
High-Quality, Semi-Analytical Volume Rendering for AMR Data

Stéphane Marchesin and Guillaume Colin de Verdière

Fig. 1. Close-up of an AMR dataset showing a meteorite falling into the sea rendered using our system.

Abstract—This paper presents a pipeline for high quality volume rendering of adaptive mesh refinement (AMR) datasets. We intro-
duce a new method allowing high quality visualization of hexahedral cells in this context; this method avoids artifacts like discontinuities
in the isosurfaces. To achieve this, we choose the number and placement of sampling points over the cast rays according to the an-
alytical properties of the reconstructed signal inside each cell. We extend our method to handle volume shading of such cells. We
propose an interpolation scheme that guarantees continuity between adjacent cells of different AMR levels. We introduce an efficient
hybrid CPU-GPU mesh traversal technique. We present an implementation of our AMR visualization method on current graphics
hardware, and show results demonstrating both the quality and performance of our method.

Index Terms—Volume rendering, AMR data, Volume shading.

1 INTRODUCTION AND MOTIVATION

Adaptive mesh refinement (AMR) is a mesh refinement strategy aimed
at reducing the cost of numerical simulations while maintaining high
accuracy results. This design allows both simple programming thanks
to identical cell shapes and implicit connectivity, and an efficient use
of processing resources thanks to adaptive local refinement. Due to its
simplicity and computational efficiency, this scheme is widely used in
the numerical simulation field. Figure 2 shows an example of such a
mesh in two dimensions. As an AMR mesh can be viewed (locally)
as a tree, we define the AMR cell level as the level of cell size in the
AMR tree, 0 being the biggest cells at the top of the tree, and higher
levels being the smaller cells. We define an AMR patch as a cuboid
of homogeneous cells, i.e. where all AMR cells have the same level.
In this paper, we focus on the specific case of AMR meshes carrying
vertex-centered data (as opposed to cell-centered data). In order to
analyze the data resulting from AMR simulations, visualization tools
are wanted. In particular, volume rendering is a powerful exploration
method for 3D data. As of today, volume rendering of AMR data
presents three major challenges:

1. A view-order cell traversal technique is needed. On the CPU, this
problem can be solved easily and efficiently with existing data

• Stéphane Marchesin and Guillaume Colin de Verdière, CEA, DAM, DIF,

F-91297, Arpajon, France. E-mail: marchesi@ocre.cea.fr,

guillaume.colin-de-verdiere@cea.fr.

Manuscript received 31 March 2009; accepted 27 July 2009; posted online

11 October 2009; mailed on 5 October 2009.

For information on obtaining reprints of this article, please send

email to: tvcg@computer.org .

Fig. 2. AMR mesh example with three different cell levels.

structures. However, direct adaptation of these structures to the
GPU is difficult, and can result in a waste of memory or subopti-
mal performance. As we are interested in interactive visualization,
such data structures should allow an efficient implementation. In
particular, using additional cells to achieve simpler mesh traversal
is not always desirable since it decreases the performance of the
system.

2. An interpolation method is required inside the cells to reconstruct
a continuous scalar function from the discrete AMR data. This
implies defining an interpolant function inside the cells, not only
for simple hexahedral cells, but also for cells lying at the border
between patches of different levels. In the case of hexahedral cells,
the most widespread choice for an interpolation function inside a
given cell is the trilinear reconstruction. However, one still needs
to restore the continuity at the borders between cells of different
levels. This is commonly achieved by splitting cells into tetrahedra
or pyramids, though this leads to a more complex mesh, and also
needs an additional interpolation scheme per new cell type. This is
further complicated by the requirement that different interpolation
schemes must be coherent across shared cell faces.

3. High accuracy cell rendering techniques are highly sought after.

By linearly interpolating the signal over each integration interval,
techniques like preintegration have historically been of great help
in improving the visual quality of volume rendered scenes. How-
ever, because of insufficient sampling, these techniques can miss
some isovalues. Figure 3 depicts such a situation where a range of
isovalues present in in the reconstructed data is missed. This is an
important source of artifacts when using preintegrated volume ren-
dering as it leads to holes and cracks in the isosurfaces. Therefore,
volume rendering methods that feature a higher rendering accuracy
are required.

Fig. 3. A scalar signal approximated with 3 piecewise linear functions.
The hashed area depicts the range of scalar values that are not covered
by preintegration.

In this paper, we give solutions to those three core issues pertaining to
AMR volume visualization. We present a hybrid CPU and GPU-based
AMR mesh representation and traversal technique. We introduce a
method suitable for restoring continuity along faces shared by AMR
cells of different levels. Basing our work on a trilinear interpolation
scheme inside AMR cells, we show how to improve the volume ren-
dering quality with a sampling scheme that suits the discrete data and
the reconstruction function in order to avoid artifacts. By ensuring that
no isovalue is missed, our method greatly improves the visual quality
of our final renderings while retaining interactive performance. Fur-
thermore, we extend our cell rendering technique to handle volume
shading.

