
14-May-2007 © Copyright Ian D. Romanick 2007

Shadow Volumes on GPUs

Agenda:
● Assignment #3

• Discuss / hand in
● Reading presentation We'll do 2 next week
● Quiz #3
● Shadow volumes on GPUs

• Generating the shadow volume
● Lab time:

• Work on assignment #3

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume geometry recap
Two passes over object geometry are required:

● Each edge that is shared by a front-facing polygon
and a back-facing polygon, it is on the silhouette.

● Project each edge on the silhouette away from the
light to “ infinity” . Create a new quad using these
two edges. Add this quad to the shadow volume.

● Add each front-facing polygon to the volume.
● Project each back-facing polygon away from the

light to infinity and add it

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume creation problems
New volume must be created each time the

object or the light move
Time consuming and must be performed on the

CPU
● Re-upload data to the GPU each frame!

Bad interactions with vertex shaders
We'll see how to resolve these issues next

week!

14-May-2007 © Copyright Ian D. Romanick 2007

What really happens?
Each edge either becomes a quad extended to

infinity, or it becomes nothing
● OpenGL treats a quad with two identical edges (i.e.,

points A, B, B, A) as nothing
Can this be exploited so that shadow volume

geometry can be created in a vertex shader?

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
Augment the geometry with degenerate quads.

● Each edge, (A, B), becomes a quad, (A, B, B, A).
● Two quad points, (A, B), have normals equal to the

surface normal of one of the shared polygons.
● The other two quad points, (B, A), have normals

equal to the surface normal of the other shared
polygon.

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
 In the vertex shader:

● If the normal of a point faces towards the light,
transform the position normally.

● If the normal of a point faces away from the light,
transform the position and project it away from the
light towards infinity.

14-May-2007 © Copyright Ian D. Romanick 2007

Creating shadow volume geometry, take 2
Results:

● If all 4 points face toward the light, the quad
remains degenerate and is not drawn.

● If all 4 points face away from the light, the quad is
projected to infinity, remains degenerate, and is not
drawn.

● If the edge is a silhouette, one edge of the quad
remains in place, and the other is projected to
infinity. Exactly what is needed!

14-May-2007 © Copyright Ian D. Romanick 2007

What about volume caps?
Z-pass still has problems when the light and

occluders are outside the camera frustum
● Shadow volume geometry that is clipped by the

near plane is the source of all the z-pass problems
The Nvidia paper assigned for reading this

week covered the various problems with
generating cap geometry
● The authors punt on the issue and use z-fail.

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection
Ultimately, this geometry “ just” needs to be

projected from the light onto the near plane
We can do just that!

1. Position eye at light

2. Orient view frustum parallel (or antiparallel) to
camera frustum

3. Set far-plane to match camera's near-plane

4. Draw front facing geometry into stencil buffer

5. Continue with regular z-pass

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection (cont.)

14-May-2007 © Copyright Ian D. Romanick 2007

Shadow volume projection (cont.)
The matrix to project from light onto the

camera's near plane is:

● is vector from camera to light
●  is 1 if light and camera are on same side of near

plane, -1 otherwise

Pl=
2 l far

cwidth

0 −2
x

cwidth

0

0
2 l far

cheight

−2
y

cheight

0

0 0
l

near
l

far

l
near

−l
far

2 l
near

l
far

l
near

−l
far

0 0 −1 0



14-May-2007 © Copyright Ian D. Romanick 2007

But there's still a (small) problem!
Because geometry is draw with different

projections, slight cracks can appear!

● We'll talk about the solution next week...

