
2-April-2007 © Copyright Ian D. Romanick 2007

Introduction to VGP353

Agenda:
● Course road-map
● Render-to-texture techniques

• Render to framebuffer, copy to texture
• Framebuffer objects

● Assign first programming assignment

2-April-2007 © Copyright Ian D. Romanick 2007

Road­map
Two new general OpenGL features:

● Render to texture
• Rendering to the framebuffer, then copy to a texture
• Rendering directly to a texture via framebuffer objects

● Stencil buffer
Three general methods for generating shadows

● Render planar shadows to a texture
● Shadow maps
● Shadow volumes.

2-April-2007 © Copyright Ian D. Romanick 2007

Grading, etc.
Assignments:

● 5 programming assignments
• You will have 2 weeks for most of them

● 1 paper presentation
● 1 term project

• You will have 3 weeks for this

Tests:
● 4 short quizes
● 1 long final :)

2-April-2007 © Copyright Ian D. Romanick 2007

Rendering to a texture
Several methods exist in OpenGL to render to a

texture.
● Render to the framebuffer, then copy the results to

a texture.
● Use the new framebuffer objects extension.
● Render to a pixel buffer (pbuffer), then bind the

pbuffer to a texture.
• This method is platform dependent (i.e., is different on

Linux, Windows, and Mac OS) and will not be covered in
this course.

2-April-2007 © Copyright Ian D. Romanick 2007

Why render to a texture?
Many, many effects can be created by

rendering to one or more textures, then using
those textures to render the final scene.

2-April-2007 © Copyright Ian D. Romanick 2007

Copy to texture
Easiest and least efficient form of render-to-

texture.
Draw to the backbuffer, copy resulting image to

texture with either glCopyTexImage2D or
glCopyTexSubImage2D.

That's it.

2-April-2007 © Copyright Ian D. Romanick 2007

Problems with copy­to­texture
Must perform extra copies.
Must perform extra buffer clears.
 If the window is obscured or off the screen, the

texture may be corrupted.
The window must be at least as large as the

desired texture.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Normal Map Generation
Given a height map texture, generate a normal

map.
The X component of the normal is the inverse

of the slope of the line between the east and
west neighboring texels.
● Same for Y, but use the north and south neighbors.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Normal Map Generation (cont.)
Really easy to do in a fragment shader!

1. Draw a single quad with texture coordinates
ranging from 0 to 1 in both dimensions.

2. Read the 4 texels around the current texel. Call
them n, s, e, and w.

3. Normal direction is:
d=vec3 e.x−w.x , s.y−n.y ,0.0

d.z=1.0−d⋅d 
d=normalize d 

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation
 If we have a height map that represents waves,

we can simulate motion as a spring network.
● Each wave is “ pulled” up or down by the

surrounding water.
We need to track the wave position and velocity

from time step to time step.
● Store position in R, G, and B; velocity in A.

Also need wave mass, spring constant, and
time step size as uniforms.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation (cont.)
void main(void)
{
 vec4 me = texture2D(wave_state, gl_TexCoord[0].xy);
 vec2 f_vec = vec2(-4.0 * me.x, 0.5 - me.x);

 f_vec.x += texture2D(wave_state, north).r;
 f_vec.x += texture2D(wave_state, south).r;
 f_vec.x += texture2D(wave_state, east).r;
 f_vec.x += texture2D(wave_state, west).r;

 float F = dot(spring_constant, f_vec);
 float V = (mass * F) + (me.w - 0.5);
 float H = (time * V) + (me.x * damping);

 gl_FragColor = vec4(H, H, H, V + 0.5);
}

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation (cont.)
Add some damping and a force pulling the

waves towards rest (i.e., 0.5) to stabilize the
simulation.

The resulting texture can be used as a gray-
scale texture or to generate a normal map.

Remember to adjust time to accurately
measure frame time.

Waves will eventually die.
● Draw new waves into texture periodically.

2-April-2007 © Copyright Ian D. Romanick 2007

Framebuffer Objects
The framebuffer object (FBO) interface has a

fairly steep learning curve.
● We're just going to scratch the surface today, and

we'll continue next week.
● The ARB spent two years developing this interface.
● It builds on the familiar texture interfaces, but is still

very different.
Now that I've stricken terror into your hearts...

2-April-2007 © Copyright Ian D. Romanick 2007

Creating an FBO
The first step is to create the FBO.

● Use glGenFramebuffersEXT and
glBindFramebufferEXT.

Attach one or more renderable objects to it.
● There are several functions available to do this.

More on this later.
● Conceptually, this is similar to attaching shader

objects to a program object.
● Example: Attach an RGBA texture to the FBO.

2-April-2007 © Copyright Ian D. Romanick 2007

Using an FBO
Once the FBO has all of its attachments:

● Make sure the FBO is acceptable to the driver /
hardware with glCheckFramebufferStatusEXT.
• Some hardware can't handle some combinations of

attachments.
• Some combinations of attachments are just plain wrong

(i.e., attaching a depth texture to a color attachment).
● Bind the framebuffer with
glBindFramebufferEXT.

● Reset viewport and draw!

2-April-2007 © Copyright Ian D. Romanick 2007

Using an FBO (cont.)
When done rendering to FBO, bind the 0 object

to resume rendering to window.
To use textures that were rendered to, simply

bind and use as usual.
● You cannot use GL_GENERATE_MIPMAPS with

FBO-rendered textures.
● Instead, use new function glGenerateMipmapEXT

to generate the mipmap stack on-demand.

2-April-2007 © Copyright Ian D. Romanick 2007

Renderbuffers and textures
Two broad types of objects can be attached to

an FBO.
● A texture. Most textures are both texturable and

renderable.
● A renderbuffer. Renderbuffers are only renderable.

• If you won't need to texture from it, prefer to use a
renderbuffer.

2-April-2007 © Copyright Ian D. Romanick 2007

Texture attachments
Created as always using glTexImage2D et. al.

● Typically the pixels parameter will be NULL.
Different attachment function depending texture

dimensionality.
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

2-April-2007 © Copyright Ian D. Romanick 2007

Renderbuffers
Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Only way to supply data to a renderbuffer is by
rendering to it.

Attach to FBO using
glFramebufferRenderbufferEXT.

2-April-2007 © Copyright Ian D. Romanick 2007

Dimensions and dimensionality
The dimensions (i.e., height and width) of all

attachments must match.
● This requirement will be relaxed in a future

extension.
The dimensionality (i.e., 1D or 2D) of all

attachments must match.
● A 2D “ slice” of a 3D texture is attached, so it is

treated as a 2D texture for this purpose.

2-April-2007 © Copyright Ian D. Romanick 2007

Questions?

2-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

