
23-April-2007 © Copyright Ian D. Romanick 2007

Shadow Maps, part 2

Agenda:
● Assignments:

• Hand in assignment #1
• Discuss assignment #2...anyone started?

● Finish basic shadow map techniques
● Begin advanced shadow map techniques
● Work on second programming assignment

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map projections in GLSL
Calculate texture coordinates that correspond

to the object's position in projected light-space
● In other words, the texture coordinate is the object's

world space coordinate transformed by the light's
modelview-projection matrix

● There is also an offset to convert the resulting [-1,
1] to the correct [0, 1] range for texture sampling
• This is the B matrix below

T n=B PLn
M Ln

M object V

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map projections in GLSL (cont.)
 In fixed-function, this is done using
EYE_LINEAR texgen and planes that
correspond to the rows of the matrix
● EYE_LINEAR texgen computes M

object
 V

We can replicate this exactly in GLSL
● Do a matrix multiply of gl_Vertex with
gl_EyePlaneS[n], etc. as the rows

● Could also compute the matrix and put it in a
texture matrix or other uniform matrix

B PL n
M Ln

23-April-2007 © Copyright Ian D. Romanick 2007

Light projection matrix
The light's projection matrix is just like the

camera's projection matrix
The view frustum corresponds to the area

covered by the spotlight
● If the spotlight covers an angle of , the view plane

covers tan():
glFrustum(-tan() * near, tan() * near,
 -tan() * near, tan() * near,
 near, far);

23-April-2007 © Copyright Ian D. Romanick 2007

Calculating near and far?
How can we calculate the near and far?

● Getting these values as “ tight” as possible makes
better use of available depth precision

 If the light is outside the camera's view frustum,
set far to match the farthest part of the camera
frustum that intersects the light's frustum

Can't just set near to the nearest part of the
camera frustum
● Why?

23-April-2007 © Copyright Ian D. Romanick 2007

Calculating near
There may be objects between the light and the

camera frustum that cast shadows on objects in
the camera's view
● One “ easy” way is to use the distance of the object

nearest the light

23-April-2007 © Copyright Ian D. Romanick 2007

Shadow map problems
Classic shadow maps of long, thin objects alias

horribly
● Since shadow maps are typically sampled with
GL_NEAREST, aliasing is unavoidable

● Can't use other modes because blending the
shadow depth values is wrong

Classic shadow maps also can't do soft
shadows

Omnidirectional point lights are hard

23-April-2007 © Copyright Ian D. Romanick 2007

Percentage closer filtering
Reeves created percentage closer filtering

(PCF) as a method to antialias shadow maps
● Perform multiple shadow comparison operations

per sample
● Blend the results of the comparisons

• This is like GL_LINEAR blending, but the result of the
comparison is blended instead of the raw texel values.

• Nvidia does this in hardware when GL_LINEAR is used
with a shadow map.

23-April-2007 © Copyright Ian D. Romanick 2007

PCF (cont.)
Basic PCF uses a fixed size filter kernel

(usually 2x2)
Fernando observed that as the size of the filter

kernel increases the shadows become softer
● Percentage closer soft shadows extends PCF by

setting the kernel size based on the distance
between the light and caster and the distance
between the light and the receiver

● Fernando's paper is one of the reading
assignments this week

23-April-2007 © Copyright Ian D. Romanick 2007

Omnidirectional lights
Omnidirectional lights are hard

● Can't just use a single map with a view frustum: is
90, and tan(90) is ∞

Obvious technique is to render 6 views to the
sides of a cubemap
● Six passes to create the shadow map for a single

light??? Ouch!
● Can slightly optimize this if the light is outside the

view frustum, but might have upto 5 passes

23-April-2007 © Copyright Ian D. Romanick 2007

Omnidirectional lights
We really want a different environment map that

requires fewer passes than a cubemap
● Sphere maps (and related techniques) are right out

because the edges of the sphere have a lot of area
mapped onto them. Same problem as using sphere
maps for environment mapping.

23-April-2007 © Copyright Ian D. Romanick 2007

Paraboloid mapping
Paraboloid mapping models a mirrored

parabola instead of a sphere
● Maps 180 into the map instead of 360
● Still compresses a lot of data into the edges, but not

nearly as bad as a sphere map
● Image from Brabec, et. al.

23-April-2007 © Copyright Ian D. Romanick 2007

Paraboloid mapping (cont.)
We can map the geometry onto the parabola in

the vertex shader
● This only maps the verticies to the parabola and

uses linear interpolation between
● If the geometry is sufficiently tessellated this is

probably good enough
This allows an omnidirectional light in at most 2

passes instead of 6

23-April-2007 © Copyright Ian D. Romanick 2007

Questions?

23-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