2 RELATED WORKS

Unstructured volume rendering is commonly achieved using cell pro-
jection techniques. Among these techniques, Shirley et al. [18] intro-
duce the projected tetrahedra, which is one of the first methods taking
advantage of graphics hardware to accelerate unstructured volume ren-
dering. This algorithm splits the footprint of a tetrahedron in screen
space into a number of triangles, and then sends these triangles to the
graphics processor for rasterization. Max et al. [12] show that for the
simple case of a tetrahedron using barycentric interpolation for signal
reconstruction inside the cell, the signal variation over rays passing
through this tetrahedron is linear. Therefore, using linear interpola-
tion of the scalar values inside the tetrahedron while sampling at the
cell faces results in exact rendering, and this is commonly known as
preintegrated volume rendering as presented by Roettger et al. [17].
Their method first computes the segments for all possible triplets of en-
try scalar values, exit scalar values and integration lengths and stores
them in a 3D table called the preintegration table. Then, the authors
adapt the projected tetrahedra algorithm to lookup into this table for
each pixel using the current entry and exit scalars, and the integra-
tion length. Using floating point preintegration tables and rendering
buffers, Kraus et al. [8] show that it is possible to achieve better accu-
racy in the final renderings. Furthermore, the authors use a logarithmic
scale for accessing the length component of the preintegration table,
resulting in higher accuracy for the smallest lengths. Preintegration
has been extended to adaptive sampling in the context of volume ren-
dering by Roettger et al. [16] and Ledergerber et al. [10], however
the authors are not able to guarantee hole-free isosurfaces. Lum et al.
[11] extend the preintegration techniques to volume shading by lin-
early interpolating the shading across each integration interval. Since
the original projected tetrahedra technique was proposed, different im-
provements have been introduced to mitigate the computational and

storage requirements of using a 3D table. In particular, analytical ap-
proximations were proposed by Roettger et al. [17, 15], Guthe el al.
[4] and Moreland et al. [13]. However, these techniques remain ap-
proximations of the volume rendering integral. In order to speedup the
3D preintegration table computation and therefore make it suitable for
real time transfer function changes, one can use the method developed
by Lum et al. [11]. By precomputing portions of the volume rendering
integral, the table computational complexity is reduced, which results
in a speedup by two orders of magnitude.

Although the case of tetrahedral cells is well covered in the liter-
ature, for more complex cell types exact rendering is not straightfor-
ward to achieve. In such cases, the following approximation is com-
monly used: a continuous function is reconstructed inside the cell us-
ing the reconstruction filter, and this function is sampled regularly in-
side the cell. However, this wastes resources and can still miss some
isovalues passing through the cell, which creates artifacts and holes in
the isosurfaces.

In the field of isosurface visualisation, it has been shown by Parker
et al. [14] that analytical techniques can be used to find the exact
position of an isosurface inside a trilinearly interpolated hexahedral
cell. This technique is more accurate than polygonal reconstruction,
and in particular results in better topology for the isosurfaces.

In the field of adaptive mesh refinement (AMR) visualization, We-
ber et al. achieve high quality volume rendering [20] using cell pro-
jection and multiple integration steps inside each cell. Kähler et al.
demonstrate how to exploit 3D graphics hardware to accelerate the
volume rendering of AMR data [5]. For this purpose, the authors show
a method for packing AMR data into a 3D texture in an efficient fash-
ion. By converting sparse datasets into AMR data, Kähler et al. extend
their visualization technique to the volume rendering of sparse volume
datasets [7]. The authors also discuss packing strategies allowing fit-
ting multiple bricks into a single 3D texture. More recently, Vollrath
et al. achieved GPU-based volume visualization of AMR data [19]
with specific data structures: using a page table and using an octree.
AMR visualization techniques were also extended to time-dependent
datasets by Kähler et al. [6] and Gosink et al. [3]. However, all these
papers use a rendering stage involving data resampling, which we want
to avoid in order to provide the highest possible visual quality. There-
fore, the framework we present in this paper is centered around the
idea of avoiding data resampling in order to ensure high quality pic-
tures, and in particular crack-free isosurfaces.

3 CELL RENDERING

We now describe our AMR cell volume rendering technique. First we
demonstrate how to achieve high quality, semi-analytical preintegra-
tion of a single hexahedral cell, then we show that this technique can
be extended to shaded volume rendering. Finally, we show how the
first two subsections apply to AMR meshes by handling the case of
adjacent cells of different AMR levels.

3.1 Single cell rendering

Our cell rendering technique can be decomposed into three stages:
first we reconstruct the analytical function across the current viewing
ray. Second, we carefully choose the sampling points over this analyt-
ical function according to its properties. Third, we apply the transfer
function. We now describe these three stages in more detail.

Signal reconstruction. Trilinear signal reconstruction inside a
hexahedral cell is a weighted sum of the eight scalar values si jk at the
eight vertices of the cell. For a given point (x,y,z) inside a hexahedral

cell of normalized coordinates in [0,1]3, the trilinear interpolation of
the signal s(x,y,z) is defined as follows:

s(x,y,z) =s000 · (1− x) · (1− y) · (1− z)+ s100 · x · (1− y) · (1− z)+

s010 · (1− x) · y · (1− z) ·+s001 · (1− x) · (1− y) · z+
s101 · x · (1− y) · z+ s011 · (1− x) · y · z+
s110 · x · y · (1− z)+ s111 · x · y · z

(1)

where si jk is the sample value at the cell corner (i, j,k). Let us consider
a single ray parametrized by t traversing a hexahedral cell. We can
express the Cartesian coordinates (x,y,z) of a point over this ray as a
function of t:

x = x0 + t · vx

y = y0 + t · vy

z = z0 + t · vz

(2)

where (x0,y0,z0) are the entry coordinates of the ray in the cell, and
(vx,vy,vz) are the differences between the exit and entry coordinates.
By replacing the x, y and z coordinates with their parametrization over
the ray in the trilinear interpolation formula, we can now compute
s(x,y,z) over the ray as a function of the parameter t:

s(t) = a · t3 +b · t2 + c · t +d, t ∈ [0,1] (3)

with the a, b, c and d coefficients as follows:

a = (s100 − s000 + s010 + s001 + s111 − s110 − s011 − s101)