14-May-2007 © Copyright Ian D. Romanick 2007

Extensions to optimize shadows
Several useful extensions exist:

● Two-sided stencil
● Depth clamping
● Depth bounds testing

14-May-2007 © Copyright Ian D. Romanick 2007

Two­sided stencil
Exposed three ways:

● GL_EXT_stencil_two_side
● GL_ATI_separate_stencil
● OpenGL 2.1

Functionally similar, but different interfaces.
● GL_ATI_separate_stencil is missing some

functionality

14-May-2007 © Copyright Ian D. Romanick 2007

GL_EXT_stencil_two_side

Adds a single new entry-point
glActiveStencilFaceEXT
● Conceptually similar to glActiveTexture

14-May-2007 © Copyright Ian D. Romanick 2007

GL_EXT_stencil_two_side

 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);
 glEnable(GL_STENCIL_TEST_TWO_SIDE_EXT);

 glActiveStencilFaceEXT(GL_BACK);
 glStencilOp(GL_KEEP, GL_KEEP, GL_DECR_WRAP_EXT);
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

 glActiveStencilFaceEXT(GL_FRONT);
 glStencilOp(GL_KEEP, GL_KEEP, GL_INCR_WRAP_EXT);
 glStencilMask(~0);
 glStencilFunc(GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

GL_ATI_separate_stencil
Adds two new entry-points,
glStencilOpSeparateATI and
glStencilOpSeparateATI.
● Doesn't support separate reference values or

masks.

14-May-2007 © Copyright Ian D. Romanick 2007

GL_ATI_separate_stencil
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilOpSeparateATI(GL_BACK, GL_KEEP, GL_KEEP,
 GL_DECR_WRAP_EXT);
 glStencilOpSeparateATI(GL_FRONT, GL_KEEP, GL_KEEP,
 GL_INCR_WRAP_EXT);
 glStencilFuncSeparateATI(GL_ALWAYS, GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

OpenGL 2.1
Adds two new entry-points,
glStencilOpSeparate and
glStencilOpSeparate.

Hybrid approach that provides full functionality.
● Compromise FTW. :(

14-May-2007 © Copyright Ian D. Romanick 2007

OpenGL 2.1
 glDisable(GL_CULL_FACE);
 glEnable(GL_STENCIL_TEST);

 glStencilOpSeparate(GL_BACK, GL_KEEP, GL_KEEP,
 GL_DECR_WRAP_EXT);
 glStencilOpSeparate(GL_FRONT, GL_KEEP, GL_KEEP,
 GL_INCR_WRAP_EXT);

 // Could do as single call w/ GL_FRONT_AND_BACK.

 glStencilFuncSeparate(GL_FRONT, GL_ALWAYS, 0, ~0);
 glStencilFuncSeparate(GL_BACK, GL_ALWAYS, 0, ~0);

14-May-2007 © Copyright Ian D. Romanick 2007

Depth clamping
Caused fragments that would be clipped by the

near or far plane to be rendered with a depth of
0.0 or 1.0.

Exposed via GL_NV_depth_clamp since
Geforce3.
● Part of DX10 and (likely) next version of OpenGL.

Useful for shadow volumes
● Mostly for z-fail. Eliminates the need for volume

end capping.

14-May-2007 © Copyright Ian D. Romanick 2007

Depth bounds testing
Add extra per-fragment test before alpha test.
Discards fragment if the existing depth value is

outside a predefined range.
 If the Z range of an attenuated light can be

calculated, fillrate can be reduced by skipping
stencil updates outside it's range.
● Scissor test can be used in X and Y.

Exposed via GL_EXT_depth_bounds_test
since Geforce FX 5700.

14-May-2007 © Copyright Ian D. Romanick 2007

Depth bounds testing
 calculate_light_screen_space_volume(light,
 &x_min, &x_max,
 &y_min, &y_max,
 &z_min, &z_max);

 glEnable(GL_DEPTH_BOUNDS_TEST_EXT);
 glEnable(GL_SCISSOR_TEST);

 glDepthBoundsEXT(z_min, z_max);
 glScissor(x_min, y_min, x_max – x_min, y_max – y_min);

 do_shadows(light, objects);

14-May-2007 © Copyright Ian D. Romanick 2007

Questions?

14-May-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

