
3D ROAM for Scalable Volume Visualization

Stéphane Marchesin∗

ICPS/IGG

Jean-Michel Dischler†

INRIA Lorraine, CALVI Project

Catherine Mongenet‡

ICPS

LSIIT – Université Louis Pasteur – Strasbourg, France

(a) 2.5 fps – 104000 tetrahedra (b) 1 fps – 380000 tetrahedra (c) 0.45 fps – 932000 tetrahe-
dra

(d) 0.15 fps – 3065000 tetra-
hedra

Figure 1: The bonsäı data set at different detail levels. Frame rates are given for a 1024×1024 resolution

ABSTRACT

The 2D real time optimally adapting meshes (ROAM) algorithm
has had wide success in the field of terrain visualization, because
of its efficient error-controlling properties. In this paper, we pro-
pose a generalization of ROAM in 3D suitable for scalable volume
visualization. Therefore, we perform a straightforward 2D/3D anal-
ogy, replacing the triangle of 2D ROAM by its 3D equivalent, the
tetrahedron. Although work in the field of hierarchical tetrahedral
meshes was widely undertaken, the produced meshes were not used
for volumetric rendering purposes. We explain how to compute a
bounded error inside the tetrahedron to build a hierarchical tetrahe-
dral mesh and how to refine this mesh in real time to adapt it to the
viewing conditions. We further show how to achieve cell sorting in
linear time, thus yielding real time view-dependent display of the
volumetric object. We present examples of large volume data sets
and compare our approach with a similar one. Our results outline
the high quality and computational efficiency of our approach.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration – Viewing algorithms— [I.3.5]: Computational Geometry
and Object Modeling—Object hierarchies

Keywords: hierarchical tetrahedral meshes, ROAM, volume ren-
dering, level of detail

∗e-mail: marchesin@icps.u-strasbg.fr
†e-mail: dischler@dpt-info.u-strasbg.fr
‡e-mail: mongenet@dpt-info.u-strasbg.fr

1 INTRODUCTION

Because of continuous improvements in simulation and data acqui-
sition technologies, the amount of 3D data that visualization sys-
tems have to handle is increasing rapidly. Large datasets offer an
interesting challenge to visualization systems, since they cannot be
visualized by classical visualization methods. Such datasets are
usually many times larger than what a video card’s memory can
hold. For example, a 1024×1024×446 voxel dataset uses 446MB
of memory. Rendering such datasets ”as-is” is thus not possible.
Therefore, there is a need for volume visualization methods that
can both handle larger data sets, and have good scalability proper-
ties.

In this paper, we straightforwardly generalize the ROAM algorithm
[5] to volumetric rendering. Though work has already been under-
taken in this direction (see section 2), this paper proposes a new
original approach, by introducing a 2D-3D analogy : we consider
that the tetrahedron is the 3D equivalent of the triangle, and that the
3D scalar function is the 3D equivalent of the height function. We
first apply a hierarchical decomposition of the 3D space similar to
the 2D triangle binary tree. We use a hierarchical tetrahedral mesh
as described in [22], which can be represented using a binary tree,
where each node is a tetrahedron. Our contribution is a technique
for building and refining a 3D mesh on-the-fly using two basic op-
erations : node fusion and node split. To decide whether a split or a
fusion should take place at the current node, we must compute the
approximation error associated with an arbitrary tetrahedron of the
hierarchy. For this purpose, we detail an algorithm suitable for in-
teger point enumeration inside a tetrahedron of the hierarchy. Once
computed, the mesh is rendered using the classical projective tetra-
hedra algorithm [18]. In this paper, we further show how to avoid
an explicit cell-sorting pass, as cell-sorting can be performed dur-
ing the rendering pass, and in linear time. We also show how to
maintain mesh conformity. As a result, our method allows a high

quality smooth level of detail rendering (see figure 1) depending on
the desired balance between speed and quality. The number of tetra-
hedra thereby depends on the viewing conditions, as for traditional
ROAM.