· vx · vy · vz
(4)

b = (−x0 · vy · vz − vx · y0 · vz − vx · vy · z0 + vx · vz) · s101

+(x0 · vy · vz + vx · y0 · vz + vx · vy · z0) · s111

+(vy · vz − x0 · vy · vz − vx · y0 · vz − vx · vy · z0) · s011

+(−vx · vz + vx · vy · z0 − vy · vz + x0 · vy · vz + vx · y0 · vz) · s001

+(−vx · vz + vx · y0 · vz + vx · vy · z0 − vx · vy + x0 · vy · vz) · s100

+(−vx · y0 · vz − x0 · vy · vz + vx · vy − vx · vy · z0) · s110

+(vx · vy + vy · vz − vx · vy · z0 + vx · vz − x0 · vy · vz

− vx · y0 · vz) · s000 +(vx · vy · z0 − vy · vz − vx · vy + x0 · vy · vz

+ vx · y0 · vz) · s010

(5)

c = (−x0 · y0 · vz + x0 · vz + vx · z0 − vx · y0 · z0 − x0 · vy · z0) · s101

+(vx · y0 · z0 + x0 · vy · z0 + x0 · y0 · vz) · s111

+(y0 · vz − x0 · vy · z0 − vx · y0 · z0 + vy · z0 − x0 · y0 · vz) · s011

+(x0 · y0 · vz + vz − y0 · vz − vy · z0 − x0 · vz − vx · z0

+ x0 · vy · z0 + vx · y0 · z0) · s001 +(vx · y0 · z0 + x0 · y0 · vz

+ x0 · vy · z0 − vx · z0 − vx · y0 − x0 · vz − x0 · vy + vx) · s100

+(x0 · vy + vx · y0 − x0 · y0 · vz − x0 · vy · z0 − vx · y0 · z0) · s110

+(−vx · y0 + x0 · vy · z0 − y0 · vz − x0 · vy + x0 · y0 · vz + vy

+ vx · y0 · z0 − vy · z0) · s010 +(−x0 · vy · z0 − vz + vx · y0

− x0 · y0 · vz − vx · y0 · z0 − vy + y0 · vz + vx · z0 + vy · z0

+ x0 · vy − vx + x0 · vz) · s000

(6)

d = (x0 · z0 − x0 · y0 · z0) · s101 +(y0 · z0 − x0 · y0 · z0) · s011

+(−x0 · z0 − y0 · z0 + x0 · y0 · z0 + z0) · s001 +(−x0 · z0 + x0

+ x0 · y0 · z0 − x0 · y0) · s100 +(x0 · y0 − x0 · y0 · z0) · s110

+(−y0 · z0 − x0 · y0 + y0 + x0 · y0 · z0) · s010 +(−y0 − z0

− x0 · y0 · z0 + x0 · z0 + y0 · z0 − x0 + x0 · y0 +1.0) · s000

+ s111 · x0 · y0 · z0

(7)

Therefore, when using trilinear interpolation, the reconstructed signal
over a ray traversing a hexahedron is a third degree polynomial in t.

Ray sampling. The next step consists in sampling the ray at the
relevant values. In the context of ray casting, the sampling over the
ray is usually homogeneous. Doing so is suboptimal when small struc-
tures are present in the dataset, as such a sampling could easily miss
these structures. A naive solution would consist in analytically in-
tegrating the function over the interval, however for high frequency
transfer functions this could quickly become inefficient. The alterna-
tive of preintegrating over the whole interval is not technically feasi-
ble either, as it would require a 5-dimensional preintegration table (4
scalar values which uniquely define the third degree polynomial along
with the interval length). Instead, in order to avoid missing isovalues
during the sampling stage, we sample at the entry and exit faces of the

hexahedron, and also at the local extrema of the reconstructed function
as shown on Figure 4. As we know the analytical form of the recon-
structed function s(t), we can compute its derivative s′(t) analytically.
Since s′(t) is a quadratic function, it has at most two roots, and s(t) has
at most two local extrema r1 and r2. We compute the extrema of s(t),
prune those that lie outside the cell and finally sort them along the ray.
At this point we have reconstructed monotonic intervals for s(t) over
the ray inside a given cell.

Fig. 4. Sampling schemes for a ray inside a cell. On the left, shading is
not used. The cell is shown in blue, the reconstructed scalar values are
depicted in black and their piecewise linear approximations are shown
in red; the interval is split at t1 and t2. On the right, shading is used. The
reconstructed quadratic shading function incurs an additional sampling
point t3.

Transfer function application. The last stage is the application
of the transfer function. Since the transfer function can be arbitrary,
missing a single value in the previous stage can result in missing or
discontinuous isosurfaces. We now begin with the standard volume
rendering equation where I is the final intensity, c() is the color trans-
fer function and τ() is the opacity transfer function. If we have two
extrema and both those extrema lie within [0,1], we get:

I =
∫ L

0
c(s(t))e−

∫ t
0 τ(s(u))dudt =

∫ r1

0
c(s(t))e−

∫ t
0 τ(s(u))dudt

+
∫ r2

r1

c(s(t))e−
∫ t

0 τ(s(u))dudt +
∫ L

r2

c(s(t))e−
∫ t

0 τ(s(u))dudt

(8)

Over each interval [t1, t2], we replace s(t) with a linear form (1− t) ·
s(t1)+ t · s(t2) and obtain a formulation similar to [2]:

I ≈
∫ r1

0
c((1− t) · s(0)+ t · s(r1))e

−∫ t
0 τ((1−u)·s(0)+u·s(r1))dudt

+
∫ r2

r1

c((1− t) · s(r1)+ t · s(r2))e
−∫ t

0 τ(s((1−u)·s(r1)+u·s(r2)))dudt

+
∫ L

r2

c((1− t) · s(r2)+ t · s(L))e−
∫ t

0 τ((1−u)·s(r2)+u·s(L))dudt

≈C(s(0),s(r1),r1)+(1−α(s(0),s(r1),r1))C(s(r1),s(r2),r2 − r1)

+(1−α(s(0),s(r1),r1)) · (1−α(s(r1),s(r2),r2 − r1))

·C(s(r2),s(L),L− r2)
(9)

with

C(a,b, l) =
∫ 1

0
c((1− t) ·a+ t ·b)le−

∫ t
0 τ((1−t)·a+t·b)ldudt

α(a,b, l) = 1− e−
∫ 1

0 τ((1−t)·b+t·a)ldt

(10)

Since over each monotonic interval, the ranges of s(t) and of its piece-
wise linear approximation are identical, we will not miss any isovalue
when using piecewise linear approximations over these intervals. We
are thereby able to ensure that all the volume features are present and
have accurate topology according to the trilinear interpolation. As the
topology is consistent from one frame to another, the only remaining
kind of artifacts is wobbling of the surfaces and structures inside the
cells as the viewpoint changes.

3.2 Extension to volume shading

We now demonstrate how to extend our approach to achieve local
Phong shading with directional light sources; this process is described
for the case of diffuse shading but straightforwardly generalizes to
specular shading by using the half vector instead of the light vector.
By analyzing the behaviour of the gradient inside the cell, we recon-
struct a shading function over the ray and show how to use it to achieve
high quality volume shading.

Shading computation. The gradient ~∇s(x,y,z) of the scalar
function (as shown in Equation 1) can be obtained analytically by com-
puting the partial derivatives of s(x,y,z). Diffuse shading d(x,y,z) is
defined for any point of the cell as the dot product of this gradient with

the light vector~L(lx, ly, lz):

d(x,y,z) = ~∇s(x,y,z) ·~L = lx · ∂ s

∂x
+ ly · ∂ s

∂y
+ lz · ∂ s

∂ z

= lx · (−s000 − s011 · y · z+ s101 · z
− s101 · z · y− s010 · y− s100 · z− s100 · y− s001 · z
+ s000 · z+ s000 · y+ s111 · y · z− s000 · y · z+ s010 · y · z
+ s110 · y− s110 · y · z+ s100 + s100 · y · z+ s001 · z · y)
+ ly · (−s000 − s011 · z · x− s101 · x · z− s010 · z− s010 · x
− s100 · x− s001 · z+ s010 + s000 · z+ s000 · x+ s111 · x · z
− s000 · x · z+ s010 · x · z+ s110 · x− s110 · x · z+ s100 · x · z
+ s001 · z · x+ s011 · z)
+ lz · (−s000 − s011 · y · x+ s101 · x− s101 · x · y− s010 · y
− s100 · x− s001 · y− s001 · x+ s000 · y+ s000 · x+ s111 · x · y
− s000 · x · y+ s010 · y · x− s110 · x · y+ s100 · x · y+ s001

+ s001 · x · y+ s011 · y)
(11)

We again use the parametrization described in Equation 2 and obtain:

d(t) = e · t2 + f · t +g (12)

where e, f and g can be trivially computed as previously done in Sub-
section 3.1 for a, b, c and d. For a parametrized ray inside a cell, the
gradient variation over this ray is thus a quadratic form in t.

Ray sampling. In order to capture all the variations of the diffuse
shading function, we sample this function at the cell faces and at the
local extrema of d(t). Since d(t) is a quadratic polynomial, there is
at most a single local extremum r. Therefore, if we apply shading on
top of the previously described preintegration method, we only need
at most one additional sampling point per cell. As in the case of scalar
value integration, we thereby ensure that all extrema of the shading
function are captured. We start from the volume rendering equation
with diffuse shading; c() and τ() are defined as previously, and d()
represents the diffuse shading coefficient.

I =
∫ L

0
c(s(t))d(t)e−

∫ t
0 τ(s(u))dudt

=
∫ r

0
c(s(t))d(t)e−

∫ t
0 τ(s(u))dudt +

∫ L

r
c(s(t))d(t)e−

∫ t
0 τ(s(u))dudt

(13)

Over each interval [t1, t2], We replace s(t) with a linear form (1− t) ·
s(t1)+ t · s(t2), similarly to [11]. We obtain:

I ≈ d(s(0)) ·C f ront(s(0),s(r1),r1)+d(s(r1)) ·Cback(s(0),s(r1),r1)

+(1−α(s(0),s(r1),r1))(d(s(r1)) ·C f ront(s(r1),s(L),L− r1)

+d(s(L)) ·Cback(s(r1),s(L),L− r1))
(14)

with

Cback(a,b, l) =
∫ 1

0
c((1− t) ·a+ t ·b)te−

∫ t
0 τ((1−t)·a+t·b)ldudt

C f ront(a,b, l) =
∫ 1

0
c((1− t) ·a+ t ·b)(1− t)e−

∫ t
0 τ((1−t)·a+t·b)ldudt

α(a,b, l) = 1− e−
∫ 1

0 τ((1−t)·b+t·a)ldt

(15)

At this point, the ranges for both the scalar and the shading functions
are the same as their reconstructed counterparts over each of the inte-
gration intervals. The right of Figure 4 depicts this situation: the scalar
function integration requires two additional samples, and the shading
function integration requires one additional sample. The correspond-
ing piecewise linear approximation for this function is shown in green.
In that case, four integration steps over the ray are required to achieve
accurate rendering.

