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Overview

●The Historic OpenOffice.org Build System
●Goals for a Better Build System
●gbuild Architecture
●Migration
●gbuild New Features (since last year’s conference)

●Future Work
●Lessons Learned
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The Historic OpenOffice.org Build System (1) 

●combination of build.pl / deliver.pl / dmake
●dmake:

●conceptually similar to standard make but different syntax
●OOo the only project using it
●according to folklore dmake was selected in 90s because it 

was the only thing that worked on Mac OS
●it's so obsolete it's licensed GPLv1 (!)

●build.pl / deliver.pl
●homegrown Perl scripts...



4

The Historic OpenOffice.org Build System (2) 

●build.pl iterates over all modules (top-level directories) & 
invokes dmake in each directory
●obscure build.lst files
● recursive make

●(technically (almost) no recursion but morally equivalent)
●“Recursive Make Considered Harmful”, Peter Miller, 1997
●re -stat lots of files on every dmake invocation...

●all dmakes in module done: build.pl invokes deliver.pl
●copies files listed in d.lst to "solver"

●doesn't "solve" anything (Solar Version)
●dumping ground for inter-module build
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Example: OOo build (from scratch + run all tests)

●./configure --enable-foo
●./bootstrap
●source LinuxX86-64Env.Set.sh
●cd smoketestoo_native
●Xephyr :42 &
●DISPLAY=:42 build --all -P2 -- -P2
●DISPLAY=:42 subsequenttests
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Example: OOo build (incremental)

●Let's do some change in vcl... 

●touch vcl/inc/vcl/window.hxx
●cd instsetoo_native
●build --prepare --from vcl
●build --all -P2 -- -P2
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Example: OOo build: clean a single module

●cd module
●deliver -delete
●rm -rf $INPATH

●(alternatively:)

●cd module
●build --prepare --from module
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Example: OOo build: run subsequenttests in a 
module

●cd module
●DISPLAY=:42 OOO_SUBSEQUENT_TESTS=t build 
-P2
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Goals for a Better Build System 

●lean prerequisites
●use standard tools
●don't want to maintain another dmake

●full dependencies for incremental builds
●easy to use & reliable even for non-experts
●easier parallelism, less bottlenecks, better scalability
●less boilerplate in makefiles
●less "creativity" in makefiles

●there should be one obvious way to to things
●automatically run tests during build
●… all of that with an incremental migration path
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Goals for a Better Build System: LO perspective 

●LO different from OOo and other OOo based projects:
●Not large-corporation oriented, but community-oriented
●"Every time an incremental build fails a potential contributor 

is turned away from the project." 
●developers push directly to master, not to feature branches

●low-level headers tend to change a lot
●incremental builds really have to “just work”!
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Example:
 current LO build (from scratch + running all tests)

●./autogen.sh --enable-foo
●make check
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Example: LO build (incremental)

●Let's do some change in vcl...

●touch vcl/inc/vcl/window.hxx
●make
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Example: LO build: clean a module

●make module.clean
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Example:
LO build: run subsequenttests in a module

●make module.subsequentcheck
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Example:
LO build: run subsequenttests in a module

●make module.subsequentcheck

●… and if it crashes you get a stack trace … automagically! 
●(except if you're unlucky and have to build on 

Windows... patches welcome) 
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Bonus Examples: LO build: debugging features

●Run tests in gdb:
●GDBCPPUNITTRACE="gdb --args" make

●Run tests under Valgrind:
●VALGRIND=memcheck make module.check
●VALGRIND=memcheck make module.subsequentcheck

●Run soffice in gdb:

●make debugrun
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gbuild Architecture 

●one GNU make process to build everything
●but can also build single module

●based on GNU make 3.81+ features:
●eval 
●target local variables

●one makefile per deliverable
●full dependencies

●can be turned off (tinderbox, distro builds)
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gbuild Files 

●solenv/gbuild: core implementation
●solenv/gbuild/platform: platform specific bits

●Repository.mk: define all linktargets/jars
●RepositoryExternal.mk: bundled external libs
●RepositoryFixes.mk: ugly hacks
●RepositoryModule.mk: for single process build
●config_*.mk: configure output
●*/*.mk: user makefiles
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gbuild Implementation

●pseudo-OOP in GNU make
 $(eval $(call gb_Class_method,instance, 
 param...))