The paper is organized as follows : in section 2 we present some re-
lated works. Section 3 introduces the mesh construction principles.
Section 4 shows how to compute the approximation error inside a
tetrahedron and how to decide whether or not a fusion or split op-
eration is needed. In section 5, we show how to build and refine
the mesh using the computed error. In section 6, we explain how
cell-sorting and rendering is achieved in linear time with respect to
the number of cells. Section 7 is dedicated to experimental results
as well as a comparative study. Finally we give some concluding
remarks and discuss further improvements.

2 RELATED WORKS

Many papers address the issue of large volumetric dataset visual-
ization. Different approaches are commonly used, which can be
divided into two main groups : texturing-based methods and cell
projection-based methods.

The first class of methods uses only graphics hardware to perform
real time rendering, for example using 3D textures. Engel et al. [6]
sum up approaches using the graphics hardware. However, such
methods are limited by the available video memory. Later tech-
niques have subsequently been developed to circumvent this limi-
tation [12, 16, 11].

The second class of methods performs rendering of objects made
of volumetric cells by projecting each of these cells, and are thus
called ”cell-projection” methods. Such methods allow rendering
volumes with a high degree of quality. Among the numerous cell
projection methods, the projective tetrahedra algorithm by Shirley
et al. [18] uses the graphics hardware to render tetrahedral cells.
Each tetrahedron is decomposed into a different number of trian-
gles according to the observer’s position, and these triangles are
then sent to the video card for rendering. This method has been
improved by later papers on the subject. To compensate for lin-
ear alpha interpolation, Stein et al. [19] use a texture as an opacity
lookup table. Wylie et al. [21] use vertex shaders to achieve view
independent projective tetrahedra rendering. Guthe et al. [10] use
pixel shaders to achieve higher rendering quality.

Since cell projection methods use alpha blending to accumulate
each cell’s contribution, a cell-sorting pass is required to obtain vi-
sually correct back-to-front rendering. Recent methods allow low-
ering the complexity of this sorting pass [3], without reaching the
optimal linear complexity. Weiler et al. [20] use the graphics hard-
ware to achieve ray casting of a tetrahedral mesh. However, this
approach is not suitable for large tetrahedral meshes.

In another context, i.e. in the field of terrain rendering, Duchaineau
et al. [5] propose a method suitable for 2D height map visualization
called ROAM. This method is based on a hierarchical decomposi-
tion of a surface into triangles that approximates the height map,
and allows bounding the error associated with this approximation.

The approach uses progressive dynamic meshing, i.e. the closer to
the observer a part of the mesh is, the denser it gets. By dynamically
adapting the mesh to the viewing conditions, the ROAM algorithm
allows visualization of large height maps.

Methods for generating hierarchical 3D meshes have also been
studied. These methods use different subdivision schemes to ob-
tain such meshes. A tetrahedral mesh is used in [22, 9] for surface
visualization. Cignoni et al. [2] study the simplification of generic

tetrahedral meshes, while preserving mesh topology. Pascucci [15]
studies subdivision meshes in arbitrary dimensions. Mello et al.
[14] apply a spatial multiresolution decomposition to volume ren-
dering using the projective tetrahedra algorithm. Roettger and Ertl
[17] use an octree-based hierarchical mesh for level of detail vol-
ume visualization : the leaf cube nodes are split into five tetrahedra
each, which are in turn rendered using the projective tetrahedra al-
gorithm [18]. This approach is the closest to ours, since it uses a
hierarchical 3D mesh rendered using the projective tetrahedra algo-
rithm. We use a similar subdivision scheme where the subdivision
depends on an error computation. However, our mesh construction
technique differs in many points : in our case, a tetrahedral mesh is
directly built from the voxel object, thus generating only one tetra-
hedron per node. As a consequence, we introduce a completely
different error controlling technique, a new mesh conformity tech-
nique and a new view dependent visualization technique. These
are much closer to the conventional 2D ROAM. The gain of these
efforts is to yield a number of tetrahedra adapted to the viewing
conditions, as for 2D-ROAM.

