
CG Programming III – Term Project
Due on 6/11/2007 - day of the final exam

This term we have studied several advanced algorithms that enhance either shadow map or shadow volume
based techniques. Up to this point you have not been required to implement any of these algorithms. For the
term project you will need to enhance either the shadow mapping assignment or the shadow volume assignment
to include one of the advanced algorithms listed below.

As usual, projects will be presented to the class on the day of the final exam. Be prepared to describe how
you implemented the selected algorithm. Also be prepared to explain and defend your design choices.

In addition to the requirements for assigment #3 (shadow maps) you must implement at least one of the
following:

• Soft shadows using the algorithm described in the paper “Percentage-Closer Soft Shadows” by Randima
Fernando.

– The paper is fairly vague on several implementation details. If you choose to implement this algo-
rithm, we can discuss some strategies on Monday 6/4.

• Dual-paraboloid shadow maps as described in “Shadow Mapping for Hemispherical and Omnidirectional
Light Sources” by Stefan Brabec, et. al.

– For this option, there should be several shadow casters and receivers surrounding the light source.
In addition, the objects and light should be placed in side a “room” of some sort. Figure 3 and 4 at
the end of the paper show some examples.

• Implement the light frustum optimizations described in “Practical Shadow Mapping” by Stefan Brabec,
et. al.

– There are two changes from the paper should be implemented. First, the texture shader in section
3 should be implemented using a fragment shader. The complex texture mechanism should be
implemented using shader calculations. Second, the light frustum should be limited to the view
frustum (as seen on the right of figure 3) and NV depth clamp should be used.

– Scene rendered must include objects that are outside the view frustum and inside the light frustum.
The light must also be outside the view frustum.

If shadow maps do not suit you, one of the following may be implemented in addition to the requirements
for assignment #4 (shadow volumes).

• Implement the complete version of ZP+.

– The implementation will include the crack avoidance algorithm described in section 5 of the ZP+
paper.

– The scene must include at least one light that shows the failings of the Z-pass algorithm (e.g., the
light and an occluder are positioned such that the camera is inside a shadow volume).

• Implement the “simple” version of ZP+ described in assignment #4.

– The scene must include multiple spot lights.

– It must be possible to toggle the display of the cone-like shape that defines the spot light. Part of
your project presentation must include a description of how the spot light clamping is implemented.

– The scene must include at least one light that shows the failings of the Z-pass algorithm (e.g., the
light and an occluder are positioned such that the camera is inside a shadow volume).

• Implement shadow volumes using the alpha buffer instead of the stencil buffer as described in “Shadow
Volumes Revisited” by Stefan Roettger, et. al.

1



Criteria Excellent Good Satisfactory Marginal Unacceptable
Code
Function

Program cor-
rectly im-
plements all
required graph-
ical elements
in a manner
that is readily
apparent when
the program
is executed.
Appropriate
algorithms and
data structures
are used.

Program
implements
all required
graphical ele-
ments, but the
operation of
some elements
may not
be obvious.
Appropriate
algorithms
and data
structures are
used.

Program
implements
all required
graphical ele-
ments in some
fashion. Al-
gorithms and
data struc-
tures are used
that perform
the required
function, but
may be less
than ideal.

Program
implements
most required
graphical ele-
ments in some
fashion.

Most or all of the
required graphi-
cal elements are
missing or do
not function cor-
rectly.

Code
Mechan-
ics

Program code
is formatted
in a consistent
manner, vari-
ables and data
structures are
named in a con-
sistent, logical
manner. Code
is commented
adequately.

Program code
is mostly con-
sistent, but
contains some
occasional in-
consistencies.

Program code
is readable.
Some func-
tions or code
blocks show
consistent for-
matting, but
that format-
ting does not
carry through
the entire
program.

Program
code is not
consistently
formatted,
but is still
somewhat
readable.

Program code is
a mess and may
be more suit-
able as an en-
try to the Inter-
national Obfus-
cated C Coding
Competition.

User In-
terface

The program
is responsive
to input. All
required inputs
are imple-
mented, and the
user is informed,
by the program,
what the in-
puts are. The
program can be
terminated by
the user.

The program
is responsive
to input.
All required
inputs are
implemented.
Some of the
inputs are
documented
by the pro-
gram.

The program
is unrespon-
sive under
some cir-
cumstances.
All required
inputs are
implemented.
Some of the
inputs are
documented
by the pro-
gram.

The program
is unrespon-
sive under
some cir-
cumstances.
Some required
inputs are
either not
implemented
or are not
implemented
correctly.
Some inputs
are docu-
mented by the
program.

Many of the
required inputs
are either not
implemented
or are not
implemented
correctly. The
program lacks
documentation
for the inputs.

2


