
Graphics Programming II – Assignment #2 (BRDFs)
Due on 05/06/2009

In this assignment you will implement four BRDFs. Each BRDF is will be used on the same model under identical
lighting conditions. Draw a grid of objects. So that each object will be drawn with the same viewing and lighting
conditions, partition the display using glViewport. Each BRDF will be represented by a separate row in the grid. In
the columns of the grid, parameters of each BRDF will be modified. For example, if the Cook-Torrance BRDF is used,
the columns would show different values of m. Figures 5.5 and 5.6 at http://wiki.gamedev.net/index.php/
D3DBook:(Lighting)_Cook-Torrance show examples of what I mean. Naturally, each object should rotate
around its center, and the light should orbit the object.

Since there will be so many objects on the screen, you may want to create a full-screen window. It is safe to assume
that 1280x1024 is the minimum available window size. However, it is possible to query SDL for the set of available
window sizes (i.e., screen modes).

The BRDFs you choose must meet the following criteria:

• At least one BRDF must have a Fresnel term.

• At least one BRDF must have anisotropic reflection.

• At least one BRDF that represents metals (hint: it will not include a Fresnel term.)

• All BRDFs must use normal mapping.

Phong or Blinn lighting, even recast as a BRDF, will not count as one of the four BRDFs. However, including a row
of objects using Phong or Blinn lighting may be a useful reference point.

There are several ways to implement the shaders for this assignment. The method chosen will have different perfor-
mance and implenetation difficutly trade-offs. In addition to your code, you must submit a short descirption of the choice
you have made. You must also defend your choice. Your write-up should be on the order of half a page to a page. Please
include the write-up as either MS Word .doc (not .docx!), OpenOffice .odt, plain ASCII text, or PDF.

Listing the trade-offs and the relative merits of those trade-offs is a good way to defend your choice. There are some
trade-offs that you may have to guess about (i.e., the relative performance of doing one operation multiple times per-frame
versus doing a different operation per-fragment). Explicitly state these cases in your write-up.

Two obvious methods (there are others) are:

• Implement each BRDF as a separate fragment program. All BRDFs should be able to share the same vertex
program. Link the four separate programs into four separate shaders. During each frame, make a shader active and
draw a single object, make the next shader active and draw the next object, etc.

• Make a single “super shader” that implements all BRDFs. The output generated by the shader is selected by the
setting of one or more uniforms.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