3 PRINCIPLES OF MESH CONSTRUCTION

Zhou et al. [22] describe a hierarchical tetrahedral mesh construc-
tion technique in the framework of isosurface visualization. The
initial subdivision of the voxel data is obtained by dividing the
bounding cube into 12 tetrahedra (see figure 2).

Figure 2: Initial volume subdivision into 12 tetrahedra.

The hierarchy is obtained by recursively splitting each of these
tetrahedra into two tetrahedra along its longest edge. This scheme
leads to a regular subdivision creating three classes of tetrahedra
(see figure 3) :

• exactly one face is parallel to a coordinate plane, and two
edges of the face are parallel to a coordinate axis (case a)

• exactly one face is parallel to a coordinate plane, and exactly
one edge of the face is parallel to a coordinate axis (case b)

• two faces are parallel to a coordinate plane (case c)

Figure 3: Hierarchical subdivision steps.

In the next two sections, we respectively describe the error compu-
tation and the mesh construction technique.

4 ERROR COMPUTATION

In order to achieve mesh construction, we use two basic operations :
node split when refining a node downwards, and node fusion when
refining a node upwards. The next two subsections detail how the
error is computed in the case of a node split, and how an error bound
is obtained in the case of a node fusion.

4.1 Error computation during node split

The error must be computed for each tetrahedron of the hierarchy.
To measure the error we have to compute the difference between
voxel values and values interpolated at integer points inside the
tetrahedron. To achieve this, we need to enumerate each integer
point inside a given tetrahedron of the hierarchy.

Many algorithms for integer point enumeration inside a generic
polyhedron exist [1] ; they are usually based on Fourier–Motzkin
elimination [4]. However, due to their genericity, these algorithms
are not suitable, with regard to speed, for real time point enumer-
ation. Thus, we have developed our own point enumeration algo-
rithm using the specific properties of the tetrahedra of the chosen
hierarchy. This algorithm is based on the decomposition of a tetra-
hedron into slices, and subsequent point enumeration inside the re-
sulting triangular slices.

Property 1 Tetrahedra of the hierarchy have their edge vectors co-
ordinates in {−1,0,1}.

Property 2 Tetrahedra of the hierarchy have one of their faces
parallel to one of the coordinate planes (Oxy, Oxz, Oyz).

The hierarchical subdivision of the hierarchy as described in [22]
generates three classes of tetrahedra. To prove properties 1 and 2,
we first examine one member of each of these classes, and then
generalize the proof to the whole hierarchy.

Let us consider the three representatives of these classes as shown
on figure 3 Their edge vectors are given on figure 4. These vectors
have their coordinates in {−1,0,1}. Thus, tetrahedra (a), (b) and
(c) verify property 1. Moreover, each of these three tetrahedra has
at least one of its faces parallel to one of the base planes (the base
planes are one of the coordinate planes Oxy, Oxz or Oyz, and the
faces are shown in blue/dark on figure 3), and thus verify property
2.

Tetrahedron a Tetrahedron b Tetrahedron c
(0,1,0) (1,1,0) (1,1,0)
(1,0,0) (1,0,0) (1,0,0)

(1,−1,0) (1,−1,0) (0,1,0)
(−1,1,1) (1,−1,1) (0,1,−1)
(1,1,−1) (1,1,−1) (1,1,−1)
(1,−1,1) (0,0,1) (0,0,1)

Figure 4: The edge vectors along the six edges of the three kinds of
tetrahedra of the hierarchy as shown in figure 3.

To generalize properties 1 and 2 to all the tetrahedra of the hierar-
chy, we need to examine the operations that transform a tetrahedron
of a given class into another of the same class :

• a rotation of kπ
2 angle, k ∈ Z,

• an homothety of 2n ratio.

Each of these transformations preserves property 1, so that any
composition of these transformations preserves the property too.

Thus, all the edge vectors of the tetrahedra of the hierarchy have
their coordinates in {−1,0,1}. Similarly, these transformations
keep property 2. Therefore, all the tetrahedra of the hierarchy have
one of their faces parallel to one of the base planes.

