Kernel GPU API and radeon KMS status

Jerome Glisse

February 2010

‘ redhat

Jerome Glisse - Kernel GPU APl and radeon KMS status

KMS radeon status
radeon command processor

State atoms

Jerome Glisse - Kernel GPU APl and radeon KMS status 1

Big fella

Doesn't do coffee yet ...

» 70 kloc (2 times bigger than Intel)

» Biggest driver in the whole Linux kernel
tree 7

> More than 9 differents GPU family
(RIXX, R2XX, R3XX, RS4XX, R4XX, R5XX,
RS6XX, R6XX, RS7TXX, R7XX, RS8XX)

HAKING . .
18 T T WE? > Several different ASIC per family

» Everybody mess with the GPU (BIOS,
GPU BIOS, ACPI, ...)

Jerome Glisse - Kernel GPU APl and radeon KMS status

\ 7

Small computer

» Memory controller

S
>
>
>
>
>

Command processor

Clock

GART

PLL

Encoder (LVDS, DVI, HDMI, DisplayPort, ...)

Jerome Glisse - Kernel GPU APl and radeon KMS status 4/31

Future features

» Support for unmappable VRAM (PCl BAR & CPU)
» R8xx family support (Evergreen)

v

Use of PM ops for better suspend/hibernate support
» Power management

» HDMI audio for R7XX/R8XX ?

» Improved GPU lockup recording

Code cleanup

» Better fence for improved lockup detection
» Use union to separate asic specific datas

» Better message print for multi-gpu configuration

- Jerome Glisse - Kernel GPU APl and radeon KMS status

S

Most common issues

» Mode detection issue (no EDID or broken
EDID)

PLL issues especialy laptop

Suspend/Resume issues
ACPI/BIOS interactions issues
Memory fragmentation & cs issues
AGP related issues

GPU lockup

vV vV V. VvV Vv Y

- Jerome Glisse - Kernel GPU APl and radeon KMS status

GPU lockup

Several possible root

» Timing issue with the bus

» Access to invalid address on the bus

» Invalid/Incorrect command stream issues
» Overheating leading to GPU lockup ?

» Bad VRAM ... memtest for VRAM

» Capture invalid/incorrect command stream. Detecting it ?
» Find errata for timing issue 7 Issue with hw manufacturer ...

> Better testing of memory controller setup so we can
understand how invalid bus address happens (corrupted GART
entry 7).

- Jerome Glisse - Kernel GPU APl and radeon KMS status

radeon command processing overview

command processor

» reads command from the ring buffer
» each entry follow a common format: packet (PKT)

» a special packet allow the cp to fetch command from another
buffer called indirect buffer (I1B)

» in the end all command can be derived into register write (CP
translates packet into register write)

- Jerome Glisse - Kernel GPU APl and radeon KMS status

radeon comman ocessing overview

Host start of buffer ~ end of buffer G raph ICS
. X Controller
Write Pointer Address
Buffer Base ‘ Write Pointer
Buffer Size Read Pointer

Write Pointer

. ey S AN {1 Buffer Base
v Read Pointer I) I

y Buffer Size
e } av PN
Ring Buffer ’— Packels - . Bus
Server v | Ring Buffer Mastering
S - p
= =) Unit
\ '/"
Driver(s| AN —— g
€ ~ free area

Read Pointer
Address

B Execution ; N !
LegEﬂdZ Register Unit . Memary data flow

Jerome Glisse - Kernel GPU APl and radeon KMS status

-

Command Packet

Buffer

Packet type

» Type 0 write contiguous registers
» Type 1 weird registers write

» Type 2 NOP

» Type 3 special packet

» each op is dedicated to one specific aspect of the states
» packet3 are translated into register write by the CP

> easier to check, fixed ordering of values

- Jerome Glisse - Kernel GPU APl and radeon KMS status

KMS userspace command submission API: cs

Rendering command
(draw triangle, square...)
Y
Userspace
(X driver, mesa GL driver, ...) Command stream or cs
v . .
bdrm. radeon » buffer filled by userspace with
(helper to abstract kernel API) packets
! » kernel parse this buffer for
CS ioctl security purpose and relocation
(parse userspace parameter)
¥ » if buffer is valid kernel schedule
asic specific parser the buffer as an IB by writting
(parse command stream) the special packet 3 into the ring
CP
(parse command &
execute them)

Jerome Glisse - Kernel GPU APl and radeon KMS status 11/31

Building packet is not rocket science

Bottom line

» Packet packing is simple (bytes
shifting & oring)

