Graphics Programming I – Assignment #3

In this assignment, you will implement a 3D world that a user can navigate using the keyboard.

- Navigation
 - Allow the user to move forward, backward, turn left (i.e., rotate the view), turn right, pitch up, and pitch down using the keyboard.
 - Allow the user to return to the starting position and view orientation using single key press.
- World Objects
 - Implement a ground plane. At least some of the other objects should be positioned to rest on the ground plane.
 - Implement multiple objects positioned on the world. Some objects may be static (i.e., not animated).
 There must be at least one "compound animated" object. That is, one object that moves relative to another object that is also moving. The stack of cubes in assignment #1 is an example of this.

Objects must be implemented using some sort of high-level data structure. This structure should track information about the object (e.g., position, orientation, vertex data, texture object, etc.), and should implement methods to draw the object. It should also implement a method that, given a time delta, will update the position of the object based on its animation parameters.

- Implement a sky box or sky cylinder. We will discuss this briefly, but searching the Internet will guide your way.
- Object Rendering
 - Implement at least one light source in the world. If only one light light source is implemented, it should be a directional light (representing the sun). Additional light sources should be either point or spot light. A good spot light choice would be one positioned above the user which moves with the user. This should simulate a miner's headlight.
 - All objects in the world, including the ground plane, must be plausibly lit.
 - All objects should have their own base texture. This texture may be applied using any of the techniques discussed in class *except* reflection mapping.

Criteria	Excellent	Good	Satisfactory	Unacceptable
Completion	Program correctly im- plements all required elements in a manner that is readily appar- ent when the program is executed. User interface is complete and responsive to in- put. Program doc- uments user interface functionality.	Program implements all required elements, but some elements may not function correctly. User inter- face is complete and responsive to input.	Program implements most required ele- ments. Some of the implemented elements may not function correctly. User inter- face is complete and responsive to input.	Many required elements are missing. User interface is in- complete or is not responsive to input.
Correctness	Program executes without errors. Pro- gram handles all special cases. Pro- gram contains error checking code.	Program executes without errors. Pro- gram handles most special cases.	Program executes without errors. Pro- gram handles some special cases.	Program does not execute due to errors. Lit- tle or no error checking code included.
Efficiency	Program uses solution that is easy to under- stand and maintain. Programmer has anal- ysed many alternate solutions and has cho- sen the most efficient. Programmer has in- cluded the reasons for the solution chosen.	Program uses an ef- ficient and easy to follow solution (i.e., no confusing tricks). Programmer has con- sidered alternate solu- tion and has chosen the most efficient.	Program uses a log- ical solution that is easy to follow, but it is not the most efficient. Programmer has con- sidered alternate solu- tions.	Program uses a difficult and inefficient solution. Pro- grammer has not consid- ered alternate solutions.
Presentation & Organization	Program code is for- matted in a consistent manner. Variables, functions, and data structures are named in a logical, consistent manner. Use of white space improves code readability.	Program code is formatted in mostly consistent with occa- sional inconsistencies. Variables, functions, and data structures are named in a logi- cal, mostly consistent manner. Use of white space neither helps or hurts code reability.	Program code is for- matted with multi- ple styles. Variables, functions, and data structures are named in a logical but incon- sistent manner. Use of white space neither helps or hurts code re- ability.	Program code is formatted in an inconsis- tent manner. Variables, func- tions, and data structures are poorly named. Use of white space hurts code reability.
Documentation	Code clearly and ef- fectively documented including descriptions of all global variables and all non-obvious lo- cal variables. The spe- cific purpose of each data type is noted. The specific purpose of each function is noted, as are the input requirements and out- put results.	Code documented including descrip- tions of most global variables and most non-obvious local variables. The spe- cific purpose of each data type is noted. The specific purpose of each function is noted, as are the input requirements and output results.	Code documented including descriptions of the most important global variables and the most important local variables. The specific purpose of each data type is noted. The spe- cific purpose of each function is noted.	No useful doc- umentation ex- ists.

This rubric is based loosely on the "Rubric for the Assessment of Computer Programming" used by Queens University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).