
1

LVFS and fwupd

A high level overview for UNC-
FaMAF explaining we distribute
firmware updates in Linux.
Richard Hughes
Principal Engineer

2

Who am I?

I’ve been doing Open Source
work for over 15 years.

I’m responsible for at least 3 of

the projects currently installed
on your Linux machine.

You already trust me!

Tens of millions of people use my
software every single day.

This “talking at University” thing

is new to me; please be kind :)

3

The Problem: Users were not updating firmware

What hardware is installed?

Users don’t typically know exactly what
hardware they are using.

Where do I get them from?

Many OEMs have insecure download links
without any file checksums or signatures.

What updates are available

Users do not visit OEM websites to
manually look for firmware updates.

How to apply the update

Vendor tools often required Microsoft
Windows, or unsupported Linux versions.

4

LVFS and fwupd work together

LVFS : Trusted Metadata Source

The hardware vendor uploads firmware to
the LVFS where it is verified and signed.
Users then download a shared metadata

catalogue from a central server.

fwupd : Mechanism

The open source fwupd project deploys the
update onto the Linux client machine. Over
32 update protocols are now supported and

more are planned.

LVFS : Anonymous Reporting

After updating firmware, fwupd optionally
sends success or failure information back to

the LVFS to ensure updates are being
deployed without problems

5

Architecture of fwupd

D-Bus is used to interact with fwupd
 - Desktop neutral interface with binding for every language
 - Optionally downloads metadata from the LVFS
 - Enumerate hardware & deploy firmware.

Updates not applied without an agent
 - Full integration with GNOME and KDE, and CLI interface

Scalable architecture designed to continue to grow
 - Written in a lowest common denominator language: C
 - Well tested dependancies of GLib and GObject

6

Architecture of LVFS
A simple web service that had to be “just good enough”
 - Adding functionality only when requried

Privacy-centric by design
 - Puts privacy first by matching hardware client side
 - Metadata scale out to users via a “dumb” CDN

Mostly centralized firmware distribution
 - Can easily be mirrored on a private network
 - For demoting failing firmware
 - Really for statistics

Scalable architecture
 - Written in a high level language: Python
 - Well tested dependancies of Flask and SQLAlchemy

7

90 OEMs, ODMs & IHVs all work together

Most of the
consumer supply
chain

2016 2018 2020

2017 2019 2021

8

Firmware Analysis : Raising the Bar

9

Firmware Analysis : Certificates

10

Firmware update cadence used for purchasing

11

Private End-to-End Testing

12

There is no cost to use the LVFS
or to contribute to fwupd

The Linux Vendor Firmware Service is managed by the Linux Foundation

and core development work is provided by neutral Red Hat.

Independent consulting companies provide technical help and training.

13

OEMs are free to choose whatever

criteria they like for hardware

suppliers, and they are choosing

these rules for various business

reasons.

Lenovo

All suppliers for Lenovo ThinkPad, ThinkStation and ThinkCentre
have to have working fwupd plugins and be able to upload to the
LVFS. Failure to meet either criteria causes the “preferred vendor”
status to be lost.

Dell

All approved ODMs and ISVs being used by Dell must have
firmware that can be updated using fwupd and have updates
available on the LVFS.

Google

Firmware must be updatable using fwupd to get the “Works with
Chrome” compliance sticker. Google are shipping parts of fwupd in
every Chromebook now sold.

OEMs just want
an easy life

16

ODMs and OEMs include LVFS in contracts

Independent BIOS Vendor

The OBV typically uploads firmware to the LVFS
to run tests and to verify that the image works

with fwupd. IBVs and ISVs are normally not
shown on the LVFS.

Original Device Manufacturer

The ODM can either just upload updates on
behalf of the OEM, or the ODM can manage the
entire QA process including pushing to testing

and stable.

Original Equipment Manufacturer

The OEM is the “user visible” brand the user is
familiar with, and is typically the only vendor
visible on the LVFS. OEMs can test firmware

uploaded by their ODMs.

17

Keeping two world in sync

18

Every day over 10 million Linux users

automatically download firmware update

metadata from the LVFS.

19

The LVFS grows every year, as new vendors join
and as more firmware is uploaded

Companies and agencies are

free to mirror the LVFS for

privacy or scalability reasons

and so we don’t actually know

the real number of downloads.

Every day over 12 million Linux

users automatically download

firmware update metadata

from the LVFS.

Firmware files supplied to end users

Since the LVFS started the official server has
supplied millions of firmware updates for over
200 different devices.

Success reports from end users

Over 99% of firmware was deployed correctly,
with 1% of “known failures” identified using a
built-in rule engine.

29.8M 1.1M

20

What the vendors are saying...