Using property 2, a tetrahedron can be easily decomposed along
one of these planes into parallel triangular slices containing the in-
teger points (see figure 5). To switch from one triangular slice to
another, edge vectors along the edges of the tetrahedron have to
be computed. Property 1 ensures that all points enumerated using
these edge vectors are integer points. Thus, we can derive a sim-
ple enumeration algorithm that scans all the integer points inside a
tetrahedron of the hierarchy.

This algorithm uses the edge vectors associated with a tetrahedron
(see algorithm 1). We first split the tetrahedron into slices, and
then compute the edge vectors to go from one slice to another. We
subsequently compute the edge vectors inside a triangular slice (see
figure 6) and finally iterate each integer triangle line.

Figure 5: Splitting a tetrahedron into slices for point enumeration.

Figure 6: Enumerating points inside a triangular slice.

Algorithm 1 Error computation by point enumeration inside a tetra-
hedron of the hierarchy

1: Find one face of the tetrahedron parallel to one of the base
planes

2: Cut the tetrahedron into slices parallel to this plane
3: for each triangular slice V1V2V3 do
4: E1 =edge vector along V1V3
5: E2 =edge vector along V2V3
6: P1 = V1
7: P2 = V2
8: repeat
9: for each point P from P1 to P2 along E3 do

10: error=max(error,error(P))
11: end for
12: P1 = P1 +E1
13: P2 = P2 +E2
14: until P1 has reached V3
15: error=max(error,error(V3))
16: end for

To compute the error associated to a tetrahedron, we need to iter-
ate each point inside this tetrahedron. However this operation has
a high cost. In order to speed up hierarchy refinement during vi-
sualization (see section 6), the hierarchical mesh along with errors

for the current object are cached until a certain depth. This is even
more beneficial, as tetrahedra of lower depths have more points to
iterate, thus their error is more expensive to compute than the error
of tetrahedra of higher depths. However, it is not possible to cache
the full hierarchy because a hierarchy at full detail might be many
times larger than the original voxel data.

Knowing how to compute the error for a given tetrahedron, we can
now adjust it to the view dependent case. Considering a given tetra-
hedron T viewed from an observation point Obs, the error function
we introduce depends on three criteria : the error inside the tetra-
hedron e(T) (obtained either by an error bound, or by extensive
point enumeration), the distance between the tetrahedron and the
observer d(Obs,T), and whether or not this tetrahedron lies inside
the view frustum :

e(T,Obs) =

{

0 if T lies totally outside the view frustum
e(T)

d(Obs,T)
otherwise.

(1)

Intuitively, this formula means that the error is inversely propor-
tional to the distance to the observer and becomes minimal when
the point is invisible.

4.2 Error bound computation during node fusion

To avoid the cost of error computation while merging two tetra-
hedra, we must propagate the error values upwards the tree. This
means we need to find, given the error of two tetrahedra, an upper
bound of the error of their parent tetrahedron. This is achieved by
generalizing the 2D case from ROAM. In the original ROAM ap-
proach, Duchaineau et al. use a hierarchical error bound to avoid
error computation during node fusion. To minimize the computa-
tions, we extend this concept to 3D. Thus, we do not need to com-
pute the error while merging two tetrahedra since we can simply
obtain a bound of this error by generalizing the following formula
used for 2D ROAM : In 2D ROAM, when merging two triangles
T0 and T1 (depicted in blue on figure 7(a)) into a single triangle T
(depicted in red on the figure) and if z(p) is the height of the 2D
point p and vc is the central vertex, the error value eT for T can be
bounded as follows :

eT ≤ max{eT0 ,eT1}+ |z(vc)− zT (vc)| (2)

This formula gives an error bound provided that we already know
the error for the two children of a triangle in the hierarchy. We
obtain a similar hierarchical error bound of the volumetric error by
changing the variables meaning according to our 2D-3D analogy :
when merging two tetrahedra T0 and T1 (shown in blue on figure
7(b)) into a single tetrahedron T (shown in red on the figure), we
can replace the height z(p) of point p by its scalar value d(p) and
obtain a similar 3D error bound :

eT ≤ max{eT0 ,eT1}+ |d(vc)−dT (vc)| (3)

This bound is suitable for hierarchical evaluation of the error func-
tion, as used in 2D ROAM.

