
14-May-2007 © Copyright Ian D. Romanick 2007

Shadow Volumes on GPUs

Agenda:
● Assignment #3

• Discuss / hand in
● Reading presentation We'll do 2 next week
● Quiz #3
● Shadow volumes on GPUs

• Generating the shadow volume
● Lab time:

• Work on assignment #3

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume geometry recap
Two passes over object geometry are required:

● Each edge that is shared by a front-facing polygon
and a back-facing polygon, it is on the silhouette.

● Project each edge on the silhouette away from the
light to “ infinity” . Create a new quad using these
two edges. Add this quad to the shadow volume.

● Add each front-facing polygon to the volume.
● Project each back-facing polygon away from the

light to infinity and add it

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume creation problems
New volume must be created each time the

object or the light move
Time consuming and must be performed on the

CPU
● Re-upload data to the GPU each frame!

Bad interactions with vertex shaders
We'll see how to resolve these issues next

week!

14-May-2007 © Copyright Ian D. Romanick 2007

What really happens?
Each edge either becomes a quad extended to

infinity, or it becomes nothing
● OpenGL treats a quad with two identical edges (i.e.,

points A, B, B, A) as nothing
Can this be exploited so that shadow volume

geometry can be created in a vertex shader?

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
Augment the geometry with degenerate quads.

● Each edge, (A, B), becomes a quad, (A, B, B, A).
● Two quad points, (A, B), have normals equal to the

surface normal of one of the shared polygons.
● The other two quad points, (B, A), have normals

equal to the surface normal of the other shared
polygon.

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
 In the vertex shader:

● If the normal of a point faces towards the light,
transform the position normally.

● If the normal of a point faces away from the light,
transform the position and project it away from the
light towards infinity.

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
Results:

● If all 4 points face toward the light, the quad
remains degenerate and is not drawn.

● If all 4 points face away from the light, the quad is
projected to infinity, remains degenerate, and is not
drawn.

● If the edge is a silhouette, one edge of the quad
remains in place, and the other is projected to
infinity. Exactly what is needed!

14-May-2007 © Copyright Ian D. Romanick 2007

What about volume caps?
Z-pass still has problems when the light and

occluders are outside the camera frustum
● Shadow volume geometry that is clipped by the

near plane is the source of all the z-pass problems
The Nvidia paper assigned for reading this

week covered the various problems with
generating cap geometry
● The authors punt on the issue and use z-fail.

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection
Ultimately, this geometry “ just” needs to be

projected from the light onto the near plane
We can do just that!

1. Position eye at light

2. Orient view frustum parallel (or antiparallel) to
camera frustum

3. Set far-plane to match camera's near-plane

4. Draw front facing geometry into stencil buffer

5. Continue with regular z-pass

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection (cont.)

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection (cont.)
The matrix to project from light onto the

camera's near plane is:

● is vector from camera to light
● is 1 if light and camera are on same side of near

plane, -1 otherwise

Pl=
2 l far

cwidth

0 −2
x

cwidth

0

0
2 l far

cheight

−2
y

cheight

0

0 0
l

near
l

far

l
near

−l
far

2 l
near

l
far

l
near

−l
far

0 0 −1 0

14-May-2007 © Copyright Ian D. Romanick 2007

But there's still a (small) problem!
Because geometry is draw with different

projections, slight cracks can appear!

● We'll talk about the solution next week...

14-May-2007 © Copyright Ian D. Romanick 2007

Extensions to optimize shadows
Several useful extensions exist:

● Two-sided stencil
● Depth clamping
● Depth bounds testing

14-May-2007 © Copyright Ian D. Romanick 2007

Twosided stencil
Exposed three ways:

● GL_EXT_stencil_two_side
● GL_ATI_separate_stencil
● OpenGL 2.1

Functionally similar, but different interfaces.
● GL_ATI_separate_stencil is missing some

functionality

14-May-2007 © Copyright Ian D. Romanick 2007

GL_EXT_stencil_two_side

Adds a single new entry-point
glActiveStencilFaceEXT
● Conceptually similar to glActiveTexture

14-May-2007 © Copyright Ian D. Romanick 2007

GL_EXT_stencil_two_side

 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

GL_ATI_separate_stencil
Adds two new entry-points,
glStencilOpSeparateATI and
glStencilOpSeparateATI.
● Doesn't support separate reference values or

masks.

14-May-2007 © Copyright Ian D. Romanick 2007

GL_ATI_separate_stencil
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilOpSeparateATI(GL_BACK, GL_KEEP, GL_KEEP,
 GL_DECR_WRAP_EXT);
 glStencilOpSeparateATI(GL_FRONT, GL_KEEP, GL_KEEP,
 GL_INCR_WRAP_EXT);
 glStencilFuncSeparateATI(GL_ALWAYS, GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

OpenGL 2.1
Adds two new entry-points,
glStencilOpSeparate and
glStencilOpSeparate.

Hybrid approach that provides full functionality.
● Compromise FTW. :(

14-May-2007 © Copyright Ian D. Romanick 2007

OpenGL 2.1
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP,
 GL_DECR_WRAP_EXT);
 glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP,
 GL_INCR_WRAP_EXT);

 // Could do as single call w/ GL_FRONT_AND_BACK.

 glStencilFuncSeparate(GL_FRONT, GL_ALWAYS, 0, ~0);
 glStencilFuncSeparate(GL_BACK, GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

Depth clamping
Caused fragments that would be clipped by the

near or far plane to be rendered with a depth of
0.0 or 1.0.

Exposed via GL_NV_depth_clamp since
Geforce3.
● Part of DX10 and (likely) next version of OpenGL.

Useful for shadow volumes
● Mostly for z-fail. Eliminates the need for volume

end capping.

14-May-2007 © Copyright Ian D. Romanick 2007

Depth bounds testing
Add extra per-fragment test before alpha test.
Discards fragment if the existing depth value is

outside a predefined range.
 If the Z range of an attenuated light can be

calculated, fillrate can be reduced by skipping
stencil updates outside it's range.
● Scissor test can be used in X and Y.

Exposed via GL_EXT_depth_bounds_test
since Geforce FX 5700.

14-May-2007 © Copyright Ian D. Romanick 2007

Depth bounds testing
 calculate_light_screen_space_volume(light,
 &x_min, &x_max,
 &y_min, &y_max,
 &z_min, &z_max);

 glEnable(GL_DEPTH_BOUNDS_TEST_EXT);
 glEnable(GL_SCISSOR_TEST);

 glDepthBoundsEXT(z_min, z_max);
 glScissor(x_min, y_min, x_max – x_min, y_max – y_min);

 do_shadows(light, objects);

14-May-2007 © Copyright Ian D. Romanick 2007

Questions?

14-May-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

