CG Programming III – Term Project Due on 6/11/2007 - day of the final exam

This term we have studied several advanced algorithms that enhance either shadow map or shadow volume based techniques. Up to this point you have not been required to implement any of these algorithms. For the term project you will need to enhance either the shadow mapping assignment or the shadow volume assignment to include one of the advanced algorithms listed below.

As usual, projects will be presented to the class on the day of the final exam. Be prepared to describe how you implemented the selected algorithm. Also be prepared to explain and defend your design choices.

In *addition to* the requirements for assignment #3 (shadow maps) you must implement at least one of the following:

- Soft shadows using the algorithm described in the paper "Percentage-Closer Soft Shadows" by Randima Fernando.
 - The paper is fairly vague on several implementation details. If you choose to implement this algorithm, we can discuss some strategies on Monday 6/4.
- Dual-paraboloid shadow maps as described in "Shadow Mapping for Hemispherical and Omnidirectional Light Sources" by Stefan Brabec, et. al.
 - For this option, there should be several shadow casters and receivers surrounding the light source.
 In addition, the objects and light should be placed in side a "room" of some sort. Figure 3 and 4 at the end of the paper show some examples.
- Implement the light frustum optimizations described in "Practical Shadow Mapping" by Stefan Brabec, et. al.
 - There are two changes from the paper should be implemented. First, the texture shader in section 3 should be implemented using a fragment shader. The complex texture mechanism should be implemented using shader calculations. Second, the light frustum should be limited to the view frustum (as seen on the right of figure 3) and NV_depth_clamp should be used.
 - Scene rendered must include objects that are *outside* the view frustum and inside the light frustum.
 The light must also be outside the view frustum.

If shadow maps do not suit you, one of the following may be implemented in *addition to* the requirements for assignment #4 (shadow volumes).

- Implement the *complete* version of ZP+.
 - The implementation will include the crack avoidance algorithm described in section 5 of the ZP+ paper.
 - The scene must include at least one light that shows the failings of the Z-pass algorithm (e.g., the light and an occluder are positioned such that the camera is inside a shadow volume).
- Implement the "simple" version of ZP+ described in assignment #4.
 - The scene must include multiple spot lights.
 - It must be possible to toggle the display of the cone-like shape that defines the spot light. Part of your project presentation must include a description of how the spot light clamping is implemented.
 - The scene must include at least one light that shows the failings of the Z-pass algorithm (e.g., the light and an occluder are positioned such that the camera is inside a shadow volume).
- Implement shadow volumes using the alpha buffer instead of the stencil buffer as described in "Shadow Volumes Revisited" by Stefan Roettger, et. al.

Criteria	Excellent	Good	Satisfactory	Marginal	Unacceptable
Code	Program cor-	Program	Program	Program	Most or all of the
Function	rectly im-	implements	implements	implements	required graphi-
	plements all	all required	all required	most required	cal elements are
	required graph-	graphical ele-	graphical ele-	graphical ele-	missing or do
	ical elements	ments, but the	ments in some	ments in some	not function cor-
	in a manner	operation of	fashion. Al-	fashion.	rectly.
	that is readily	some elements	gorithms and		
	apparent when	may not	data struc-		
	the program	be obvious.	tures are used		
	is executed.	Appropriate	that perform		
	Appropriate	algorithms	the required		
	algorithms and	and data	function, but		
	data structures	structures are	may be less		
	are used.	used.	than ideal.		
Code	Program code	Program code	Program code	Program	Program code is
Mechan-	is formatted	is mostly con-	is readable.	code is not	a mess and may
ics	in a consistent	sistent, but	Some func-	consistently	be more suit-
	manner, vari-	contains some	tions or code	formatted,	able as an en-
	ables and data	occasional in-	blocks show	but is still	try to the Inter-
	structures are	consistencies.	consistent for-	somewhat	national Obfus-
	named in a con-		matting, but	readable.	cated C Coding
	sistent, logical		that format-		Competition.
	manner. Code		ting does not		
	is commented		carry through		
	adequately.		the entire		
TT T	- mi	-mi	program.	(T)	
User In-	The program	The program	The program	The program	Many of the
terrace	is responsive	is responsive	is unrespon-	is unrespon-	required inputs
	to input. All	to input.	sive under	sive under	are eitner not
	required inputs	All required	some cir-	some cir-	implemented
	are imple-	inputs are	All magnined	Cumstances.	or are not
	mented, and the	Same of the	All required	Some required	implemented
	by the program	some of the	implemented	are aither not	correctly. The
	by the program,	documented	Some of the	implemented	documentation
	nuts are The	by the pro	inputs are	or are not	for the inputs
	program can be	gram	documented	implemented	tor the inputs.
	terminated by	51 min.	hy the pro-	correctly	
	the user		oram	Some inputs	
	user.		5. will.	are docu-	
				mented by the	
				program	
				program.	