
9-April-2007 © Copyright Ian D. Romanick 2007

Planar Shadows

Agenda:
● Discuss assignment #1
● Wrap up render-to-texture techniques

• Framebuffer objects
● Introduce shadows

• Importance of shadows
• Planar shadows
• Soft shadows

● Start second programming assignment

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.
• Must attach all needed buffers (e.g., color buffer and

depth buffer).

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

5. Unbind FBO.

9-April-2007 © Copyright Ian D. Romanick 2007

FBOs
Six steps to using a framebuffer object for

render-to-texture:

1. Create and bind the FBO.

2. Attach textures and renderbuffers.

3. Validate FBO.

4. Render to FBO.

5. Unbind FBO.

6. Use textures.

9-April-2007 © Copyright Ian D. Romanick 2007

FBO Creation
An FBO object ID is created much like a

texture:
glGenFramebuffersEXT(1, &fbo);
● You can also assign your own object ID, just like

with a texture.
After the object ID is assigned, the FBO is

bound for editing or use like a texture:
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT,
fbo);

9-April-2007 © Copyright Ian D. Romanick 2007

Attaching Textures
Textures are attached to an FBO using a

function that matches the dimensionality of the
texture:
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

9-April-2007 © Copyright Ian D. Romanick 2007

Attaching Renderbuffers
Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Renderbuffers are renderable, but not texturable.
● Only way to supply data to a renderbuffer is by

rendering to it.
Attach to FBO using
glFramebufferRenderbufferEXT.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success – the FBO can be used for rendering.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success
● Implementation independent error – these are

always errors and represent a bug in the
application.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Once all of the attachments have been made,

the FBO must be validated.
● glCheckFramebufferStatusEXT

There are 3 classes of return values from
glCheckFramebufferStatusEXT:
● Success
● Implementation independent error
● Implementation dependent error – the hardware

can't handle the combination of attachments, etc.

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
• GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match

• GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO

• GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
• GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
● Missing color attachment for named draw buffer

• GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Validating an FBO
Common device independent errors:

● Attached texture is incomplete
● Dimensions of attachments do not match
● Nothing is attached to the FBO
● Attached color attachments have mismatched

formats
● Missing color attachment for named draw buffer
● Missing color attachment and read buffer is not
NONE

• GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindTexture(GL_TEXTURE_2D, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 256, 256, 0,
 GL_RGBA, GL_UNSIGNED_BYTE, NULL);

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 1);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
 GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D, 2, 0);

GLenum fbo_status =
 glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);
if (fbo_status != GL_FRAMEBUFFER_COMPLETE_EXT) {
 /* error */
}

9-April-2007 © Copyright Ian D. Romanick 2007

Render to FBO
FBO rendering is enabled whenever a non-zero

FBO is bound.
● Just like program objects.

May need to reset the viewport .
Draw just like normal.
When done rendering to the FBO, bind the 0

object.

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, my_fbo);

glGetFramebufferAttachmentParameterivEXT(
 GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_WIDTH, &width);
glGetFramebufferAttachmentParameterivEXT(
 GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT,
 GL_HEIGHT, &height);

glViewport(0, 0, width, height);

/* Draw */

glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

9-April-2007 © Copyright Ian D. Romanick 2007

Use the texture
After unbinding the FBO, use the texture just

like normal.
● No, really!

Don't try to render to a mipmap level that is
selected for rendering.
● Results are undefined, but probably not what you

would want anyway.
● More on this in a moment...

9-April-2007 © Copyright Ian D. Romanick 2007

Mipmaps
Two ways to generate mipmaps with FBO

render-to-texture
● Use the explicit mipmap generation routine,
glGenerateMipmapEXT, after rendering and
unbinding FBO.

● Generate the mipmaps by rendering to the other
mipmap levels!
• Have to clamp the texture LOD.
• Especially useful for mipmapping normal

maps...remember the paper from last term?