Notice that since the reconstructed scalar field is only C0 across the
cell faces, the gradient is not continuous across those faces. Therefore,
shading is not continuous across the cell faces either.

3.3 Extension to AMR rendering

After explaining our method for simple hexahedral cell visualization,
we now extend it to the case of AMR meshes. One specific issue is the
occurrence of hybrid cells, that is, cells that share at least an edge with
a cell of a different level. Such cells need to be handled as special cases
to achieve continuity along cell faces and therefore avoid artifacts in
the final renderings. In order to achieve this, we propagate the cell
splits from the lower level cell to the higher level cell as shown on
Figure 5. Two types of new points are added to the lower level cell
as it is split: source split points (shown in green on Figure 5) which
use the value from the higher level cell, and destination split points
(shown in red on Figure 5) which use the value bilinearly interpolated
inside a face shared with a cell of the same level. In both cases, this
results in continuity across cell faces: either by using the neighbour’s
value (in the case of a source split point) or by using a new value that
matches the interpolation scheme of the neighbour cell (in the case of
a destination split point). After splitting we obtain cuboids, to which
our hexahedral cell rendering technique straightforwardly generalizes.

Fig. 5. Propagating cell splits towards higher level cells in different con-
figurations generates cuboids.

4 MESH CONSTRUCTION AND TRAVERSAL

Vollrath et al. [19] use an homogeneous page table in order to ac-
cess the AMR data in a regular fashion. However, this wastes mem-
ory and decreases performance as it fails to take into account the het-
erogeneity of AMR datasets at their finest granularity. Notably, this
technique adds many additional cells which slows down the rendering
stage, especially when high quality cell rendering methods are in use.
Therefore, in this section we present a data structure that is hierarchi-
cal and does not require additional cells. Because of the difficulty in
handling hierarchical structures on the GPU efficiently, we have cho-
sen a hybrid CPU-GPU sorting approach: our hierarchical structure is
made of AMR patches (an AMR patch is defined as an axis-aligned
box of same-level cells). While this structure is traversed on the CPU,
patches can be sorted and rendered completely on the GPU thanks to
their regularity. We now present our mesh construction and traversal
technique.

4.1 Mesh construction

Assuming a function homogeneity() that returns the ratio of homo-
geneity of cell levels (1 if all the cells share the same level, 0 if all the
cells have different levels) inside a given box, our hierarchy building
algorithm is described in Algorithm 1. The dataset is recursively pro-
cessed to create a KD-tree [1]. If a node has an homogeneous patch
attached, it is made into a leaf node, otherwise it is split recursively
again.

Algorithm 1 Mesh construction algorithm

Procedure split(box b)
best score = 0
for each axis direction d do

for each possible cut plane p in direction d do
current score = homogeneity(b cut by p)
if current score > best score then

best score = current score
best cut = p

end if
end for

end for
Return (b split by best cut)
End Procedure

Procedure build mesh(box b, node n)
if homogeneity(b) = 1 then

n is a leaf node
Copy b’s data to node n

else
Create two nodes (child node 1,child node 2)
(child box 1,child box 2) = split(n)
n.children = (child node 1,child node 2)
build mesh(child box 1, child node 1)
build mesh(child box 2, child node 2)

end if
End Procedure

4.2 Mesh traversal

Once the data structure is built, the list of AMR patches is traversed
hierarchically on the CPU in back to front order, and each patch is sent
to the GPU for rendering. The GPU is then in charge of traversing the
cells inside a given patch. Although this traversal is trivial in the most
common case (and can be achieved using a simple back-to-front loop
in each dimension), we have to take perspective into account. Fig-
ure 6 depicts a situation where the position of the observer O (facing
a single AMR patch, orthogonally to the green cell) requires further
subdivision of the data into sub-patches. On the left of the figure, the
arrows depict the back-to-front rendering order dependency between
the cells. On the right of the picture, we show a proposed traversal
order that follows these dependencies. By subdividing the patch as
shown on this figure, we are thereby able to ensure perspective-correct
sorting of the cells in all cases.

5 IMPLEMENTATION

We have implemented our AMR volume rendering method on the
GPU using OpenGL. In order to improve the accuracy of the prein-
tegration table, it is stored in a 16 bit per component 256× 256× 32
RGBA texture, and we use logarithmic table access for the length
of the preintegration interval which allows greater precision at small
lengths [8]. For better blending accuracy, a 16 bit floating point
offscreen buffer is used [8]; once the whole picture is rendered, it
is copied to the front buffer. We now detail the implementation of
our hybrid CPU-GPU AMR structure traversal. The whole rendering
pipeline is visible on Figure 7. Initially, the mesh is stored as a KD-
tree with AMR patches at the leaf nodes. The KD-tree hierarchy is
traversed on the CPU in a back-to-front fashion, by choosing the ap-
propriate order at each internal node. Once a leaf node is found, a

series of consecutive indices is sent to the vertex shader, where the
number of indices matches the number of cells of the current patch.

Each of these indices is then modified inside the vertex shader ac-
cording to the current observer position to generate proper cell order-
ing as shown in Subsection 4.2. This new index is used to access a
vertex texture holding cell data.

