
CG Programming III – Assignment #2 (shadow textures)
Due on 04/15/2008

In this assignment you will be required to implement shadow textures. To show shadow textures in action,
render a scene with at least two objects and a single light source. The light source and the objects must move
in such a way that object can be both receivers and casters. One way to do this is to have multiple objects
arranged in a plane with a light source orbiting them.

• Draw multiple objects in the scene. These can either be simple solids (e.g., the torus or sphere) or models
loaded from disk.

• Include a single light source in the scene.

• Implement shadows using shadow textures.

– Render the scene, from the point of view of the light, to the screen. Clear the screen to the color of
the light, then draw the objects in black.

– Render the scene, from the point of view of the light, to a framebuffer object. Draw that framebuffer
object to the screen as a single quad. The output of this step should be the same as the output of
the previous step.

– Render a single object, from the point of view of the light, to a framebuffer object. Be sure to
calculate the view frustum to maximize the object’s size in the FBO. Draw that framebuffer object
to the screen as a single quad.

– Using projective texturing, apply the texture generated in the previous step to each object farther
away from the light than the object rendered to the texture.

– Generate a shadow texture for each object in the scene. When rendering an object in the final scene
(from the eye’s point of view), apply the shadow texture for all other objects. Be sure to apply the
near-plane test mentioned in the lecture notes to prevent anti-shadows!

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


