
2-April-2007 © Copyright Ian D. Romanick 2007

Introduction to VGP353

Agenda:
● Course road-map
● Render-to-texture techniques

• Render to framebuffer, copy to texture
• Framebuffer objects

● Assign first programming assignment

2-April-2007 © Copyright Ian D. Romanick 2007

Roadmap
Two new general OpenGL features:

● Render to texture
• Rendering to the framebuffer, then copy to a texture
• Rendering directly to a texture via framebuffer objects

● Stencil buffer
Three general methods for generating shadows

● Render planar shadows to a texture
● Shadow maps
● Shadow volumes.

2-April-2007 © Copyright Ian D. Romanick 2007

Grading, etc.
Assignments:

● 5 programming assignments
• You will have 2 weeks for most of them

● 1 paper presentation
● 1 term project

• You will have 3 weeks for this

Tests:
● 4 short quizes
● 1 long final :)

2-April-2007 © Copyright Ian D. Romanick 2007

Rendering to a texture
Several methods exist in OpenGL to render to a

texture.
● Render to the framebuffer, then copy the results to

a texture.
● Use the new framebuffer objects extension.
● Render to a pixel buffer (pbuffer), then bind the

pbuffer to a texture.
• This method is platform dependent (i.e., is different on

Linux, Windows, and Mac OS) and will not be covered in
this course.

2-April-2007 © Copyright Ian D. Romanick 2007

Why render to a texture?
Many, many effects can be created by

rendering to one or more textures, then using
those textures to render the final scene.

2-April-2007 © Copyright Ian D. Romanick 2007

Copy to texture
Easiest and least efficient form of render-to-

texture.
Draw to the backbuffer, copy resulting image to

texture with either glCopyTexImage2D or
glCopyTexSubImage2D.

That's it.

2-April-2007 © Copyright Ian D. Romanick 2007

Problems with copytotexture
Must perform extra copies.
Must perform extra buffer clears.
 If the window is obscured or off the screen, the

texture may be corrupted.
The window must be at least as large as the

desired texture.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Normal Map Generation
Given a height map texture, generate a normal

map.
The X component of the normal is the inverse

of the slope of the line between the east and
west neighboring texels.
● Same for Y, but use the north and south neighbors.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Normal Map Generation (cont.)
Really easy to do in a fragment shader!

1. Draw a single quad with texture coordinates
ranging from 0 to 1 in both dimensions.

2. Read the 4 texels around the current texel. Call
them n, s, e, and w.

3. Normal direction is:
d=vec3 e.x−w.x , s.y−n.y ,0.0

d.z=1.0−d⋅d
d=normalize d

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation
 If we have a height map that represents waves,

we can simulate motion as a spring network.
● Each wave is “ pulled” up or down by the

surrounding water.
We need to track the wave position and velocity

from time step to time step.
● Store position in R, G, and B; velocity in A.

Also need wave mass, spring constant, and
time step size as uniforms.

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation (cont.)
void main(void)
{
 vec4 me = texture2D(wave_state, gl_TexCoord[0].xy);
 vec2 f_vec = vec2(-4.0 * me.x, 0.5 - me.x);

 f_vec.x += texture2D(wave_state, north).r;
 f_vec.x += texture2D(wave_state, south).r;
 f_vec.x += texture2D(wave_state, east).r;
 f_vec.x += texture2D(wave_state, west).r;

 float F = dot(spring_constant, f_vec);
 float V = (mass * F) + (me.w - 0.5);
 float H = (time * V) + (me.x * damping);

 gl_FragColor = vec4(H, H, H, V + 0.5);
}

2-April-2007 © Copyright Ian D. Romanick 2007

Example: Wave simulation (cont.)
Add some damping and a force pulling the

waves towards rest (i.e., 0.5) to stabilize the
simulation.

The resulting texture can be used as a gray-
scale texture or to generate a normal map.

Remember to adjust time to accurately
measure frame time.

Waves will eventually die.
● Draw new waves into texture periodically.

2-April-2007 © Copyright Ian D. Romanick 2007

Framebuffer Objects
The framebuffer object (FBO) interface has a

fairly steep learning curve.
● We're just going to scratch the surface today, and

we'll continue next week.
● The ARB spent two years developing this interface.
● It builds on the familiar texture interfaces, but is still

very different.
Now that I've stricken terror into your hearts...

2-April-2007 © Copyright Ian D. Romanick 2007

Creating an FBO
The first step is to create the FBO.

● Use glGenFramebuffersEXT and
glBindFramebufferEXT.

Attach one or more renderable objects to it.
● There are several functions available to do this.

More on this later.
● Conceptually, this is similar to attaching shader

objects to a program object.
● Example: Attach an RGBA texture to the FBO.

2-April-2007 © Copyright Ian D. Romanick 2007

Using an FBO
Once the FBO has all of its attachments:

● Make sure the FBO is acceptable to the driver /
hardware with glCheckFramebufferStatusEXT.
• Some hardware can't handle some combinations of

attachments.
• Some combinations of attachments are just plain wrong

(i.e., attaching a depth texture to a color attachment).
● Bind the framebuffer with
glBindFramebufferEXT.

● Reset viewport and draw!

2-April-2007 © Copyright Ian D. Romanick 2007

Using an FBO (cont.)
When done rendering to FBO, bind the 0 object

to resume rendering to window.
To use textures that were rendered to, simply

bind and use as usual.
● You cannot use GL_GENERATE_MIPMAPS with

FBO-rendered textures.
● Instead, use new function glGenerateMipmapEXT

to generate the mipmap stack on-demand.

2-April-2007 © Copyright Ian D. Romanick 2007

Renderbuffers and textures
Two broad types of objects can be attached to

an FBO.
● A texture. Most textures are both texturable and

renderable.
● A renderbuffer. Renderbuffers are only renderable.

• If you won't need to texture from it, prefer to use a
renderbuffer.

2-April-2007 © Copyright Ian D. Romanick 2007

Texture attachments
Created as always using glTexImage2D et. al.

● Typically the pixels parameter will be NULL.
Different attachment function depending texture

dimensionality.
● glFramebufferTexture1DEXT – Attach a 1D

texture.
● glFramebufferTexture2DEXT – Attach a 2D

texture or a cube map face.
● glFramebufferTexture3DEXT – Attach a slice

of a 3D texture.

2-April-2007 © Copyright Ian D. Romanick 2007

Renderbuffers
Created using glGenRenderbuffersEXT and
glRenderbufferStorageEXT.
● Analogous to glGenTextures and
glTexImage2D.

● Only way to supply data to a renderbuffer is by
rendering to it.

Attach to FBO using
glFramebufferRenderbufferEXT.

2-April-2007 © Copyright Ian D. Romanick 2007

Dimensions and dimensionality
The dimensions (i.e., height and width) of all

attachments must match.
● This requirement will be relaxed in a future

extension.
The dimensionality (i.e., 1D or 2D) of all

attachments must match.
● A 2D “ slice” of a 3D texture is attached, so it is

treated as a 2D texture for this purpose.

2-April-2007 © Copyright Ian D. Romanick 2007

Questions?

2-April-2007 © Copyright Ian D. Romanick 2007

Legal Statement
 This work represents the view of the authors and does not

necessarily represent the view of IBM or the Art Institute of Portland.

 OpenGL is a trademark of Silicon Graphics, Inc. in the United States,
other countries, or both.

 Khronos and OpenGL ES are trademarks of the Khronos Group.

 Other company, product, and service names may be trademarks or
service marks of others.

