Mipmapping Normal Maps

• Technical brief by Michael Toksvig of Nvidia.
• Published in April 2004.
• Covers GeForce3 / Radeon 8500 generation hardware.
 − Requires DOT3 texture combine.
 − Requires dependent texturing.
Background

• Traditional mipmap calculations fail on normal maps.
 - Averaging multiple normals together gives a vector less than unit length, which results in lighting artifacts.
Theory

- By knowing how much shorter the averaged normal is, we can improve the lighting.
 - The paper suggests creating a table of scale factors and shininess exponent modifiers.
 - The new lighting equation becomes, where N_a is the averaged normal and s is the shininess exponent:

\[
\begin{align*}
 f_t &= \frac{|N_a|}{|N_a| + s(1 - |N_a|)} , \\
 K_s &= \frac{1 + f_t s}{1 + s} \left(\frac{N_a \cdot H}{|N_a|} \right)^{f_t s}
\end{align*}
\]
Implementation

- Since $N_a \cdot N_a$ and $N_a \cdot H$ must be between 0 and 1, all possible values of each can be plugged into the preceding equation and stored in a 2D texture.
 - The texture is accessed using $N_a \cdot N_a$ and $N_a \cdot H$ as texture coordinates.
 - Note that N_a is **not** normalized.
Questions?
Legal Statement

- This work represents the view of the authors and does not necessarily represent the view of IBM or the Art Institute of Portland.

- OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other countries, or both.

- Khronos and OpenGL ES are trademarks of the Khronos Group.

- Other company, product, and service names may be trademarks or service marks of others.