
Graphics Programming II – Assignment #1 (Surface-space Normal Mapping)
Due on 04/22/2009

This assignment consists of two largely separate parts. However, you will likely have to complete the first part before
you will be able to implement the second part.

In the first part of the assignment you will implement a function that will generate simple surfaces of revolution. This
function should have the following interface:

• Caller supplies a list of 2D points (x-y pairs) that define the outline of the object being revolved. You may assume
that this defines a closed loop. That is, you may assume that point 0 and point N-1 have the same position. Your
code should validate that at least 3 points are supplied.

• Caller supplies a 4x4 transformation matrix to transform the input points within the X-Y plane before revolving.

• Caller supplies the number of rotational steps. Your code should validate that at least 2 steps are requested.

• Caller supplies pointers to storage for output data. If any data pointer is NULL, your code should not generate that
piece of data.

• Function generates the following data. 3-element data items (i.e., normals) may be padded to 4-elements. Be sure
to document whichever you choose.

– Positions - X, Y, Z floating point tuples

– Normals - X, Y, Z floating point tuples

– Tangents - X, Y, Z floating point tuples

– Texture coordinates - S and T floating point tuples

– Elements - Indicies used to draw the triangles.

• Function returns the number of verticies that were or would have been (in the case that all input pointers are NULL)
generated.

The function should generate a series of triangle strips. You may either generate each rotational segment as a strip or
each segment of the input data through the entire rotation as a strip. The triangle strips can be drawn in one of three ways.
Extra credit will be given if you implement all three and measure the relative performance of each.

• glMultiDrawElements - This is the preferred method on most OpenGL 2.x implementations. This will allow
drawing of the entire object with a single draw call.

• glDrawElements - This is a more straight forward way of drawing the object. It is probably easier to implement
this method first.

• glDrawElements with primitive restart - This is the prefered method on OpenGL 3.0 or on Nvidia hard-
ware. In this mode the lists of elements for each strip are separated by the index ~0. Primitive restart mode
is then enabled (via glEnable with GL PRIMITIVE RESTART NV) and the restart index must be set (via
glPrimitiveRestartIndexNV). See the extension specification for GL NV primitive restart for more
details.

For the second part of the assignment you will render a normal-mapped object with a single point light source. The
light source should orbit the object, and the object should viewable from multiple directions. The object can either rotate
around its own center, or you can implement controls so that the user can change the view angle. Per-fragment lighting
should be used with either Phong’s or Blinn’s lighting model.

The object should have the following textures of your choosing:

• Diffuse color texture map

• Normal map. Do not using mipmapping on the normal map unless custom mipmap generation is performed. Oth-
erwise the pre-filtered normals will no longer have unit length.

1



• Extra credit will be given if a specular (aka gloss) map is also used. This is a texture that modifies the specular
exponent of the lighting equation.

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