●solenv/gbuild: 12.5k lines of .mk
●solenv/gbuild/platform: 4k lines .mk + 100 lines .awk

●for comparison: solenv/inc: 25k of dmake
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gbuild Old Features (already a year old)

●supports standard environment variables like CPPFLAGS, 
CXXFLAGS, LDFLAGS

●cross compilation support
●new platforms:

● *BSD, Android, iOS, Solaris/GCC, MSVC2012, AIX
●mergedlibs
●check object owner
●--enable-selective-debuginfo="sw/ svx/ xmloff/"
●full dependencies for svidl, UNO IDL
●new targets: Asm, Yacc/Lex, Configuration, PyUno, Extension, 

Dictionary, Scp/InstallModule, Cli, ExternalProject, UI
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Five Year Plan

1) get rid of dmake / build.pl
2) runnable installation: instdir
3) get rid of solver
4) shrink scp2



Incremental Migration (image from M.Meeks)
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Migration completed

●http://skyfromme.wordpress.com/2013/02/28/one/  
●dmake / build.pl / deliver.pl dead and gone

●everything built by one GNU make process now
●converted last 40 modules [Peter, Matúš]
●new targets:

●GeneratedPackage, PackageSet, AllLangPackage 
HelpTarget, AllLangHelp, ExternalExecutable [dtardon]

●Gallery [mmeeks]
●AutoInstall [Bjoern, Matúš]
●PythonTest [David O]

http://skyfromme.wordpress.com/2013/02/28/one/
http://cgit.freedesktop.org/libreoffice/core/commit/?id=2b791f1cc51eaad25bd3464f94231fe4b236fae6
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gbuild is a Community Effort

●thanks to regular contributors:
●David Tardon
●Norbert Thiebaud
●Matúš Kukan
●Peter Foley
●David Ostrovsky
●Bjoern

●and many more than would fit on this slide
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Improved build performance 

●don't start build from scratch by writing out 10k empty 
object .d files [Bjoern]
●saves 10 seconds on Linux
●saves 10 minutes on Windows

●build included .d files as side-effect of target [mst]
(saves a restart (only on successful build))

●reduce "mkdir -p" calls in rules [Matúš, Bjoern, mst]
●only re-link if library ABI (exported symbols) changes [mst] 

(idea from Ami Fischman of Chromium)
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Python Test [David O] 

●make it easier to write tests with less boilerplate
●no annoying UNO queryInterface clutter

●make the tests easier to debug than JunitTest
●run in-process
●GDB can print python language stack
●though not as easy as CppunitTests yet:

●needs more GDB features like stack-frame filters
●needs ability to set breakpoint in Python code

●working on Linux, Mac, Windows now
●converted a few JunitTests over
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Windows improvements

●code signing [Fridrich]
●support MSVC 2010 / 2012 [David O, Peter]
●use debug runtimes with --enable-dbgutil [mst]
●use precompiled headers [Luboš]
●64 bit (experimental) [Tor, Fridrich]
●no more oowintool [Peter]
●simple selection of MSVC version [Tor]
●GCC-wrapper for MSVC [Peter]

●build bundled autotools using externals with MSVC
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Mac OS X improvements

●support SDKs 10.6/10.7/10.8/10.9 [Tor]
●support building with clang / libc++ [Tor, Stephan]
●code signing [Tor]
●64 bit (experimental) [Tor]
●WIP: Mac-like App structure [Tor]



29

misc features (1)

●config headers [Luboš]
●config_host/*.h.in
●generated by configure.ac
●remove loads of -D from compiler command line, and 

actually force rebuilds on changes
●usability: user-friendly make targets [Luboš]

make CppunitTest_sw_macros_test
●clang compiler plugin support [Luboš]

●extra warnings for misusing LO internal interfaces
●simple code rewriter, already used
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misc features (2)

●BUILDDIR != SRCDIR [Norbert]
●binary external tarballs [Norbert]

●just unpack these and don't build
●makes tinderboxes faster by 15 %

●gb_Package_PRESTAGEDIR [Bjoern]
●provide a partial build result as a "cache" and re-use it

●autodoc replaced with doxygen [mst]
●~60k LOC autodoc replaced by 1k LOC of UNO IDL code 

in doxygen
●module dependency graph utility [mmeeks, David O]
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Runnable Installation: instdir

●instdir [dtardon, Matúš, mst]
●runnable LO installation, known to work on Linux, 

Windows, Mac
●is updated simply by incremental build

=> faster “make check”
●replacement for "make dev-install"
●obsoletes the horrible "linkoo" hack
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gbuild Current Work In Progress: kill solver 

●solver: an anachronism
●misleadingly named (Solar Version)
●initially designed for partial builds: only check out a single 

module from CVS, build that against headers & libraries on 
NFS share

●partial builds mostly obsolete with today's disk sizes
●entirely obsolete now, all files are in instdir and workdir
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Storage Deduplication

●don't copy stuff pointlessly around
●move all public headers to global include/ dir [Bjoern]

