
Graphics Programming I – Assignment #2 (Simple textured world)
In this assignment, you will implement a 3D world that a user can navigate using the keyboard.

• Navigation

– Allow the user to move forward, backward, turn left (i.e., rotate the view), turn right, pitch up, and
pitch down using the keyboard.

– Allow the user to return to the starting position and view orientation using single key press.

• World Objects

– Implement a ground plane. At least some of the other objects should be positioned to rest on the
ground plane.

– Implement multiple objects positioned on the world. Some objects may be static (i.e., not animated).
There must be at least one “compound animated” object. That is, one object that moves relative to
another object that is also moving. The stack of cubes in assignment #1 is an example of this.
Objects must be implemented using some sort of high-level data structure. This structure should
track information about the object (e.g., position, orientation, vertex data, texture object, etc.), and
should implement methods to draw the object. It should also implement a method that, given a time
delta, will update the position of the object based on its animation parameters.

– Implement a sky box or sky cylinder. We will discuss this briefly, but searching the Internet will
guide your way.

• Object Rendering

– Implement at least two light sources in the world. One should be a directional light (representing
the sun) and the other should be a spot light. The spot light should be positioned above the user
and should move with the user. This should simulate a miner’s headlight.

– All objects in the world, including the ground plane, must be plausibly lit.

– All objects should, to varying degrees, reflect the texture from the sky box. The type of reflection
mapping implemented will depend on the method use to render the sky box / sky cylinder.

– All objects should have their own base texture. This texture may be applied using any of the
techniques discussed in class except reflection mapping. There is already one reflection map!

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


