesian coordinate on the range [-50,
49]. If the absolute value of the X and Y coordinate is less than 25, set gl FragColor to a color of your
choosing. If it is greater than or equal to 25, set it to a different color of your choosing. This will result
in a grid of 50 pixel by 50 pixel squares being drawn. The squares will have 50 pixels of “blank” space
between them in each direction.

The “Fragment Shader Introduction” tutorial at http://people.freedesktop.org/~idr/OpenGL_tutorials/
will be very helpful for this stage.

• Use the equation of an ellipse to draw ellipses instead of squares. Here a and b are the lengths of the X
and Y axes of the ellipse.

1



x2

a2
+

y2

b2
= 1 (1)

Since division is somewhat expensive, think about ways to implement this equation efficiently.

• Instead of using constant values for a and b in your shader, specify these values as a single vec2 uniform.
Each time the drawing routine is called, update the value based on the elapsed time since program start.
This will be very similar to the changing clear color in the first part of the assignment. It is advisable to
use sine to control one axis and cosine to control the other.

The “Using Uniforms” tutorial at http://people.freedesktop.org/~idr/OpenGL_tutorials/ will be
very helpful for this stage.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


