Shadow Maps, part 3

~ Agenda:
® Reading presentation
® Quiz #2!
® Wrap up shadow maps
® Introduce the stencil buffer

® | ab time:

* Work on assignment #2
* Give out assignment #3

30-April-2007 © Copyright lan D. Romanick 2007



One last bit of basic shadow maps...

~ Due to sampling issues, surfaces incorrectly
self-shadow

® Drawing the surface to the shadow map samples
one set of (surface space) positions, but drawing to
the screen samples a different set

Light

Eye

S

30-April-2007 © Copyright lan D. Romanick 2007







Depth bias

~ Common fix is to use polygon offset
functionality to bias depth values

® Add small depth bias to all fragments on the
polygon to guarantee the depth value is < shadow
map depth value

® Very tricky to get right! Movie fx companies spend
lots of time tweaking every frame to eliminate
artifacts’

! G. King, “Shadow Mapping Algorithms.” NVIDIA. 2004.
ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

30-April-2007 © Copyright lan D. Romanick 2007


ftp://download.nvidia.com/developer/presentations/2004/GPU_Jackpot/Shadow_Mapping.pdf

Using polygon offset in OpenGL

~ Parameters set with glPolygonOffset
® Two values are set: factor and units

~ Depth value is adjusted by (factor x DZ) + (r X
units)
® DZ is a measure of the Z slope of the polygon
* The more the polygon slopes, the more it will be biased

® r is the (implementation specific) smallest value that
will cause a measurable change

30-April-2007 © Copyright lan D. Romanick 2007



Using polygon offset in OpenGL (cont.)

~ Common technique is to enable minimum offset
via glPolygonOffset (0.0, 1.0)

~ May achieve better results using factor, but
requires more tuning

~ Note: must enable for your primitive types

® Call glEnable with one of
GL_POLYGON_OFFSET_FILL,
GL_POLYGON_OFFSET_LINE, or
GL_POLYGON_OFFSET_POINT

30-April-2007 © Copyright lan D. Romanick 2007



What is the stencil buffer?

~ An extra per-pixel buffer containing integer
values

< Stencil buffer is often stored interleaved with
depth buffer

® 8-bit stencil with 24-bit depth is most common, but
1-bit stencil with 15-bit depth is sometimes available

30-April-2007 © Copyright lan D. Romanick 2007



What can you do with it?

~ Write values to it! Several operations available:

® GL_KEEP - leave the value alone

® GL_ZERO - clear value to zero

® GL_REPLACE - replace value with preset value

® GL_INCR - increment value, clamp to max value
* GL_INCR_WRAP increments but warps to zero

® GL_DECR - decrement value, clamp to zero

* GL_DECR_WRAP decrements but warps to max value
® GL_INVERT - bitwise inversion of value

30-April-2007 © Copyright lan D. Romanick 2007



Writing values to the stencil bu

er

~ A different operation can be set for pixels that
pass the Z test, fail the Z test, or fail the stencil

test (see next slide)

® g]Stenc1ilOp sets all three operations

® Several extensions and OpenGL 2.1 add the ability
to perform a different set of operations for front

facing and back facing polygons

* We'll talk about this functionality in a few weeks

30-April-2007 © Copyright lan D. Romanick 2007



Miscellaneous stencil functions

“glClearStencil clears the stencil buffer to
some value

~g]lStencilMask controls which bits can be
written by stencil operations

30-April-2007 © Copyright lan D. Romanick 2007



Stencil testing

~glStencilFunc sets the operation, reference
value, and a mask

® The usual depth test values are available:
GL_NEVER, GL_LESS, GL_LEQUAL, GIL_GREATER,
GL_GEQUAL, GL_EQUAL, GL_NOTEQUAL, and
GL_ALWAYS

~ Per-pixel, (ref & mask) op (stencil &
mask) is used before the depth test to
determine whether or not to write to the color

buffer

30-April-2007 © Copyright lan D. Romanick 2007



Example

glClearStenci11(0);
glEnable(GL_STENCIL_TEST);

/* Write 1 to stencil where polygon 1s drawn.
% /

glStencilFunc(GL_ALWAYS, 1, ~0);

g]1StencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);

draw_some_polygon();

/* Draw scene only where stencil buffer is 1.
* /

glStencilFunc(GL_EQUAL, 1, ~0);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

draw_scene() ;

30-April-2007 © Copyright lan D. Romanick 2007



Questions?

30-April-2007 © Copyright lan D. Romanick 2007



Legal Statement

~ This work represents the view of the authors and does not
necessarily represent the view of IBM or the Art Institute of Portland.

~ OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

~ Khronos and OpenGL ES are trademarks of the Khronos Group.

~ Other company, product, and service names may be trademarks or
service marks of others.

30-April-2007 © Copyright lan D. Romanick 2007



