
23-April-2007 © Copyright Ian D. Romanick 2007

Shadow Maps, part 2

Agenda:
● Assignments:

• Hand in assignment #1
• Discuss assignment #2...anyone started?

● Finish basic shadow map techniques
● Begin advanced shadow map techniques
● Work on second programming assignment

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map projections in GLSL
Calculate texture coordinates that correspond

to the object's position in projected light-space
● In other words, the texture coordinate is the object's

world space coordinate transformed by the light's
modelview-projection matrix

● There is also an offset to convert the resulting [-1,
1] to the correct [0, 1] range for texture sampling
• This is the B matrix below

T n=B PLn
M Ln

M object V

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map projections in GLSL (cont.)
 In fixed-function, this is done using
EYE_LINEAR texgen and planes that
correspond to the rows of the matrix
● EYE_LINEAR texgen computes M

object
 V

We can replicate this exactly in GLSL
● Do a matrix multiply of gl_Vertex with
gl_EyePlaneS[n], etc. as the rows

● Could also compute the matrix and put it in a
texture matrix or other uniform matrix

B PL n
M Ln

23-April-2007 © Copyright Ian D. Romanick 2007

Light projection matrix
The light's projection matrix is just like the

camera's projection matrix
The view frustum corresponds to the area

covered by the spotlight
● If the spotlight covers an angle of , the view plane

covers tan():
glFrustum(-tan() * near, tan() * near,
 -tan() * near, tan() * near,
 near, far);

23-April-2007 © Copyright Ian D. Romanick 2007

Calculating near and far?
How can we calculate the near and far?

● Getting these values as “ tight” as possible makes
better use of available depth precision

 If the light is outside the camera's view frustum,
set far to match the farthest part of the camera
frustum that intersects the light's frustum

Can't just set near to the nearest part of the
camera frustum
● Why?

23-April-2007 © Copyright Ian D. Romanick 2007

Calculating near
There may be objects between the light and the

camera frustum that cast shadows on objects in
the camera's view
● One “ easy” way is to use the distance of the object

nearest the light

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map problems
Classic shadow maps of long, thin objects alias

horribly
● Since shadow maps are typically sampled with
GL_NEAREST, aliasing is unavoidable

● Can't use other modes because blending the
shadow depth values is wrong

Classic shadow maps also can't do soft
shadows

Omnidirectional point lights are hard

23-April-2007 © Copyright Ian D. Romanick 2007

Percentage closer filtering
Reeves created percentage closer filtering

(PCF) as a method to antialias shadow maps
● Perform multiple shadow comparison operations

per sample
● Blend the results of the comparisons

• This is like GL_LINEAR blending, but the result of the
comparison is blended instead of the raw texel values.

• Nvidia does this in hardware when GL_LINEAR is used
with a shadow map.

23-April-2007 © Copyright Ian D. Romanick 2007

PCF (cont.)
Basic PCF uses a fixed size filter kernel

(usually 2x2)
Fernando observed that as the size of the filter

kernel increases the shadows become softer
● Percentage closer soft shadows extends PCF by

setting the kernel size based on the distance
between the light and caster and the distance
between the light and the receiver

● Fernando's paper is one of the reading
assignments this week

23-April-2007 © Copyright Ian D. Romanick 2007

Omnidirectional lights
Omnidirectional lights are hard

● Can't just use a single map with a view frustum:  is
90, and tan(90) is ∞

Obvious technique is to render 6 views to the
sides of a cubemap
● Six passes to create the shadow map for a single

light??? Ouch!
● Can slightly optimize this if the light is outside the

view frustum, but might have upto 5 passes

23-April-2007 © Copyright Ian D. Romanick 2007

Omnidirectional lights
We really want a different environment map that

requires fewer passes than a cubemap
● Sphere maps (and related techniques) are right out

because the edges of the sphere have a lot of area
mapped onto them. Same problem as using sphere
maps for environment mapping.

23-April-2007 © Copyright Ian D. Romanick 2007

Paraboloid mapping
Paraboloid mapping models a mirrored

parabola instead of a sphere
● Maps 180 into the map instead of 360
● Still compresses a lot of data into the edges, but not

nearly as bad as a sphere map
● Image from Brabec, et. al.

23-April-2007 © Copyright Ian D. Romanick 2007

Paraboloid mapping (cont.)
We can map the geometry onto the parabola in

the vertex shader
● This only maps the verticies to the parabola and

uses linear interpolation between
● If the geometry is sufficiently tessellated this is

probably good enough
This allows an omnidirectional light in at most 2

passes instead of 6

23-April-2007 © Copyright Ian D. Romanick 2007

Questions?

23-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