●no more solver/*/inc
●copying headers may also break incremental builds

●use headers of externals directly from UnpackedTarball dir
●special case: zip removal [dtardon]

●used to spend lot of time pointlessly zipping and un-
zipping files
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gbuild TODO: scp2 

●scp2: defines contents of installation sets
●duplicating a lot of conditionals that are already in 

makefiles
●lots of boilerplate
●own way to define library names

●do we still need this? can make do the job directly?
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gbuild Current Work In Progress: scp2 

●work ongoing to remove the duplicative file definitions
●Package filelists [dtardon]

●Package copies files to instdir
●writes a list-of-files-file, reference it from scp2, installer 

looks up files in instdir
●Auto-Installed LinkTargets [Bjoern]

●register Library and Executable in Repository.mk,
●then scp2 entries are auto-generated

●config files (unorc etc.) (“Profile”)
●need to be written by a Makefile anyway for instdir
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gbuild Current Work In Progress: scp2 

●what parts of scp2 will survive?
●there are things like

●weird definitions for instset root-directories
●module structure
●Windows Registry entires
●Windows Start menu entries
●translated strings (.ulf files)

●can this also be replaced? who knows...
●if the top-level knows all the files that go into the instset 

then scp2 doesn't need to track files
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Windows build performance 

●Windows is slow
●Cygwin is slow

●POSIX stat() call emulation, likely slow
●fork() copies whole process memory

●we use Cygwin make
●also has issues losing jobserver tokens

●can we use native Win32 GNU make?
●reliable enough?

●(at least gbuild is faster than dmake based build system was)

http://cygwin.com/cgi-bin/cvsweb.cgi/src/winsup/cygwin/fork.cc?rev=1.244&content-type=text/x-cvsweb-markup&cvsroot=src


Build now officially "ridiculously easy"

“The whole thing built. Without errors. I had 
working libreoffice debug binaries in six easy, 

well-documented steps. 

That was amazing — it changed my mind about 
how much a project can improve its build 

experience if the developers really decide to 
prioritize it.” – Karl Fogel 

 http://www.rants.org/2013/07/28/libreoffice_insanely_easy_build_process/ 

http://www.rants.org/2013/07/28/libreoffice_insanely_easy_build_process/


Parallelism:
never forget the N in “make -jN”

<tml__> whoa, the load average of my linux 
box is 372 
<tml__> wonder what is going on 
<mst___> tml__, accidentally ran "make 
-j"? hmm... but your box would be dead 
then 
<tml__> hmm, I seem to have run 
PARALLELISM= nice make check 
<tml__> which I guess means what you 
said;) 
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Lessons Learned: Namespace Pitfalls

●everything one make process => namespace problems!
●variable names

●target local variables not a problem
●except if initialization forgotten :)

●prefixes everywhere to avoid collisions
●gbuild core variables prefixed with gb_
●variables in user makefiles discouraged
●user make file variables prefixed with module_

●pattern rules
●GNU make 3.81 vs. 3.82 pattern rules

●some effort to support both
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Lessons Learned: Performance

●unwanted parallelism:
●do not want to link sw in parallel with sd, sc... on your 

laptop
●workaround with artificial build order only deps

●portable shell good for performance:
●dash is faster than bash
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Lessons Learned: That Other OS

●Windows makes build system developers unhappy:
●make bug 20033: make 3.81 -jN crashy
●command line length limit
●cygpath pain

●finally required make with support for DOS paths
●filesystem, process creation slow...
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Lessons Learned: The Good

●full dependencies work!
●quite simple to extend svidl, idlc to write make dependencies

●fast no-op builds
●most user makefiles relatively simple
●consistently use DLLPUBLIC annotations
●cleaned up cruft like setsolar, set_soenv... no more shell 

environment
●sane & consistent way to use external libraries which may be from 

system or bundled
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Lessons Learned: The Not So Good (1)

●core gbuild implementation quite complex and difficult to 
understand
●lots of function abstractions
●make is not a very good programming language
●"migrating from obscure dmake system to a pile of impenetrable 

spaghetti masquerading as make files" 
●response files necessary to work around command line length limits 

on Windows: 
●fortunately make 4.0 has grown $(file ...) function

●cannot use cygwin's make package
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Lessons Learned: The Not So Good (2)

●no checking of parameters when calling a function (or that function 
even exists)

●no multi-target build rules
●used to work in dmake
●GNU make rule can have multiple targets but is invoked once per 

target then :(
●requires ugly touch rules

●inheritance of target local variables
●evaluating target local variable in dependencies
●bottleneck in parsing? parallelizable?
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All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License 
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Thank you for listening

Questions? 

http://creativecommons.org/licenses/by-sa/3.0/
http://wiki.documentfoundation.org/TradeMark_Policy
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