Graphics Programming IT — Assignment #1
Due on 01/26/2010

In this assignment, you will tesselate and render a set of Bézier patches. The patches are to be tesselated
to a triangle mesh consisting of NxN vertexes with per-vertex positions and normals. In a future assignment
per-vertex tangents will also be needed. The tesselation parameter, N, should be configurable at compile-time
or run-time (your choice).

A single fixed-position light source and simple per-vertex lighting should be used. Locking the light at
some known position, such as the camera position, should simplify the shaders needed for this assignment.
Per-fragment lighting and complex light sources will be the topic of future assignments.

At the very least, the patch object should rotate around the three principle axes so that all orientations can
be viewed. A more sophisticated user interface, such as using the arcball routines in the provided GLU3 library,
would be preferable.

There are three main programming elements to this exercise:

e Evaluation of positions and normals on a Bézier surface.
e Orderly generation of data into vertex buffers.
e Generation of indices for rendering with glDrawElements.

For simplicity the program for this assignment tesselates all patches to the same number of triangles. In
addition to the program, write a couple short paragraphs that answer the following questions:

e Why is this fixed tesselation inefficient?
e What parameters could be taken into consideration to select different levels of tesselation for some patches?

e Why are those parameters good choices?

Patch data will be provided in class and on the course website.
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This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).




