
Parallel and SIMD Programming – Assignment #4 (SIMD Point Classifica-
tion)

Due on 09/17/2008

Create SIMD optimized to classify points in a 2D coordinate space. The program will consist of the following
routines:

• generate points - Routine to generate a random set of points. This routine is passed at least the following
parameters:

– count - Number of points to generate

– seed - Random number generator seed

– output - Data location to store the point data

– min x and max x - Valid range of values in the X dimension

– min y and max y - Valid range of values in the Y dimension

Two versions of this routine will ultimately need to be created. One will be called generate points AoS
and will generate point data in an array-of-structures format. The other will be called generate points SoA
and will generate points in a structure-of-arrays format. The SoA version should take separate pointers
to the X and Y data locations.

• find extreme points - Find the minimal and maximal points along the X and Y axes. At most one point
should be selected for each axis. It is possible for there to be either 3 or 4 extreme points. If one of the
extreme points is at a “corner”, it will be the extreme point for 2 axes. This routine should return the
number of extreme points.

The extreme points should be stored in an output array. They can be stored either as indexes to the
original data or as “raw” vertex data. Either SoA or AoS format can be used. Whichever choice is
made, provide documentation in comments in the code defending your choice. Points should be stored in
clockwise order (i.e., maximal Y, maximal X, minimal Y, then minimal X).

• classify points - The N extreme points will define N planes. These planes define a polygon. Points
are either inside the polygon or outside one of the planes (the proof that each point can be outside only
one plane is left as an exercise for the reader). classify points will process each non-extreme point and
classify it as either inside or outside a particular plane. This routine should take the original data, the
extreme points, and the number of extreme points as inputs. It should output 4 (or 3) new sets of data.
Each set represents data outside a particular extreme point plane. This data should be formatted in a
way suitable to be passed back to find extreme points.

You will need to come up with a way to test these routines. I suggest creating a scalar, AoS version of
find extreme points and classify points. These should be fairly trivial to test with simple input sets (i.e.,
generate 5 points and print all the data out at the end). Once you are satisfied that the scalar versions work,
convert the routines, one at a time, to SIMD. The initial SIMD versions will likely read AoS data in and convert
it, using shuffle instructions, to SoA. The final step is to convert everything to AoS.

Keep the scalar, AoS code around.
Once everything is fully vectorized done, compare the performance of the original scalar, AoS code to the

final SIMD, SoA code on a large (i.e., 100,000 points) data set. Be sure to build both versions with compiler
optimizations enabled. Without that the performance comparisons will not be meaningful.

Extra credit: In addition to the SIMD, SoA optimizations, design a parallel version of the algorithm. Be
sure to go through the parallel design steps that we have studied this term and document the reasoning for your
design decisions. You do not need to implement the parallel version to get credit.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