5 MESH BUILDING

In order to build the tetrahedral mesh, two basic operations are
used : tetrahedron split and tetrahedron fusion. To achieve view-

(a) Error bound in 2D ROAM

(b) Error bound in 3D ROAM

Figure 7: Error bound in 2D and 3D ROAM

dependent rendering, we keep the hierarchy from one frame to an-
other, and modify only parts that need adjustment according to the
error described in the previous section (section 4).

At each frame, the hierarchy is traversed recursively, and the error
is considered according to the node’s position in the hierarchy :

• if the node is a leaf and its error meets the error criterion as
described in the next section, the node is kept as is. However,
if the error criterion fails the leaf node is split into two new
children nodes. These nodes can be in turn considered for
further splitting.

• if the node is an ante-leaf (i.e. a node whose children are
leaves) and satisfies the error criterion locally, a node fusion
takes place and the two children nodes are discarded.

Mesh conformity is enforced by propagating the node splits to the
adjacent nodes. When splitting a tetrahedron into two (as shown
on figure 8), the middle of its longest edge is chosen as a point of
bisection (this point is called central vertex in [9] and is shown in
red on the figure). This point uniquely determines the cutting plane
of the tetrahedron (shown in dashed red on the figure). The 4 faces
of a tetrahedron can be classified into two groups : 2 of these are
base faces (the 3D equivalent of the base edge of ROAM) and the
2 other are non base faces. On figure 8, splitting tetrahedron (1)
into two children nodes has an impact only on the tetrahedra shar-
ing base faces, i.e. three other tetrahedra (tetrahedra (2), (3) and
(4) on the figure). To enforce mesh conformity, node splits are re-
cursively propagated to neighbors across the base faces. However,
this is not sufficient to enforce mesh conformity for non base faces.
To enforce conformity in this case, we extend the idea of ROAM

Figure 8: Propagating the conformity along the base faces

and enforce a maximum difference of one level of depth between
arbitrary adjacent tetrahedra sharing a non base face.

Figure 9: The influence of mesh conformity. Left column : non-
conforming mesh ; right column : conforming mesh.

6 VIEW-DEPENDENT RENDERING

To get a visually correct rendering, the cells of a volumetric mesh
must be displayed back to front. Recent cell-sorting approaches
allow sorting cells with low complexity [19, 3]. However, hier-
archically splitting tetrahedra into two using a plane as described
in [22] implicitly corresponds to building a binary space partition
(BSP) as introduced in the early eighties by [7]. This approach is
also used in the context of volumetric meshes in [14]. We can use
it to sort the cells : the cell sorting pass is performed by recursively
iterating the mesh hierarchy and choosing at each node which sub-
node to process first. The complexity of such a sorting approach
is optimal, since it is linear with the number of cells. Furthermore,
it does not require building an additional data structure, as it can

be achieved during hierarchy traversal. The hierarchy is recursively
traversed as shown in algorithm 2. Each tetrahedron of the hierar-
chy is examined to test whether it is a leaf or not. If it is, the node is
displayed. If it is not, i.e. the node is an internal node, its cut plane
is computed. This plane subdivides the tetrahedron into two chil-
dren tetrahedra. We then determine on which side of the cut plane
the observer lies and accordingly call the drawing function for the
two children nodes. Thus, tetrahedra further from the observer are
displayed first and correct back-to-front rendering is achieved.

