CG Programming IIT — Assignment #2 (shadow textures)
Due on 04/15/2008

In this assignment you will be required to implement shadow textures. To show shadow textures in action,
render a scene with at least two objects and a single light source. The light source and the objects must move
in such a way that object can be both receivers and casters. One way to do this is to have multiple objects
arranged in a plane with a light source orbiting them.

e Draw multiple objects in the scene. These can either be simple solids (e.g., the torus or sphere) or models
loaded from disk.

e Include a single light source in the scene.
e Implement shadows using shadow textures.

— Render the scene, from the point of view of the light, to the screen. Clear the screen to the color of
the light, then draw the objects in black.

— Render the scene, from the point of view of the light, to a framebuffer object. Draw that framebuffer
object to the screen as a single quad. The output of this step should be the same as the output of
the previous step.

— Render a single object, from the point of view of the light, to a framebuffer object. Be sure to
calculate the view frustum to maximize the object’s size in the FBO. Draw that framebuffer object
to the screen as a single quad.

— Using projective texturing, apply the texture generated in the previous step to each object farther
away from the light than the object rendered to the texture.

— Generate a shadow texture for each object in the scene. When rendering an object in the final scene
(from the eye’s point of view), apply the shadow texture for all other objects. Be sure to apply the
near-plane test mentioned in the lecture notes to prevent anti-shadows!

of each function is
noted, as are the input
requirements and out-
put results.

of each function is
noted, as are the
input requirements
and output results.

cific purpose of each
function is noted.

Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im- | Program implements | Program implements | Many required
plements all required | all required elements, | most required ele- | elements are
elements in a manner | but some elements | ments. Some of the | missing. User
that is readily appar- | may not function | implemented elements | interface is in-
ent when the program | correctly. User inter- | may not function | complete or is
is executed. User | face is complete and | correctly. User inter- | not responsive
interface is complete | responsive to input. face is complete and | to input.
and responsive to in- responsive to input.
put. Program doc-
uments user interface
functionality.

Correctness Program executes | Program executes | Program executes | Program does
without errors. Pro- | without errors. Pro- | without errors. Pro- | not execute due
gram handles all | gram handles most | gram handles some | to errors. Lit-
special cases. Pro- | special cases. special cases. tle or no error
gram contains error checking code
checking code. included.

Efficiency Program uses solution | Program uses an ef- | Program uses a log- | Program uses
that is easy to under- | ficient and easy to | ical solution that is | a difficult
stand and maintain. | follow solution (i.e., | easy to follow, but itis | and inefficient
Programmer has anal- | no confusing tricks). | not the most efficient. | solution. Pro-
ysed many alternate | Programmer has con- | Programmer has con- | grammer has
solutions and has cho- | sidered alternate solu- | sidered alternate solu- | not consid-
sen the most efficient. | tion and has chosen | tions. ered alternate
Programmer has in- | the most efficient. solutions.
cluded the reasons for
the solution chosen.

Presentation & | Program code is for- | Program code is | Program code is for- | Program code

Organization matted in a consistent | formatted in mostly | matted with multi- | is formatted
manner. Variables, | consistent with occa- | ple styles. Variables, | in an inconsis-
functions, and data | sional inconsistencies. | functions, and data | tent manner.
structures are named | Variables, functions, | structures are named | Variables, func-
in a logical, consistent | and data structures | in a logical but incon- | tions, and data
manner. Use of white | are named in a logi- | sistent manner. Use | structures are
space improves code | cal, mostly consistent | of white space neither | poorly named.
readability. manner. Use of white | helps or hurts code re- | Use of white

space neither helps or | ability. space hurts code
hurts code reability. reability.

Documentation | Code clearly and ef- | Code documented | Code documented | No wuseful doc-
fectively documented | including descrip- | including descriptions | umentation ex-
including descriptions | tions of most global | of the most important | ists.
of all global variables | variables and most | global variables and
and all non-obvious lo- | non-obvious local | the most important
cal variables. The spe- | variables. =~ The spe- | local variables. The
cific purpose of each | cific purpose of each | specific purpose of
data type is noted. | data type is noted. | each data type is
The specific purpose | The specific purpose | noted. The spe-

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens

University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

