
CG Programming III – Assignmnet #4 (Shadow volumes)
Due on 5/14/2007

For this assignment, you will need to reimplement assignment #2 using shadow volumes. A simple scene
with multiple objects will be rendered. Any sort of lighting model can be used. All of the objects must cast
shadows, as appropriate for the position of the light, on the other objects. Rather than using simple planar
projection shadows, shadow volumes are to be used.

• Implement hard shadows using stencil buffer shadow volumes.

• Shadowed scene must include at least one moving light source.

– Light source may be either a point light or a spot light.

– If a spot light is used, draw a wireframe outline of the light’s view frustum or the polygons used to
enclose the spot light.

• Shadowed scene must include at least two objects.

– One object may be a ground plane.

– One object must be non-convex object (i.e., an object that can show self-shadowing.

Additional points can be earned by implmenting one or more of the following items.

• Implement the “simple” version of ZP+.

– The implementation need not include the crack avoidance algorithm described in section 5 of the
ZP+ paper.

The following inputs must be implemented. In addition, the program must, in some way, communicate to
the user how to use it.

• Escape must terminate the program.

• An input must be implemented to display the shadow volume polygons alpha blended onto the rest of the
scene.

– Front facing shadow volume polygons should be a different color than back facing shadow volume
polygons.

– This is a good debugging aid. I strongly recommend that you implement this early on!

1



Criteria Excellent Good Satisfactory Marginal Unacceptable
Code
Function

Program cor-
rectly im-
plements all
required graph-
ical elements
in a manner
that is readily
apparent when
the program
is executed.
Appropriate
algorithms and
data structures
are used.

Program
implements
all required
graphical ele-
ments, but the
operation of
some elements
may not
be obvious.
Appropriate
algorithms
and data
structures are
used.

Program
implements
all required
graphical ele-
ments in some
fashion. Al-
gorithms and
data struc-
tures are used
that perform
the required
function, but
may be less
than ideal.

Program
implements
most required
graphical ele-
ments in some
fashion.

Most or all of the
required graphi-
cal elements are
missing or do
not function cor-
rectly.

Code
Mechan-
ics

Program code
is formatted
in a consistent
manner, vari-
ables and data
structures are
named in a con-
sistent, logical
manner. Code
is commented
adequately.

Program code
is mostly con-
sistent, but
contains some
occasional in-
consistencies.

Program code
is readable.
Some func-
tions or code
blocks show
consistent for-
matting, but
that format-
ting does not
carry through
the entire
program.

Program
code is not
consistently
formatted,
but is still
somewhat
readable.

Program code is
a mess and may
be more suit-
able as an en-
try to the Inter-
national Obfus-
cated C Coding
Competition.

User In-
terface

The program
is responsive
to input. All
required inputs
are imple-
mented, and the
user is informed,
by the program,
what the in-
puts are. The
program can be
terminated by
the user.

The program
is responsive
to input.
All required
inputs are
implemented.
Some of the
inputs are
documented
by the pro-
gram.

The program
is unrespon-
sive under
some cir-
cumstances.
All required
inputs are
implemented.
Some of the
inputs are
documented
by the pro-
gram.

The program
is unrespon-
sive under
some cir-
cumstances.
Some required
inputs are
either not
implemented
or are not
implemented
correctly.
Some inputs
are docu-
mented by the
program.

Many of the
required inputs
are either not
implemented
or are not
implemented
correctly. The
program lacks
documentation
for the inputs.

2