Algorithm 2 Rendering algorithm
1: Hierarchical Rendering(node n,viewpoint p)
2: if (n is a leaf node) then
3: n.Draw()
4: else
5: cp=n.Cutplane()
6: if (is left(p,cp)) then
7: Hierarchical Rendering(n.child(1),p)
8: Hierarchical Rendering(n.child(2),p)
9: else

10: Hierarchical Rendering(n.child(2),p)
11: Hierarchical Rendering(n.child(1),p)
12: end if
13: end if

During the hierarchy traversal, we render each leaf node using the
projective tetrahedra algorithm [18]. Many improved versions of
the projective tetrahedra algorithm exist ; it is possible to use any of
these modified methods to render the tetrahedral mesh. In this paper
we have implemented the improved method described by Stein et
al. [19] to be able to run our technique on any type of graphics
hardware, as it uses only basic texture mapping.

Our approach allows progressive rendering of the volumetric
dataset by dynamically adjusting the detail level of the tree. Thus,
we can maintain interactivity using a coarser mesh while the point
of view is moving, and show a finer mesh when the observer’s mo-
tion stops. To improve responsivity, we also bound the hierarchy re-
fining time per frame by bounding the number of tetrahedra whose
error can be computed within one frame.

Figure 10: Rendering example for the foot dataset, non interactive
rendering

7 IMPLEMENTATION AND RESULTS

We have implemented our method using C++ and OpenGL, with
and without mesh conformity enforcement. We have also imple-
mented a volumetric rendering method based on the mesh described
by Roettger and Ertl in [17] (this mesh uses an octree), however
with a slightly different error computation technique to make the re-
sults comparable. We have conducted some benchmarks to measure
the real time performance of our algorithm. These benchmarks and
the associated frame rates were obtained at a 1024× 1024, 32 bpp
resolution, on a dual CPU Athlon MP 2000+ PC with a Geforce4
MX 440 video card (however, only one CPU was used during the
benchmarks).

Results in number of tetrahedra as function of the error bound for
the different algorithms are given on figure 11. These results show
that our method generates less tetrahedra than [17], thus resulting
in faster rendering. We explain this result by the fact that the mesh
used in [17] generates five tetrahedra to render each node, while our
mesh generates only one tetrahedron per node. However, enforcing
mesh conformity incurs a cost in the number of tetrahedra, and this
cost is clearly visible on the figure. As [17] does not give a tech-
nique to enforce mesh conformity, no comparison is possible on
this topic. Mesh conformity also impacts picture quality, as shown
by figure 9.

Our results also outline the scalability of the method, as they show
that a reasonable number of tetrahedra is generated (as seen on fig-
ures 10, 11, 12), and more importantly that this number does not
depend too much on the object’s number of voxels but rather on its
nature.

Figure 11 also demonstrates the scalability of our approach : the
error bound allows direct control over the number of tetrahedra,
which in turn is directly proportional to the frame rate. This figure
also shows the consequences of enforcing mesh conformity in terms
of number of tetrahedra.

Figure 12 exemplifies our results, from a performance as well as
from a quality viewpoint, on miscellaneous objects : a plasma
dataset (64× 64× 64 voxels), a fluid–solid interaction simulation
dataset from [8] (512 × 256 × 128 voxels), a geological dataset
(1024× 1024× 446 voxels) and a cloud dataset (512× 512× 32
voxels). The corresponding pictures, frame rates and number of
tetrahedra are given for different mesh qualities, and conforming or
non-conforming meshes.

These results show that the overhead of enforcing the mesh confor-
mity might not always be justified by the improvements in visual
quality. Thus a method enforcing only visual continuity (like the
one described in [17]) might be more suitable in some cases. Fig-
ure 1 shows different level of detail rendering for the bonsaı̈ dataset
with a conforming mesh.

Our work maintains interactivity and scalability during the data ma-
nipulation through the use of a level of detail approach. Using
this approach, it is possible to have higher quality rendering during
static observations and lower quality rendering during interaction
with the model. To achieve interactivity on large models, we use
a lower level of detail by stopping tree traversal at a certain depth.
This depth is chosen in order to achieve good frame rates during
interactive manipulations.

Our approach exploits both spatial and temporal coherence. Spatial
coherence is used because a simplified structure (the mesh) is built
over a complex one (the original voxel object) ; temporal coherence
is exploited because the mesh hierarchy is kept from frame to frame
and only the parts needing modifications trigger computations.