LVFS is strategically important for Dell to

be able to provide secure firmware updates

in a standards-compliant way.

“
”

Mario Limonciello
Sr. Principal Software Engineer, Dell

Standardizing on LVFS has helped Lenovo

seamlessly distribute our firmware updates

to our customers

“
”

Rob Herman
Executive Director, Lenovo

21

After the break I’m going to show

you how to create a real-world

plugin. This is what programmers

paid by billion-dollar OEMs and

ODMs all over the world are doing

right now.

Time for a 2 minute break?

These slides are also available here: https://people.freedesktop.org/~hughsient/temp/UNC-FaMAF.pdf

22

Plugin tutorial
Following along on your own computer is optional, but if you want to
copy you will need:
● An Ubuntu or Fedora Linux installation, e.g. bare metal or in a

VMWare/VirtualBox with git and an editor like gedit installed
● Internet access on the host for source code and additional packages
● About 500MB of spare storage space
● Some patience! Please remember I’m human too :)

23

Plugin tutorial
For this tutorial we will create a simple fwupd plugin that:

1. Builds a new source file into a shared plugin object

2.Initializes the plugin

3.Enumerates and creates a fake device

4.Accepts some firmware for the fake device (maybe, if we have time)

If something doesn’t work or you fall behind DO NOT PANIC. I’ll provide some
“fast-forward” instructions. A link to the slides will also be available after the
session if you want to try this in your own time.

24

Plugin tutorial : Getting the code
Let’s get the fwupd code:

$ cd ~
$ git clone https://github.com/fwupd/fwupd.git
$ cd fwupd
$ git checkout 1.6.1

25

Plugin tutorial : Getting the deps
Let’s get the build packages fwupd needs to compile:

$ OS=fedora ./contrib/ci/generate_dependencies.py |
xargs sudo dnf install -y
$ OS=ubuntu ./contrib/ci/generate_dependencies.py |
xargs sudo apt install -y

26

Plugin tutorial : Setting compile options
Let’s set up some options which control how fwupd is built:

$ mkdir build && cd build
$ meson ../ -Dsystemd_root_prefix=/tmp -Dudevdir=/tmp
--prefix=$HOME/.root -Ddocs=none

27

Plugin tutorial : Compiling the code
$ ninja -v

$ ninja install

Installing is very important as we’ll find out later!

28

Plugin tutorial : Creating a new plugin
Let’s create a new source file that will be our simple famaf plugin:
$ mkdir ../plugins/famaf
$ gedit ../plugins/famaf/fu-plugin-famaf.c

29

Plugin tutorial : Building the new plugin
Let’s create a build definition that actually builds our new source file.
$ gedit ../plugins/famaf/meson.build

30

Plugin tutorial : Building the new plugin (2)
Now we have to tell the build system we have to use plugins/famaf
$ gedit ../plugins/meson.build

31

Plugin tutorial : Building the new plugin (3)
Now we can rebuilt the project and install libfu_plugin_famaf.so

$ ninja install

If you can’t type as fast as I can speak, simply do:

$ git reset --hard
$ git checkout wip/famaf/init

32

Plugin tutorial : Running the new plugin (3)
The main fwupd binary loads all the plugins and runs the system
service. We just want to use a debug binary to run just our plugin:

$ sudo ./src/fwupdtool --plugins famaf --verbose get-
devices

Wow!

33

Plugin tutorial : Adding a device
During the “coldplug” phase plugins add devices already connected.

Fast forward with:

$ git reset --hard
$ git checkout
wip/famaf/coldplug

34

Plugin tutorial : Adding a device (2)
$ ninja install
$ sudo ./src/fwupdtool --plugins famaf --verbose get-
devices

35

Plugin tutorial : Writing Firmware
The vfunc fu_plugin_update() is called with the firmware payload.

Fast forward with:

$ git reset --hard
$ git checkout
wip/famaf/update

36

Plugin tutorial : Writing Firmware (2)
$ ninja install
$ echo -n "LGTM" > firmware.bin
$ sudo ./src/fwupdtool --plugins famaf --verbose
install-blob firmware.bin

37

Plugin tutorial : Submit upstream
If we added more details, the plugin we just wrote could be submitted
upstream as a pull request.

38

Plugin tutorial : Complete!
Well done if you’re still awake and following along!

There are lots of other things to implement, e.g.
● prepare()
● detach()
● attach()
● cleanup()

But this is for another day!

39

Thanks for
listening!

Contact me:
richard@hughsie.com

rhughes@redhat.com

@hughsient

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	
	Slide 13
	Slide 16
	Slide 17
	Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat. Ut wisi enim ad minim veniam.
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