9-April-2007 © Copyright Ian D. Romanick 2007

Example
glBindTexture(GL_TEXTURE_2D, tex);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fbo);

for (unsigned lod = 1; lod < levels; lod++) {
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_BASE_LEVEL, lod - 1);
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MAX_LEVEL, lod – 1);

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,
 GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_2D,
 tex, lod);

 /* Draw */
}

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

● Give cues about shadow casters
• Relative positions of casters
• Relative positions of caster and receiver

9-April-2007 © Copyright Ian D. Romanick 2007

Shadows
Why are shadows important in 3D rendering?

● Give cues about shadow casters
• Relative positions of casters
• Relative positions of caster and receiver

● Give cues about shadow receivers
• Show additional surface detail

9-April-2007 © Copyright Ian D. Romanick 2007

Shadow terms
Receiver – object that is shadowed
Caster – object that blocks light from the

receiver
● May also be called occluder because it occludes

the light from the receiver
Umbra – Region on receiver that is completely

shadowed
Penumbra – Transition region between umbra

and non-shadowed area

9-April-2007 © Copyright Ian D. Romanick 2007

Planar Shadows
Simplest shadows are those projected onto a

flat plane
● As the description implies, this can be done using a

projection matrix

9-April-2007 © Copyright Ian D. Romanick 2007

Plane equation
Give a point on a plane, p, and the normal of

that plane, n, calculate the plane equation:

d=−n⋅p
n⋅pid=0

9-April-2007 © Copyright Ian D. Romanick 2007

Projection onto a plane
Given a plane, defined by n and d, and a

projection point, p, create a matrix that projects
an arbitrary point onto that plane.
● Like the projection of the view plane and the eye

point.

M=[
n⋅pd−px nx −px ny −px nz −px d

−py nx n⋅pd− py ny −py nz −py d

−p z nx −p z ny n⋅pd− pz nz −pz d

−nx −ny −n z n⋅p]

9-April-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?

9-April-2007 © Copyright Ian D. Romanick 2007

Planar shadows
 If the plane is the ground plane, and the

projection point is the light, M is a matrix that
projects the shadow of world-space geometry
onto the ground.

But where do we insert M into the
transformation stack?
● After the object-to-world space transformations, but

before the world-to-eye space transformation.

9-April-2007 © Copyright Ian D. Romanick 2007

Drawing a planar shadow
Many possible methods. Here's one that works:

● Disable depth buffer
• glDepthMask(GL_FALSE);

● Draw shadow to alpha buffer
• glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_TRUE);

● Enable depth buffer
● Draw object
● Draw ground and modulate with destination alpha

• glEnable(GL_BLEND);
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);

9-April-2007 © Copyright Ian D. Romanick 2007

Hard shadows are better than nothing, but
not much!

Can this technique be extended to create soft
shadows?
● Soft shadows are created when the light has “ area”
● An LED in a dark room casts only hard shadows

9-April-2007 © Copyright Ian D. Romanick 2007

Heckbert and Herf's method
Simulate an area light with many point lights on

the area light's surface
● If lots of sample points are used, this method

produces very good results
● If lots of sample points are used, this method

produces very slow results
● Some optimizations are possible

• Scale number of samples with size of light
• Scale number of samples with distance between light and

shadow caster

9-April-2007 © Copyright Ian D. Romanick 2007

Gooch's method
By moving the receiving plane towards and

away from the light, the penumbra can be
simulated
● The simulated penumbra is always too big

After projecting onto an offset plane, the
projectiong has to be moved to the correct
plane.

9-April-2007 © Copyright Ian D. Romanick 2007

Shadow textures
One way to implement Gooch's method is to

render the shadow to a texture, then draw the
shadow texture multiple times.
● Draw this texture with the light as the eye.

Can just use a single pass and linear filtering
● Use projective texturing to apply

shadow to non-planar objects
● Battlefield 1942 does this (see

image at right)

9-April-2007 © Copyright Ian D. Romanick 2007

Questions?

9-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

 Image from Battlefield 1942 is © Copyright Digital Illusions CE 2002.

