

LLVM + Gallium3D:LLVM + Gallium3D:
Mixing a Compiler With a Mixing a Compiler With a

Graphics FrameworkGraphics Framework

Stéphane MarchesinStéphane Marchesin
<marchesin@icps.u-strasbg.fr><marchesin@icps.u-strasbg.fr>

What problems are we solving?What problems are we solving?

● Shader optimizations are really neededShader optimizations are really needed
● All Mesa drivers are spanked really bad in All Mesa drivers are spanked really bad in

benchmarks that involve shadersbenchmarks that involve shaders

● Advanced optimizationsAdvanced optimizations
● ComplexComplex

– Intermediate language definition must be flexibleIntermediate language definition must be flexible
● Must support all architectures Must support all architectures
● Must support all optimizationsMust support all optimizations

● Keep optimizations driver-independentKeep optimizations driver-independent
– Share as much as possible between the driversShare as much as possible between the drivers

What other problems are we What other problems are we
solving?solving?

● Target multiple architecturesTarget multiple architectures
● CPUsCPUs

– Current Mesa/Gallium3D has some code Current Mesa/Gallium3D has some code
generation paths for SSEgeneration paths for SSE

● Bug prone (currently buggy both in Mesa & Gallium3D)Bug prone (currently buggy both in Mesa & Gallium3D)
● Drop that burden onto another libraryDrop that burden onto another library

● GPUsGPUs
– GPU-specific optimizations must be supportedGPU-specific optimizations must be supported

● Not interested in reinventing the wheelNot interested in reinventing the wheel

What hardware problems are What hardware problems are
we solving?we solving?

● In the nvidia caseIn the nvidia case
● All cardsAll cards

– Input/output register allocationInput/output register allocation
– Loop unrollingLoop unrolling
– Function inliningFunction inlining

What other hardware problems What other hardware problems
are we solving?are we solving?

● In the nvidia caseIn the nvidia case
● nv30/nv40nv30/nv40

– Implements most of the ARB shader specsImplements most of the ARB shader specs
● Full instruction setFull instruction set

– Vec4 architectureVec4 architecture
– Free abs, neg, postmultiplicationFree abs, neg, postmultiplication
– All swizzles are supportedAll swizzles are supported
– (VP) Merged instructions(VP) Merged instructions

● nv50nv50
– More RISC-likeMore RISC-like
– Scalar architectureScalar architecture
– Texture access limitationsTexture access limitations

What's LLVM?What's LLVM?

● A compiling, optimizing and code A compiling, optimizing and code
generation frameworkgeneration framework

● Targets many CPU architecturesTargets many CPU architectures
● Good at optimizationGood at optimization

● llvm-gcc is on par with gcc performance-wisellvm-gcc is on par with gcc performance-wise

● Widely used in the fieldWidely used in the field
● In particular, by Apple for shader optimization In particular, by Apple for shader optimization

in OSXin OSX

Why LLVM?Why LLVM?

● Open sourceOpen source
● ModularModular

● Unlike GCCUnlike GCC
● Technically it is a libraryTechnically it is a library

– Interface to generate LLVM intermediate Interface to generate LLVM intermediate
representation, optimize and output machine coderepresentation, optimize and output machine code

● TargetsTargets
● Numerous existing CPU targetsNumerous existing CPU targets
● Easy to retargetEasy to retarget

What will we get from LLVM?What will we get from LLVM?

● An intermediate representation (IR) An intermediate representation (IR)
languagelanguage
● SSA-likeSSA-like

● LLVM code generators for the CPULLVM code generators for the CPU
● SSESSE
● AltivecAltivec
●

● Optimization passesOptimization passes
● All common optimizationsAll common optimizations

What's Gallium3D?What's Gallium3D?

● A driver frameworkA driver framework
● Everything is a shader internallyEverything is a shader internally
● Shaders should be optimizedShaders should be optimized

Do you have a nice diagram?Do you have a nice diagram?

OpenGL

Video
Decoding

DirectX

OpenCL

Coffee
making

Gallium NV40

NV04

R300

IR is TGSI
IR is TGSI

Where do you plug LLVM in?Where do you plug LLVM in?