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 10 20 30 40 50 60 70 80

Nu
m

be
r o

f t
et

ra
he

dr
a

Error bound

tetraedral conforming mesh
tetraedral non conforming mesh

octree−based non conforming mesh

(a) Bonsaı̈ dataset

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 0 10 20 30 40 50 60 70 80

Nu
m

be
r o

f t
et

ra
he

dr
a

Error bound

tetraedral conforming mesh
tetraedral non conforming mesh

octree−based non conforming mesh

(b) Foot dataset

Figure 11: The number of tetrahedra generated at different error
levels for two datasets using a conforming tetrahedral mesh, a non
conforming tetrahedral mesh, and a non conforming octree-based
mesh

8 CONCLUSIONS

Our method allows interactive visualization and exploration of large
data sets. For example, we are able to visualize geological datasets
(1024× 1024× 446) in their entirety on a standard PC. While this
method is designed from the beginning to be scalable, the render-
ing quality is similar to that of other cell-projection based methods
when using a higher level of detail, and thus allows high quality
images as well as real time rendering and as such is very versatile.
Still, we are able to strictly control the approximation error of the
tetrahedral mesh by imposing error bounds.

However, despite many advantages, our approach has one main lim-
itation : due to the fact that the mesh size depends more on the ob-
ject’s nature than on its size, some objects are less suitable for vi-
sualization using our method than others. In particular, pure noise
data can generate a mesh containing a number of tetrahedra propor-
tional to the number of voxels of the original object when using a

low error bound. Hence in such a case the hierarchy has to be very
deep (down to the voxel level) to satisfy the error criteria. How-
ever, this limitation can be at least partially lifted by filtering the
data before visualization.

Another limitation is the presence of small popping artifacts when
the fusion/split operations take place. However, these artifacts
could be removed using a geomorphing approach, similarly to what
is done in [13].

Further improvements to our method are possible. For example,
thanks to the use of a level of detail approach, it is possible to use
the error metric as a way to interactively change an area of interest
inside the object, pointing it using the mouse for example. Using
the 4D equivalent of the tetrahedron and adapting our error com-
putation model, the same idea could be applied to a 4D mesh for
3D+t visualization. Future works could also explore the adaptation
of our approach to natively unstructured meshed objects.

REFERENCES

[1] Alexander Barvinok and James E. Pommersheim. An Algorithmic
Theory of Lattice Points in Polyhedra, pages 91–147. Cambridge Uni-
versity Press, August 1999.

[2] P. Cignoni, C. Costanza, C. Montani, C. Rocchini, and R. Scopigno.
Simplification of Tetrahedral Meshes with Accurate Error Evaluation.
In Proc. Visualization ’00, pages 85–92. IEEE, 2000.

[3] João Comba, James T. Klosowski, Nelson Max, Joseph S. B. Mitchell
Claudio T. Silva, and Peter L. Williams. Fast polyhedral cell sort-
ing for interactive rendering of unstructuredgrids. In P. Brunet and
R. Scopigno, editors, Computer Graphics Forum (Eurographics ’99),
volume 18(3), pages 369–376. The Eurographics Association and
Blackwell Publishers, 1999.

[4] George B. Dantzig and B. Curtis Eaves. Fourier–motzkin elimination
and its dual. Journal of Combinatorial Theory, 14(3):288–297, 1973.

[5] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein. Roaming terrain: Real-time optimally
adapting meshes. In Proceedings of the 8th conference on Visualiza-
tion ’97, page 81. IEEE Computer Society, 1997.

[6] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-
integrated volume rendering using hardware-accelerated pixel shad-
ing. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS work-
shop on Graphics hardware, pages 9–16. ACM Press, 2001.

[7] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On visible surface
generation by a priori tree structures. In Proceedings of the 7th annual
conference on Computer graphics and interactive techniques, pages
124–133. ACM Press, 1980.

[8] Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulat-
ing fluid-solid interaction. In Graphics Interface, pages 31–38. CIPS,
Canadian Human-Computer Commnication Society, A K Peters, June
2003. ISBN 1-56881-207-8, ISSN 0713-5424.

