
Graphics Programming I – Assignment #1 (Lit cube scene)
Part 1 due on 10/28/2009

In this assignment, you will implement a simple scene containing several lit, animated cubes. This assignment
is divided into three parts. Each part is dues in successive weeks.

The first part requires only a single cube rotating in the scene.

• Implement a vec4 class. This class should have methods that implement add, sub, neg, mult, dot3,
dot4, cross, magnitude, and normalize methods. For add, sub, neg, and mult you may implement
overloaded operators, but this is not required. You may also discover that you need additional operators
while implementing the rest of the assignment.

• Using the vec4 class, implement a mat4 class. This class should have methods that implement transpose,
translate, scale, rotate x axis, rotate y axis, rotate z axis, look at, perspective, mult for a
vec4 times a mat4, mult for a mat4 times a vec4, and mult for a mat4 times a mat4. The rotation
routines may be implemented by creating a routine to generate a rotation around an arbitrary axis.
The translate, scale, rotate x axis, rotate y axis, rotate z axis, look at, perspective should
be non-class functions that return a mat4. These will likely be friend functions. You may also discover
that you need additional operators while implementing the rest of the assignment.

• Implement a routine that creatss a buffer object and fills it with the vertexes of a cube. This data should be
designed so that each face of the cube has a different color, and so that it can be used with glDrawArrays.

• Implement a display routine that will render the cube rotated by some angle.

• Implement an “idle” routine that will update the rotation angle based on the elapsed time. This routine
could also generate the rotation matrix and update the vertex program’s uniforms.

There are a lot of matrix and vector routines to write, but nearly all of them are very, very short. I strongly
recommend implementing functions using other functions. For example, the matrix class should use an array
of vectors, and vector multiplication and dot-products should be used to implement matrix multiplication.
Implement a couple routines, then implement some simple test scaffolding. It will be very difficult to debug
problems in more complex code (i.e., look at) if you are not certain that the component routines are correct.

Do not spend a lot of time on these routines. In future assignments a more robust and feature-complete
library will be available for your use.

Part 2 due on 11/04/2009

The second part requires several additions. Instead of a single cube, five cubes must be rendered. The cubes
will start stacked in a column. Each cube will rotate around the edge with a positive X value that it shares
with the cube below it. The should look like an arm bending. Each cube will repeatedly rotate from 0 to 45
degrees and back. At full rotation the top cube will be at the same level as the base cube. The five cubes will
(roughly) form an arch.

Implement simple view frustum culling.

• Calculate a bounding sphere for each box. Transform the center of the bounding sphere by the model-view
matrix.

• Calculate the plane equations for the camera-space view volume.

• Using the method described in the lecture notes to determine whether or not a sphere is inside the view
volume.

• Do not render cubes associated with spheres that are outside the view volume.

• To test this, perform culling for a view volume that is much smaller then camera’s actual view volume.
Using half the actual field-of-view is a good choice.

1



Part 3 due on 11/11/2009

The third and final part of the assignment is to add lighting to the scene.

• Supply per-vertex normals

– In addition to per-vertex position and color, specify per-vertex normals.

– Create a new attribute in the vertex shader called normal and pass the per-vertex normals in
through this attribute.

– In addition to passing in the model-view-projection matrix, pass the upper 3x3 portion of the model
matrix. Call this new matrix normal transform in the vertex shader.

– Transform the vertex normal by normal transform. Question to think about: what “space” is the
transformed normal in?

• Modify the vertex shader to perform per-vertex lighting.

– Supply the position of a point light to the vertex shader in a uniform called light pos. The point
light should orbit the cubes around the (world-space) Z-axis. The point light should be 8 units from
the origin.

– Supply the direction of a directional light to the vertex shader in a uniform called light dir.

– Calculate the diffuse and specular lighting contributions for the point light.

– Calculate the diffuse and specular lighting contributions for the directional light.

– Combine the lighting from both lights with the vertex color. Pass the resulting color to the fragment
shader in a varying called color.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