The cell data is then passed to the geometry shader, which checks
that the cell is visible according to the current transfer function using
a look-up table as introduced in [9]. The look-up table is a 2D table
built in a way similar to the preintegration tables but holding Boolean
values: for each pair of values s1 and s2, if there exists at least an
opacity which is non-zero for scalar values in [s1,s2] the table holds
a 1, otherwise the table contains a 0. In order to know whether a cell
is visible or not, we compute the minimum and maximum of the 8
cell corner values. Since the variation of the scalar value inside a cell
is bounded by these two values, we can use them to determine if the
whole cell is visible. Therefore, these two values are used as table
lookup indices and a resulting visibility value is fetched. If the cell
is deemed visible, the geometry shader then instantiates its 6 faces.
The back faces are culled by the standard OpenGL pipeline. The front
faces are then rasterized, and each pixel executes a fragment shader.

The fragment shader is depicted as Algorithm 2. First, the ray exit
point is computed. Then, the polynomial coefficients for signal and
shading reconstruction are calculated as shown in Subsections 3.1 and
3.2. Then the local extrema of the scalar polynomial or of both poly-
nomials are found and added to a list of points. Points outside [0,1]
are pruned and the remaining points are sorted. These sorted points
are subsequently used as bounds for preintegration intervals. Over
each interval, we apply preintegration and shading interpolation using
front- and back-weighted tables as in [11].

6 RESULTS

We now present results obtained with our method. Performance mea-
surements and screen captures were performed on an PC with two
Xeon E5345 processors, 4GB of memory and a GeForce 8800 GTX
graphics card with 768MB of memory. Although 8 cores were avail-
able, only a single core was used for the computations. For these tests
we used a time step of the ”meteorite” dataset, which is an AMR simu-
lation of a meteorite falling into the sea. This dataset contains 2377878
cells divided as follows: 6300 cells of level 0, 9258 cells of level 1,
112869 cells of level 2 and 2249451 cells of level 3. The pictures pro-
duced in this paper visualize the ρ attribute (density) of this dataset.

6.1 Single cell rendering

In order to assess the quality improvement of our cell rendering tech-
nique, we now present volume rendering results in the context of a
single cell. For these tests, we used a single unshaded hexahedral
cell and a transfer function showing multiple transparent isosurfaces.
These results are visible on Figure 8. On the top left of the figure,
the hexahedral cell is rendered using a single preintegration interval;

Fig. 6. Traversing a single row of an AMR patch (top) and a single slice
(bottom).

Fig. 7. Our AMR volume rendering pipeline. The buffers are shown in
orange, programmable functionality (vertex shaders, geometry shaders,
fragment shaders) is shown in green and fixed OpenGL functionality is
depicted in blue.

Algorithm 2 Fragment shader computation

Find the exit point of the ray
Compute the a,b,c,d cubic coefficients as per Subsection 3.1
Compute the e, f ,g quadratic coefficients as per Subsection 3.2
T = Ø
if (a!=0 and b!=0) then

∆ = 4∗b2 −12∗a∗ c

T = T ∪{−2∗b+
√

∆
6∗a , −2∗b−

√
∆

6∗a }
else

if (a=0 and b!=0) then
T = T ∪{ −c

2∗b}
end if

end if
if (e!=0) then

T = T ∪{− f
2∗e}

end if
for each point t in T do

if (t ≤ 0 or t ≥ 1) then
T = T \{t}

end if
end for
T = T ∪{0,1}
Sort the points in T
for each two consecutive points (t1, t2) in T do

Reconstruct the scalar values s1 = d + t1 ∗ (c + t1 ∗ (b + t1 ∗ a))
and s2 = d + t2∗ (c+ t2∗ (b+ t2∗a)) at the interval boundaries.
Reconstruct the shading values l1 = g+ t1∗ (f + t1∗e) and l2 =
g+ t2∗ (f + t2∗ e) at the interval boundaries.
Compute the integration length l = t2− t1
Fetch the front and back textures at (s1,s2, l)
Combine these textures as described in [11]
Accumulate the value

end for

2, 4 and 100 integration intervals are used for the top right, middle
left and middle right pictures, respectively. Our adaptive technique is
shown on the bottom left, and its number of integration intervals is
shown on the bottom right (red means one, green means two and blue
means three). These pictures show that thanks to our adaptive sam-
pling method, it is possible to reach higher quality levels than with
regular oversampling, using less samples. In particular, our technique
reconstructs correct topology as can be seen when comparing it with
the highly oversampled version that uses 100 intervals. Furthermore,
adding more integration steps generates banding artifacts (which can
be seen inside the isosurfaces), which are not present with our tech-
nique since less steps are required.

Since raycasting methods always line up the viewing ray and the in-
tegration segment, and since the piecewise linear interpolation results
in the same range over each integration interval as the original func-
tion, we know that the only possible error lies along the ray. Using a
stochastic maximization process over both the eight cell corner values
and the ray trajectory through the cell, we tried maximizing the distor-
tion of isovalue positions along the ray over all possible rays traversing
the cell. The result corresponds neither to a singular ray nor to eight

Fig. 8. Comparison of classical, single-step preintegration (top left),
oversampled preintegration using 2 (top right), 4 (middle left) and 100
(middle right) regular integration intervals for all pixels and our technique
(bottom left). The number of integration steps for the adaptive method is
shown on the bottom right (red means 1 step, green means 2 steps and
blue means 3 steps). The increase of image quality due to our method
can be easily spotted in the middle left portion of all images.

singular cell values. The biggest distortion found is approximately
0.468 ray units, meaning that any isosurface is at most 0.468 times the
ray length inside the cell away from its real (trilinearly interpolated)
position.

