Graphics Programming IT — Assignment #1
Due on 01/26/2010

In this assignment, you will tesselate and render a set of Bézier patches. The patches are to be tesselated
to a triangle mesh consisting of NxN vertexes with per-vertex positions and normals. In a future assignment
per-vertex tangents will also be needed. The tesselation parameter, N, should be configurable at compile-time
or run-time (your choice).

A single fixed-position light source and simple per-vertex lighting should be used. Locking the light at
some known position, such as the camera position, should simplify the shaders needed for this assignment.
Per-fragment lighting and complex light sources will be the topic of future assignments.

At the very least, the patch object should rotate around the three principle axes so that all orientations can
be viewed. A more sophisticated user interface, such as using the arcball routines in the provided GLU3 library,
would be preferable.

There are three main programming elements to this exercise:

e Evaluation of positions and normals on a Bézier surface.
e Orderly generation of data into vertex buffers.
e Generation of indices for rendering with glDrawElements.

For simplicity the program for this assignment tesselates all patches to the same number of triangles. In
addition to the program, write a couple short paragraphs that answer the following questions:

e Why is this fixed tesselation inefficient?
e What parameters could be taken into consideration to select different levels of tesselation for some patches?

e Why are those parameters good choices?

Patch data will be provided in class and on the course website.

of each function is
noted, as are the input
requirements and out-
put results.

of each function is
noted, as are the
input requirements
and output results.

cific purpose of each
function is noted.

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im- | Program implements | Program implements | Many required
plements all required | all required elements, | most required ele- | elements are
elements in a manner | but some elements | ments. Some of the | missing. User
that is readily appar- | may not function | implemented elements | interface is in-
ent when the program | correctly. User inter- | may not function | complete or is
is executed. User | face is complete and | correctly. User inter- | not responsive
interface is complete | responsive to input. face is complete and | to input.
and responsive to in- responsive to input.
put. Program doc-
uments user interface
functionality.

Correctness Program executes | Program executes | Program executes | Program does
without errors. Pro- | without errors. Pro- | without errors. Pro- | not execute due
gram handles all | gram handles most | gram handles some | to errors. Lit-
special cases. Pro- | special cases. special cases. tle or no error
gram contains error checking code
checking code. included.

Efficiency Program uses solution | Program uses an ef- | Program uses a log- | Program uses
that is easy to under- | ficient and easy to | ical solution that is | a difficult
stand and maintain. | follow solution (i.e., | easy to follow, but itis | and inefficient
Programmer has anal- | no confusing tricks). | not the most efficient. | solution. Pro-
ysed many alternate | Programmer has con- | Programmer has con- | grammer has
solutions and has cho- | sidered alternate solu- | sidered alternate solu- | not consid-
sen the most efficient. | tion and has chosen | tions. ered alternate
Programmer has in- | the most efficient. solutions.
cluded the reasons for
the solution chosen.

Presentation & | Program code is for- | Program code is | Program code is for- | Program code

Organization matted in a consistent | formatted in mostly | matted with multi- | is formatted
manner. Variables, | consistent with occa- | ple styles. Variables, | in an inconsis-
functions, and data | sional inconsistencies. | functions, and data | tent manner.
structures are named | Variables, functions, | structures are named | Variables, func-
in a logical, consistent | and data structures | in a logical but incon- | tions, and data
manner. Use of white | are named in a logi- | sistent manner. Use | structures are
space improves code | cal, mostly consistent | of white space neither | poorly named.
readability. manner. Use of white | helps or hurts code re- | Use of white

space neither helps or | ability. space hurts code
hurts code reability. reability.

Documentation | Code clearly and ef- | Code documented | Code documented | No wuseful doc-
fectively documented | including descrip- | including descriptions | umentation ex-
including descriptions | tions of most global | of the most important | ists.
of all global variables | variables and most | global variables and
and all non-obvious lo- | non-obvious local | the most important
cal variables. The spe- | variables. = The spe- | local variables. The
cific purpose of each | cific purpose of each | specific purpose of
data type is noted. | data type is noted. | each data type is
The specific purpose | The specific purpose | noted. The spe-

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