[9] Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom, Valerio Pas-
cucci, and Kenneth I. Joy. Interactive view-dependent rendering of
large isosurfaces, 2001.

[10] Stefan Guthe, Stefan Roettger, Andreas Schieber, Wolfgang Strasser,
and Thomas Ertl. High-quality unstructured volume render-
ing on the pc platform. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, pages
119–125. Eurographics Association, 2002.

[11] Stefan Guthe and Wolfgang Strasser. Advanced Techniques for High-
Quality Multi-Resolution Volume Rendering. Computers & Graphics,
28(1):51–58, February 2004.

[12] Stefan Guthe, Michael Wand, Julius Gonser, and Wolfgang Straer. In-
teractive rendering of large volume data sets. In Proceedings of the
conference on Visualization ’02, pages 53–60. IEEE Computer Soci-
ety, 2002.

[13] Hugues Hoppe. Progressive meshes. Computer Graphics, 30(Annual
Conference Series):99–108, 1996.

[14] Vinicius Mello, Luiz Velho, Paulo Roma Cavalcanti, and Claudio
Silva. A Generic Programming Approach to Multiresolution Spatial
Decompositions, volume Visualization and Mathematics III. Springer
Verlag, 2002.

[15] Valerio Pascucci. Slow growing subdivision (sgs) in any dimension:
Towards removing the curse of dimensionality. In Computer Graphics
Forum (Eurographics ’99), volume 21(3), pages 451–460. The Euro-
graphics Association, 2002.

[16] John Plate, Michael Tirtasana, Rhadams Carmona, and Bernd Frhlich.
Octreemizer: a hierarchical approach for interactive roaming through
very large volumes. In Proceedings of the symposium on Data Visual-
isation 2002, pages 53–ff. Eurographics Association, 2002.

[17] Stefan Roettger and Thomas Ertl. Fast volumetric display of natural
gaseous phenomena. In Computer Graphics International, pages 74–
83. IEEE Computer Society, 2003.

[18] P. Shirley and A. A. Tuchman. Polygonal approximation to direct
scalar volume rendering. In Proceedings San Diego Workshop on
Volume Visualization, Computer Graphics, volume 24, pages 63–70,
1990.

[19] Clifford Stein, Barry Becker, and Nelson Max. Sorting and hardware
assisted rendering for volume visualization. In Arie Kaufman and
Wolfgang Krueger, editors, 1994 Symposium on Volume Visualization,
pages 83–90, 1994.

[20] Manfred Weiler, Martin Kraus, Markus Merz, and Thomas Ertl.
Hardware-Based Ray Casting for Tetrahedral Meshes. In Procceed-
ings of IEEE Visualization ’03, pages 333–340. IEEE, 2003.

[21] Brian Wylie, Kenneth Moreland, Lee Ann Fisk, and Patricia Crossno.
Tetrahedral projection using vertex shaders. In Proceedings of the
2002 IEEE symposium on Volume visualization and graphics, pages
7–12. IEEE Press, 2002.

[22] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multiresolution tetra-
hedral framework for visualizing regular volume data. In Proceedings
of the 8th conference on Visualization ’97, pages 135–ff. IEEE Com-
puter Society Press, 1997.

Non conforming mesh, Non conforming mesh, Conforming mesh
low quality high quality

Plasma

(a) 34000 tetrahedra, 5 fps (b) 480000 tetrahedra, 0.8 fps (c) 520000 tetrahedra, 0.8 fps

Fluid

(d) 25000 tetrahedra, 7.5 fps (e) 320000 tetrahedra, 0.9 fps (f) 580000 tetrahedra, 0.6 fps

Geological

(g) 18000 tetrahedra, 5.5 fps (h) 76000 tetrahedra, 1.7 fps (i) 141000 tetrahedra, 1.2 fps

Cloud

(j) 4400 tetrahedra, 10 fps (k) 260000 tetrahedra, 1 fps (l) 500000 tetrahedra, 0.5 fps

Figure 12: Results

