
9-April-2007 © Copyright Ian D. Romanick 2007

Planar Shadows

Agenda:
● Discuss assignment #1
● Wrap up render-to-texture techniques

• Framebuffer objects
● Introduce shadows

• Importance of shadows
• Planar shadows
• Soft shadows

● Start second programming assignment

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.
• Must attach all needed buffers (e.g., color buffer and

depth buffer).

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

5. Unbind FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

5. Unbind FBO.

6. Use textures.

9-April-2007 © Copyright Ian D. Romanick 2007

FBO Creation
An FBO object ID is created much like a

texture:
glGenFramebuffersEXT(1, &fbo);
● You can also assign your own object ID, just like

with a texture.
After the object ID is assigned, the FBO is

bound for editing or use like a texture:
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,
fbo);

9-April-2007 © Copyright Ian D. Romanick 2007

Attaching Textures
Textures are attached to an FBO using a

function that matches the dimensionality of the
texture:
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

9-April-2007 © Copyright Ian D. Romanick 2007

Attaching Renderbuffers
Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Renderbuffers are renderable, but not texturable.
● Only way to supply data to a renderbuffer is by

rendering to it.
Attach to FBO using
glFramebufferRenderbufferEXT.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success – the FBO can be used for rendering.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success
● Implementation independent error – these are

always errors and represent a bug in the
application.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success
● Implementation independent error
● Implementation dependent error – the hardware

can't handle the combination of attachments, etc.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
• GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match

• GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO

• GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
• GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
● Missing color attachment for named draw buffer

• GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
● Missing color attachment for named draw buffer
● Missing color attachment and read buffer is not
NONE

• GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindTexture(GL_TEXTURE_2D, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 256, 256, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 1);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
 GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, 2, 0);

GLenum fbo_status =
 glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (fbo_status != GL_FRAMEBUFFER_COMPLETE_EXT) {
 /* error */
}

9-April-2007 © Copyright Ian D. Romanick 2007

Render to FBO
FBO rendering is enabled whenever a non-zero

FBO is bound.
● Just like program objects.

May need to reset the viewport .
Draw just like normal.
When done rendering to the FBO, bind the 0

object.

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, my_fbo);

glGetFramebufferAttachmentParameterivEXT(
 GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_WIDTH, &width);
glGetFramebufferAttachmentParameterivEXT(
 GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_HEIGHT, &height);

glViewport(0, 0, width, height);

/* Draw */

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

9-April-2007 © Copyright Ian D. Romanick 2007

Use the texture
After unbinding the FBO, use the texture just

like normal.
● No, really!

Don't try to render to a mipmap level that is
selected for rendering.
● Results are undefined, but probably not what you

would want anyway.
● More on this in a moment...

9-April-2007 © Copyright Ian D. Romanick 2007

Mipmaps
Two ways to generate mipmaps with FBO

render-to-texture
● Use the explicit mipmap generation routine,
glGenerateMipmapEXT, after rendering and
unbinding FBO.

● Generate the mipmaps by rendering to the other
mipmap levels!
• Have to clamp the texture LOD.
• Especially useful for mipmapping normal

maps...remember the paper from last term?

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindTexture(GL_TEXTURE_2D, tex);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);

for (unsigned lod = 1; lod < levels; lod++) {
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_BASE_LEVEL, lod - 1);
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MAX_LEVEL, lod – 1);

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
 GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D,
 tex, lod);

 /* Draw */
}

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

● Give cues about shadow casters
• Relative positions of casters
• Relative positions of caster and receiver

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

● Give cues about shadow casters
• Relative positions of casters
• Relative positions of caster and receiver

● Give cues about shadow receivers
• Show additional surface detail

9-April-2007 © Copyright Ian D. Romanick 2007

Shadow terms
Receiver – object that is shadowed
Caster – object that blocks light from the

receiver
● May also be called occluder because it occludes

the light from the receiver
Umbra – Region on receiver that is completely

shadowed
Penumbra – Transition region between umbra

and non-shadowed area

9-April-2007 © Copyright Ian D. Romanick 2007

Planar Shadows
Simplest shadows are those projected onto a

flat plane
● As the description implies, this can be done using a

projection matrix

9-April-2007 © Copyright Ian D. Romanick 2007

Plane equation
Give a point on a plane, p, and the normal of

that plane, n, calculate the plane equation:

d=−n⋅p
n⋅pid=0

9-April-2007 © Copyright Ian D. Romanick 2007

Projection onto a plane
Given a plane, defined by n and d, and a

projection point, p, create a matrix that projects
an arbitrary point onto that plane.
● Like the projection of the view plane and the eye

point.

M=[
n⋅pd−px nx −px ny −px nz −px d

−py nx n⋅pd− py ny −py nz −py d

−p z nx −p z ny n⋅pd− pz nz −pz d

−nx −ny −n z n⋅p]

9-April-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?

9-April-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?
● After the object-to-world space transformations, but

before the world-to-eye space transformation.

9-April-2007 © Copyright Ian D. Romanick 2007

Drawing a planar shadow
Many possible methods. Here's one that works:

● Disable depth buffer
• glDepthMask(GL_FALSE);

● Draw shadow to alpha buffer
• glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_TRUE);

● Enable depth buffer
● Draw object
● Draw ground and modulate with destination alpha

• glEnable(GL_BLEND);
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);

9-April-2007 © Copyright Ian D. Romanick 2007

Hard shadows are better than nothing, but
not much!

Can this technique be extended to create soft
shadows?
● Soft shadows are created when the light has “ area”
● An LED in a dark room casts only hard shadows

9-April-2007 © Copyright Ian D. Romanick 2007

Heckbert and Herf's method
Simulate an area light with many point lights on

the area light's surface
● If lots of sample points are used, this method

produces very good results
● If lots of sample points are used, this method

produces very slow results
● Some optimizations are possible

• Scale number of samples with size of light
• Scale number of samples with distance between light and

shadow caster

9-April-2007 © Copyright Ian D. Romanick 2007

Gooch's method
By moving the receiving plane towards and

away from the light, the penumbra can be
simulated
● The simulated penumbra is always too big

After projecting onto an offset plane, the
projectiong has to be moved to the correct
plane.

9-April-2007 © Copyright Ian D. Romanick 2007

Shadow textures
One way to implement Gooch's method is to

render the shadow to a texture, then draw the
shadow texture multiple times.
● Draw this texture with the light as the eye.

Can just use a single pass and linear filtering
● Use projective texturing to apply

shadow to non-planar objects
● Battlefield 1942 does this (see

image at right)

9-April-2007 © Copyright Ian D. Romanick 2007

Questions?

9-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

 Image from Battlefield 1942 is © Copyright Digital Illusions CE 2002.