» Core driver don't need to bother

e » Duplicate work packing in
LHH'\Q \ userspace, unpacking in kernel
= L space

L L

T : s .
It's time we face reality, my friends... » Kernel can do it

We're not exactly rocket scientists

- Jerome Glisse - Kernel GPU APl and radeon KMS status

States split up

Breaking into pieces

» Grouping GPU states into pieces

» Try matching the hw grouping
(registers holding different states
together)

» Try to match Gallium3D states
(src/gallium/include/p_states.h)

- Jerome Glisse - Kernel GPU APl and radeon KMS status

Gallium3D theor

Create, bind, profit, unbind

> States atom regroup different states related to the same
aspect (blending, zbuffer, stencil, ...)

» Create a states atom
texture, vbo, blend configuration, ...

» Bind a group of states & perform rendering
» Unbind, rebind, render and profit

Why it's good 7

» Most of the states stays alive during long period of time

» Would be nice to validate once and reuse

- Jerome Glisse - Kernel GPU APl and radeon KMS status

Surface states atom

> size width & height
> layout (tiling, ...)

> usage (texture, renderbuffer, vertex, index ...)

struct pipe_surface

{
struct pipe_reference reference;
enum pipe_format format; /*%<
unsigned width; /*x<
unsigned height; /*%<
unsigned layout; /*x<
unsigned offset; VAL
unsigned usage; VAL
unsigned zslice;
struct pipe_texture *texture; /**<
unsigned face;
unsigned level;

};

Jerome Glisse - Kernel GPU APl and radeon KMS status

PIPE_FORMAT_x */

logical width in pixels */

logical height in pixels */
PIPE_SURFACE_LAYOUT_x */

offset from start of buffer, in byte
PIPE_BUFFER_USAGE_*x */

texture into which this is a view *

Blending states atom

Blending
» logcial operation
» dithering

» per render target blend information

struct pipe_rt_blend_state {
unsigned blend_enable:1;

unsigned rgb_func:3; /**< PIPE_BLEND_x */
unsigned rgb_src_factor:5; /*%< PIPE_BLENDFACTOR_x */
unsigned rgb_dst_factor:5; /**%< PIPE_BLENDFACTOR_x */
unsigned alpha_func:3; /**< PIPE_BLEND_x */

};

struct pipe_blend_state {
unsigned independent_blend_enable:1;
unsigned logicop_enable:1;
unsigned logicop_func:4; /**< PIPE_LOGICOP_x */
unsigned dither:1;
struct pipe_rt_blend_state rt[PIPE_MAX_COLOR_BUFS];
};

Jerome Glisse - Kernel GPU APl and radeon KMS status

Vertex buffer states atom

Vertex buffer

» num of vertices
> stride between element

> one pipe_vertex_buffer per attributes (pos, color, textures, ...)

struct pipe_vertex_buffer {
unsigned stride; /**< stride to same attrib in next vertex, in bytes
unsigned max_index; /**< number of vertices in this buffer */
unsigned buffer_offset; /*x< offset to start of data in buffer, in byt
struct pipe_buffer *buffer; /**< the actual buffer */

Jerome Glisse - Kernel GPU APl and radeon KMS status 17/31

"True” GPU states

Close to metal ... or silicium

» Use GPU register packing

> Field related to same aspect are often grouped tightly in a
small number of registers.

» For instance color control states :

struct drm_r600_cb_cntl {
u32 cb_target_mask;
u32 cb_shader_mask;
u32 cb_clrcmp_control;
u32 cb_clrcmp_src;
u32 cb_clrcmp_dst;
u32 cb_clrcmp_msk;
u32 cb_color_control;

};

Jerome Glisse - Kernel GPU APl and radeon KMS status 18/31

States atom creation

Building it for the GPU

» Each states atom is selfcontained (all information necessary
are provided at creation)
» Perform various check :

» size of buffer used (for render buffer with * height * bpp, ...)

» is configuration is legal for the GPU
>

» Build packets which correspond to the states

» Save the packets so later on batch scheduler can use them

- Jerome Glisse - Kernel GPU APl and radeon KMS status

How to render ?