6.2 Quality results

This section introduces results pertaining to image quality. The left
column of Figure 10 shows a comparison of the same AMR dataset
rendered without (top) and with shading (bottom). It can be seen from
these pictures that shading greatly helps understanding the internal
structure of the data. Notably, the shape of the structures resulting
from the meteorite splashing into the water is easier to infer from our
shaded rendering. When viewing the full dataset, we obtain the fol-
lowing framerates: 3.77 fps for unshaded volume rendering, and 3.62
fps for shaded rendering.

The middle and right columns of Figure 10 compare two pairs of
renderings with the same viewpoints using 2 integration steps per cell
(top) and our adaptive technique (bottom). Both rendering methods
run at the same framerate. In the middle column, artifacts are visible
in the top row which disappear when using our adaptive sampling tech-
nique. In the right column, erroneous holes appear in the thin yellow
isosurface which our adaptive sampling technique removes.

Figure 9 compares renderings obtained when taking the local ex-

Fig. 9. Volume rendering comparison with the full AMR dataset when
using the shading function extrema (left) and when omitting the extrema
(right).

trema of the shading function into account (on the left), and when
omitting those extrema (on the right). Although these pictures exhibit
small differences, these differences are not relevant enough to enable
this feature except when very high quality images are to be generated.

Finally, Figure 1 presents a close-up of the meteorite splashing into
the water as seen from above.

6.3 Performance results

This subsection introduces performance results obtained when visual-
izing the full AMR dataset.

Table 1 exemplifies our results from a performance viewpoint, us-
ing different optimizations. Without the look-up table, performance is
low, at less than a single frame per second. Thanks to the use of the
look-up table, lots of cells are culled and therefore the load on the ren-
dering stage decreases. This increases the framerate to approximately
3.48 frames per second. Our last optimization is the introduction of our
hybrid CPU-GPU mesh traversal mechanism which further increases
the framerate to 3.62 frames per second. For later performance mea-
surements, both the look-up table and the CPU-GPU mesh traversal
optimizations are used.

Optimization Performance

Without look-up table 0.76 fps
With look-up table and CPU mesh traversal 3.48 fps

With look-up table and CPU-GPU mesh traversal 3.62 fps

Table 1. Rendering performance with different optimizations at a 1024×
1024 screen resolution

Performance results when changing the target resolution are given
on Table 2. These results show that the performance remains interac-
tive at high screen resolutions (including 2048× 2048), for two rea-
sons: first, cell-projection based techniques have an advantage over
raycasting techniques as they are able to cull cells and also can share
computations among multiple pixels of the same cell. Second, as the
resolution decreases, our system becomes limited by the throughput
of the mesh traversal and geometry generation stages; we expect this
problem to be lifted by the next generation of GPUs. Table 3 shows

Resolution Performance

256×256 3.95 fps
512×512 3.83 fps

1024×1024 3.62 fps
2048×2048 3.50 fps

Table 2. Rendering performance with shading at different screen reso-
lutions.

the respective performance visualizing the complete dataset with dif-
ferent algorithms for cell rendering: preintegration using 1,2,3 and 4

Sampling Performance

4 integration intervals 3.32 fps
3 integration intervals 3.51 fps
2 integration intervals 3.64 fps
1 integration interval 3.76 fps

Fully adaptive sampling 3.62 fps
Adaptive sampling without shading extrema 3.65 fps

Table 3. Rendering performance with different preintegration schemes
at a 1024×1024 screen resolution.

intervals, and our semi-analytic adaptive sampling technique with and
without taking the shading extrema into account. The performance dif-
ference between the cell rendering techniques, albeit small, exists in
these results. Such a small performance variation can be explained by
the fact that the AMR mesh traversal and geometry generation phases,
which are common to all the rendering methods, take a fair amount
of time. These results show that our adaptive sampling technique has
approximately the same performance as using two integration inter-
vals per cell, whereas the quality is much higher as shown in Subsec-
tions 6.1 and 6.2. Thanks to its adaptivity, our cell rendering method
uses fewer integration steps on average for the same quality, and there-
fore generates less preintegration table accesses during rendering than
oversampling-based cell rendering. This in turn reduces the memory
bandwidth pressure, which is usually the limiting factor for volume
rendering. This more than offsets the computational intensity of calcu-
lating the polynomial coefficients and evaluating the extrema with our
technique. This explains why, although our method has higher com-
putational requirements than raw oversampling, its final performance
is higher.

7 CONCLUSION AND FUTURE WORKS

We have shown that very high quality volume rendering was possible
in interactive time for moderately-sized AMR datasets using our sys-
tem. However, a number of issues remain open. First, we intend to
mathematically prove the maximal distortion inside a hexahedral cell
instead of exhibiting an empirical maximum. Second, as we are inter-
ested in bigger datasets, we would like to experiment with techniques
allowing further scalability. This could be achieved by adding level-
of-detail support to our AMR rendering system, or by parallelizing
our system in order to increase the performance without sacrificing the
quality. Third, we would like to traverse the whole AMR mesh from
within the geometry shader. Although we already had unsuccessful
experiments with this (because geometry shaders have performance
issues when a high number of vertices is to be output), we hope that
future generations of graphics hardware will lift this limitation and fi-
nally allow traversing the mesh on the GPU only. This will enable
the development of new AMR traversal algorithms on the GPU. Fi-
nally, we would like to adapt our accurate cell rendering algorithm
to structured datasets. Although such datasets can be seen as AMR
datasets with a single patch, and therefore our method would be us-
able as-is, we think that the nature of structured datasets should be
taken into account in order to optimize the traversal algorithms. There-
fore, we expect that our semi-analytical cell rendering technique could
be generalized to classical volume raycasting methods and achieve the
high quality results we demonstrated together with interactive perfor-
mance.

