
30-April-2007 © Copyright Ian D. Romanick 2007

Shadow Maps, part 3

Agenda:
● Reading presentation
● Quiz #2!
● Wrap up shadow maps
● Introduce the stencil buffer
● Lab time:

• Work on assignment #2
• Give out assignment #3

30-April-2007 © Copyright Ian D. Romanick 2007

One last bit of basic shadow maps...
Due to sampling issues, surfaces incorrectly

self-shadow
● Drawing the surface to the shadow map samples

one set of (surface space) positions, but drawing to
the screen samples a different set

30-April-2007 © Copyright Ian D. Romanick 2007

Result: “shadow acne”

30-April-2007 © Copyright Ian D. Romanick 2007

Depth bias
Common fix is to use polygon offset

functionality to bias depth values
● Add small depth bias to all fragments on the

polygon to guarantee the depth value is ≤ shadow
map depth value

● Very tricky to get right! Movie fx companies spend
lots of time tweaking every frame to eliminate
artifacts1

1 G. King, “ Shadow Mapping Algorithms.” NVIDIA. 2004.
 ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

30-April-2007 © Copyright Ian D. Romanick 2007

Using polygon offset in OpenGL
Parameters set with glPolygonOffset

● Two values are set: factor and units
Depth value is adjusted by (factor × DZ) + (r ×

units)
● DZ is a measure of the Z slope of the polygon

• The more the polygon slopes, the more it will be biased
● r is the (implementation specific) smallest value that

will cause a measurable change

30-April-2007 © Copyright Ian D. Romanick 2007

Using polygon offset in OpenGL (cont.)
Common technique is to enable minimum offset

via glPolygonOffset(0.0, 1.0)
May achieve better results using factor, but

requires more tuning
Note: must enable for your primitive types

● Call glEnable with one of
GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT

30-April-2007 © Copyright Ian D. Romanick 2007

What is the stencil buffer?
An extra per-pixel buffer containing integer

values
Stencil buffer is often stored interleaved with

depth buffer
● 8-bit stencil with 24-bit depth is most common, but

1-bit stencil with 15-bit depth is sometimes available

30-April-2007 © Copyright Ian D. Romanick 2007

What can you do with it?
Write values to it! Several operations available:

● GL_KEEP – leave the value alone
● GL_ZERO – clear value to zero
● GL_REPLACE – replace value with preset value
● GL_INCR – increment value, clamp to max value

• GL_INCR_WRAP increments but warps to zero
● GL_DECR – decrement value, clamp to zero

• GL_DECR_WRAP decrements but warps to max value
● GL_INVERT – bitwise inversion of value

30-April-2007 © Copyright Ian D. Romanick 2007

Writing values to the stencil buffer
A different operation can be set for pixels that

pass the Z test, fail the Z test, or fail the stencil
test (see next slide)
● glStencilOp sets all three operations
● Several extensions and OpenGL 2.1 add the ability

to perform a different set of operations for front
facing and back facing polygons
• We'll talk about this functionality in a few weeks

30-April-2007 © Copyright Ian D. Romanick 2007

Miscellaneous stencil functions
glClearStencil clears the stencil buffer to

some value
glStencilMask controls which bits can be

written by stencil operations

30-April-2007 © Copyright Ian D. Romanick 2007

Stencil testing
glStencilFunc sets the operation, reference

value, and a mask
● The usual depth test values are available:
GL_NEVER, GL_LESS, GL_LEQUAL, GL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and
GL_ALWAYS

Per-pixel, (ref & mask) op (stencil &
mask) is used before the depth test to
determine whether or not to write to the color
buffer

30-April-2007 © Copyright Ian D. Romanick 2007

Example
glClearStencil(0);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon is drawn.
 */
glStencilFunc(GL_ALWAYS, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
 */
glStencilFunc(GL_EQUAL, 1, ~0);
glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

30-April-2007 © Copyright Ian D. Romanick 2007

Questions?

30-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