» Submit a batch which has ID of all GPU states

struct drm_r600_batch {

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom
radeon_atom

*vs_constants;
*ps_constants;
*blend;

*cb;

*cb_cntl;

*pa;

*tp;

*vport;

*db;

*db_cntl;
*vgt;

*spi;

*SX;

radeon_bo *indices;
unsigned num_indices;

Jerome Glisse - Kernel GPU APl and radeon KMS status

Batch scheduler

Avoiding reprogramming states

>

vV v.v v Y

Program a given states only if GPU was using different one
Do buffer validation and relocation

Fill command buffer

Flush command buffer once no more batch can be queue
Compute how much GPU memory the command buffer need

Flush command buffer when there isn't enough GPU space for
next batch

For programming GPU use the packets build at states atom
creation

\ 7

Jerome Glisse - Kernel GPU APl and radeon KMS status

States atom, adding fields

There is no trick ...

» Each states atom has a uniq type ID
» Add a new type ID

» Old userspace can continue to use previous states atom type
» Could mix old states atom types & new one

» Mixing render less efficient same states detections

struct drm_r600_cb_cntl_tropbientropnouveau {
u32 cb_target_mask;
u32 cb_shader_mask;

u32 unknown_register_qui_tue;

Jerome Glisse - Kernel GPU APl and radeon KMS status 22/31

Where should we do that 7

> States atom creation & validation can only happen in kernel

How to store states 7

» It can takes a lot of memory.
» Memory should be accounted as process’s memory

» Forbid process to overwrite it

Plans

» Building kernel APl is time consuming
» Kernel API are frozen once released

» We want somethings now that can be refined before going
into the kernel

- Jerome Glisse - Kernel GPU APl and radeon KMS status

Doing it on top of cs ioctl

£ H
T HAVE THE ABILITY g THAT IS WHY %_ WHO

TO QUANTIFY THE 2 THEY CALL ME H CALLS

UNQUANTIFIABLE. g DOGBERT THE 2 YOU
g QUANTIFIER. £l ThAT? EIGHT
i i | PEOPLE.
] !
32 g = o
H N m‘\ ﬂl
g 2

What's good for

» No ugly command size prediction like in current mesa driver
» No cumberstone BO accounting for flush

» Core driver can focus on building GPU states

Jerome Glisse - Kernel GPU APl and radeon KMS status 24/31

Command size prediction

Command size prediction today

Cumberstone

>
» Easily breakable when adding or moving states
» Driver writer has to worry about it

S

Hard for the driver to avoid state reprogramming duplication

Command size prediction tomorrow

» Each batch has a know command size
» Avoid reprogramming same state in same cs
» Easy to remove a batch from a cs to another cs (forced flush)

» Core driver don't worry about that, it builds states and send
batch

Jerome Glisse - Kernel GPU APl and radeon KMS status

Buffer object accounting & flushing

Buffer object accounting & flushing today

» Cumberstone

» Driver has to check over and over if it needs to flush cs

Buffer object accounting & flushing tomorrow

» Easy for the batch scheduler to count size needed for all the
buffer of a cs

» Easy for the batch scheduler to flush and put next batch into
a new cs

- Jerome Glisse - Kernel GPU APl and radeon KMS status

So you get free ticket to the moon ?

Divide and conquer

States atom and batch allow to divide the problem
» Core driver build GPU states
» Batch scheduler deals with flushing and states emissions
optimization

Each part has its own problem to solve: easier, simpler, cleaner

Drawbacks/shortcoming ?

» None, i am biased ;)

- Jerome Glisse - Kernel GPU APl and radeon KMS status

But R100/R200 states thingy was a disaster !

Too much too often

» All the states were in a single structure
» Had to reemit all the states all the times (each ioctl)

» Each draw command needed full states reemissions

Not the same

States atom presented here doesn’t follow this broken design.

» Small number of states per atom
» Each states atom as a uniq ID allow :
» States atom easily replaced by new one (adding new fields)
» Batch several rendering in one ioctl while allowing changing as
little states as possible between the differents rendering

- Jerome Glisse - Kernel GPU APl and radeon KMS status

What's coming next ?

Plans

>

vV v.v v Y

Finish up r600winsys (nearly fully done)

Do a quick gallium3d skeleton driver able to render tri-flat
Plugin a shader compiler -> glxgears stepstone

Plugin texture & sampler -> quake3 stepstone

Refine states split up, try to optimize things a bit

Starts playing with kernel implemented states and benchmark
to see if it is worth to put it in the kernel for performances

Refine the Gallium3D driver to support all the features
(multi-buffer rendering, hyperz, tiling, ...)

Do coffee somewhere between those steps ...

\ 2

Jerome Glisse - Kernel GPU APl and radeon KMS status

That's all Folks

Jerome Glisse - Kernel GPU APl and radeon KMS status

	KMS radeon status
	radeon command processor
	State atoms