REFERENCES

[1] Jon Louis Bentley. Multidimensional binary search trees used for asso-
ciative searching. Commun. ACM, 18(9):509–517, 1975.

[2] Klaus Engel and Thomas Ertl. Interactive high-quality volume rendering
with flexible consumer graphics hardware. In Eurographics State of The

Art Report, 2002.
[3] Luke Gosink, John C. Anderson, E. Wes Bethel, and Kenneth I. Joy.

Query-driven visualization of time-varying adaptive mesh refinement
data. In IEEE Transactions on Visualization and Computer Graphics

(Proceedings Visualization / Information Visualization), October 2008.

Fig. 10. Left: reference pictures computed using a 1024×1024 viewport without shading (top, 3.77 fps) and with shading (bottom, 3.62 fps). Middle
and right: close-up on two parts of the datasets with 2 preintegration steps per cell (top) and our adaptive technique (bottom).

[4] Stefan Guthe, Stefan Roettger, Andreas Schieber, Wolfgang Strasser, and
Thomas Ertl. High-quality unstructured volume rendering on the pc plat-
form. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-

ence on Graphics hardware, pages 119–125. Eurographics Association,
2002.

[5] Ralf Kähler and Hans-Christian Hege. Texture-based volume rendering
of adaptive mesh refinement data. The Visual Computer, 18(8):481–492,
2002.

[6] Ralf Kähler, Steffen Prohaska, Andrei Hutanu, and Hans-Christian Hege.
Visualization of time-dependent remote adaptive mesh refinement data.
In IEEE Visualization, page 23, 2005.

[7] Ralf Kähler, Mark Simon, and Hans-Christian Hege. Interactive volume
rendering of large sparse data sets using adaptive mesh refinement hier-
archies. IEEE Trans. Vis. Comput. Graph., 9(3):341–351, 2003.

[8] Martin Kraus, Wei Qiao, and David S. Ebert. Projecting tetrahedra with-
out rendering artifacts. In VIS ’04: Proceedings of the conference on Vi-

sualization ’04, pages 27–34, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[9] J. Kruger and R. Westermann. Acceleration techniques for gpu-based vol-
ume rendering. In VIS ’03: Proceedings of the 14th IEEE Visualization

2003 (VIS’03), page 38, Washington, DC, USA, 2003. IEEE Computer
Society.

[10] Christian Ledergerber, Gaël Guennebaud, Miriah Meyer, Moritz Bächer,
and Hanspeter Pfister. Volume mls ray casting. IEEE Transactions on

Visualization and Computer Graphics, 14(6):1372–1379, 2008.
[11] Eric Lum, Brett Wilson, and Kwan-Liu Ma. High-quality lighting and

efficient pre-integration for volume rendering. The Joint Eurographics-
IEEE TVCG Symposium on Visualization 2004, 2004.

[12] Nelson Max, Pat Hanrahan, and Roger Crawfis. Area and volume co-
herence for efficient visualization of 3D scalar functions. In Computer

Graphics (San Diego Workshop on Volume Visualization), volume 24,
pages 27–33, 1990.

[13] Kenneth Moreland and Edward Angel. A fast high accuracy volume ren-

derer for unstructured data. In VV ’04: Proceedings of the 2004 IEEE

Symposium on Volume Visualization and Graphics (VV’04), pages 9–16,
Washington, DC, USA, 2004. IEEE Computer Society.

[14] Steven Parker, Michael Parker, Yarden Livnat, Peter-Pike Sloan, Charles
Hansen, and Peter Shirley. Interactive ray tracing for volume visual-
ization. IEEE Transactions on Visualization and Computer Graphics,
5(3):238–250, 1999.

[15] Stefan Roettger and Thomas Ertl. A two-step approach for interactive pre-
integrated volume rendering of unstructured grids. In VVS ’02: Proceed-

ings of the 2002 IEEE symposium on Volume visualization and graphics,
pages 23–28, Piscataway, NJ, USA, 2002. IEEE Press.

[16] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, Thomas Ertl, and Wolf-
gang Strasser. Smart hardware-accelerated volume rendering. In VISSYM

’03: Proceedings of the symposium on Data visualisation 2003, pages
231–238, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[17] Stefan Röttger, Martin Kraus, and Thomas Ertl. Hardware-accelerated
volume and isosurface rendering based on cell-projection. In VIS ’00:

Proceedings of the conference on Visualization ’00, pages 109–116, Los
Alamitos, CA, USA, 2000. IEEE Computer Society Press.

[18] Peter Shirley and Allan Tuchman. A polygonal approximation to direct
scalar volume rendering. In VVS ’90: Proceedings of the 1990 workshop

on Volume visualization, pages 63–70, New York, NY, USA, 1990. ACM
Press.

[19] J. E. Vollrath, T. Schafhitzel, and T. Ertl. Employing Complex GPU Data
Structures for the Interactive Visualization of Adaptive Mesh Refinement
Data. In Proceedings of the International Workshop on Volume Graphics

’06, 2006.
[20] Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John Shalf, Hans Ha-

gen, Bernd Hamann, Kenneth I. Joy, and Kwan-Liu Ma. High-quality vol-
ume rendering of adaptive mesh refinement data. In VMV ’01: Proceed-

ings of the Vision Modeling and Visualization Conference 2001, pages
121–128. Aka GmbH, 2001.