OpenGL

Video
Decoding

DirectX

OpenCL

Coffee
making

Gallium NV40
LLVM backend

NV04
LLVM backend

R300
LLVM backend

LLVM

IR is TGSI

IR is
TGSI

IR is LLVM

Gallivm
IR is
LLVM

How does it work?How does it work?
● The previous diagram is for shaders onlyThe previous diagram is for shaders only

● Rest is unchangedRest is unchanged

● Gallivm outputs LLVM intermediate Gallivm outputs LLVM intermediate
representation from TGSI intermediate representation from TGSI intermediate
representationrepresentation

● LLVM optimizes itLLVM optimizes it
● Each driver has an LLVM backend that Each driver has an LLVM backend that

describes its GPUdescribes its GPU

What about shaderful GPUs?What about shaderful GPUs?

● Write an LLVM backend that describes Write an LLVM backend that describes
your GPU:your GPU:
● Instruction setInstruction set
● RegistersRegisters
● ConstraintsConstraints

● (maybe) Add some specific optimization (maybe) Add some specific optimization
passespasses
● Merge instructions into VLIWsMerge instructions into VLIWs

What about shaderful GPUs?What about shaderful GPUs?

● LLVM's tablegen languageLLVM's tablegen language
● Describe your architecture high level-ishDescribe your architecture high level-ish
● .td files.td files
● Tablegen example:Tablegen example:

def MUL : bin_instruction<0x02, "mul", fmul, (outs def MUL : bin_instruction<0x02, "mul", fmul, (outs
VR128:$dst), (ins VR128:$src1, VR128:$src2), VR128:$dst), (ins VR128:$src1, VR128:$src2),
[(set VR128:$dst), (fmul VR128:$src1, VR128:$src2)] ,1>;[(set VR128:$dst), (fmul VR128:$src1, VR128:$src2)] ,1>;

● Compiles into C++ filesCompiles into C++ files

What about fixed pipe GPUs?What about fixed pipe GPUs?

● Fixed pipe cards have shaders, but:Fixed pipe cards have shaders, but:
● With a restricted instruction setWith a restricted instruction set
● With a limited number of instructions (think With a limited number of instructions (think

2-4)2-4)
● These instructions describeThese instructions describe

– Texture combiningTexture combining
– FogFog
– Constant colorConstant color
–

What about fixed pipe GPUs?What about fixed pipe GPUs?

● Write an LLVM backend that describes Write an LLVM backend that describes
fixed pipe:fixed pipe:
● Texture combiningTexture combining
● FogFog
●

● Let LLVM's rewrite engine figure out how Let LLVM's rewrite engine figure out how
to make fixed pipe instructions from a to make fixed pipe instructions from a
shadershader
● Works for the simple shadersWorks for the simple shaders
● Of course will not get GLSL running on old Of course will not get GLSL running on old

GPUsGPUs

What do we have today?What do we have today?

● TGSI to LLVM IR translationTGSI to LLVM IR translation
● Partial LLVM code generators for our GPUsPartial LLVM code generators for our GPUs

● NV40NV40
● NV50NV50
● R300R300
● Fixed pipe (NV04)Fixed pipe (NV04)

● Code generation to the CPU for vertex Code generation to the CPU for vertex
shadersshaders

What do we have today?What do we have today?

● Target GPUs and CPUs with a single Target GPUs and CPUs with a single
infrastructureinfrastructure

● Reuse CPU code generators from LLVMReuse CPU code generators from LLVM
● Vectorised (SSE/Altivec)Vectorised (SSE/Altivec)
● Scalar (x86,amd64, PPC, ARM, MIPS...)Scalar (x86,amd64, PPC, ARM, MIPS...)

● Get access to a wide range of Get access to a wide range of
optimizationsoptimizations
● Existing LLVM optimization passesExisting LLVM optimization passes

Do we live happily everafter?Do we live happily everafter?

● Not yetNot yet
● Finish the LLVM backendsFinish the LLVM backends
● Iron out code generation problemsIron out code generation problems
● Add new LLVM optimizations passesAdd new LLVM optimizations passes
● Changes in LLVM itselfChanges in LLVM itself

● More intermediate level instructions in LLVM More intermediate level instructions in LLVM
(especially vector ones)(especially vector ones)

● Straightforward support for VLIWStraightforward support for VLIW

And now, do we live happily And now, do we live happily
everafter?everafter?

«They lived happily everafter, and had «They lived happily everafter, and had
many optimized little programs»many optimized little programs»

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20

